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Abstract. One of the greatest challenges in big data management is
the “Variety” of the data. The data may be presented in various types
and formats: structured, semi-structured and unstructured. For instance,
data can be modeled as relational, key-value, and graph models. Hav-
ing a single data platform for managing both well-structured data and
NoSQL data is beneficial to users; this approach reduces significantly in-
tegration, migration, development, maintenance, and operational issues.
Therefore, a challenging research work is how to develop an efficient
consolidated single data management platform covering both NoSQL
and relational data to reduce integration issues, simplify operations, and
eliminate migration issues. In this paper, we envision novel principles and
technologies to handle multiple models of data in one unified database
system, including model-agnostic storage, unified query processing and
indexes, in-memory structures and multi-model transactions. We discuss
our visions as well as present research challenges that we need to address.

1 Introduction

As data in all forms and sizes are critical to making the best possible decisions
in businesses, we see the continued growth of demands to manage and analyze
massive volume of different types of data. The data may be presented in various
types and formats: structured, semi-structured and unstructured [14, 16, 22]. In
the case of structured data, data might be structured as relational, key-value,
and graph models [15]. In the case of semi-structured data, data might be repre-
sented as XML and JSON documents [19]. Consequently, beyond the traditional
relational database (RDBMS), there has been a blooming of different big data
management solutions, specialized for different kinds of data and tasks, to name
a few, distributed file systems (e.g. Ceph and HDFS), NoSQL data stores (e.g.
Bigtable, Redis, Cassandra, Mongodb, Neo4j), and distributed data processing
frameworks (e.g. MapReduce, Spark). This is also known for “one size does not
fit all“ argument. However, managing heterogeneous data sources across the sys-
tems imposes a big challenge for practitioners in that the deployment of multiple
systems has led to a wide diversification of data store interfaces and the loss of
a common programming paradigm.

Let us consider three application scenarios to illustrate the variety of data.
First, consider an application called customer-360-view, which often requires to
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aggregate multiple data sources, including graph data from social networks, doc-
ument data from product orders and customer information in a relation database.
Second, in Oil & Gas industry, a single oil company can produce more than
1.5TB of diverse data per day. Such data may be structured or semi-structured
and come from heterogeneous sources, such as sensors, GPS devices, and other
measuring instruments. Third, in health-care: North York hospital needs to pro-
cess 50 diverse datasets, including structured and unstructured data from clin-
ical, operational and financial systems, and data from social media and public
health records . These emerging applications clearly demand the need to manage
multiple-model data in complex, modern applications.

There exist two approaches to address the challenge of multi-model data man-
agement: (i) polyglot persistence [10,13] and (ii) multi-model database. The first
solution uses multiple databases to handle different forms of data and integrates
them to provide a unified interface, whereas the second supports multiple data
models against a single, integrated backend while meeting the growing require-
ments for fault tolerance, scalability, and performance. We discuss the issues of
both solutions below.

The history of polyglot persistence may trace back to the federation of re-
lational engines [11], or distributed DBMSs, which were extensively studied in
depth during the 1980s and early 1990s. Polyglot persistence approach is similar
to the use of mediators in early federated database systems. For example, Mus-
keteer [10] provides an intermediate representation between applications and
data processing platforms. DBMS+ [13] aims at embracing several processing
and storage platforms for declarative processing, and BigDAWG [8] has recently
been proposed as a federated system that enables users to run their queries over
multiple vertically-integrated systems such as column stores, NewSQL engines,
and array stores. Overall, the polyglot persistence solution needs to integrate
multiple systems to provide a unified interface, which imposes operational com-
plexity and cost, because the integration of multiple independent databases im-
poses a significant engineering and operational cost. Further, in order to answer
a global query, all of the sub-systems need to remain up, which makes the fault
tolerance of the application equal to the weakest component in the stack.

The second approach is to develop a new database to support multiple data
models against a single, integrated backend, while meeting the growing require-
ments for scalability and performance. We observe a recent trend among rela-
tional and NoSQL databases in moving away from one single model to multi-
model databases. For example, OrientDB is extending graph database to support
key-value and json models. ArangoDB is moving from document model to sup-
port key-value and graph models. AgensGraph simultaneously supports both the
property graph model and the relational model based on a PostgreSQL kernel.
Compared to the polyglot persistence, a single multi-model database can reduce
the cost of integration, migration, development and maintenance on multiple
systems. Furthermore, during query execution, it can leverage a unified query
language directly to access the data stores without query decomposition because
of its native store nature.
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This paper envisions a multi-model database system, called UDBMS (Uni-
fied DataBase Management System), that provides several new components and
functions to enable a unified and efficient management of multi-model data. The
contributions of this paper are summarized as follows. (1) We envision the archi-
tecture of UDBMS system to enable the unified data access and management;
(2) We show five model-agnostic properties of UDBMS on data storage, query
processing, index structure, in-memory structure and transaction; and (3) we
illustrate three new research challenges of UDBMS on schema discovery, model
evolution and multi-model data sharding.

In the sequel, we introduce UDBMS’s architecture, and walk the readers
through the main technical elements of our solutions. Finally, we discuss related
works, then conclude.

2 Architecture

The overview of UDBMS architecture is illustrated in Figure 1.
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Fig. 1. Architecture of the UDBMS.

The main component of the system includes two layers: the core layer receives
queries from the client and returns the unified results; and the storage layer
loads data with diverse models and stores them in a unified storage platform.
We depict the important components in these two layers below:
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(i) Model-agnostic query processing is responsible for validation and compilation
incoming unified queries, as well as query plan generation and optimization. The
validation and compilation are supported in cooperation with the flexible schema
manager. Moreover, multiple types of indexes are developed to efficiently answer
ad hoc queries.
(ii) Flexible schema manager is to handle the diverse schema of multi-model
data. Relational DBMS works according to “schema-on-write” principle, which
pre-defines the schema prior to feeding data into system. Whereas NoSQL usually
agrees “schema-on-read”, where schema is needed only when reading data from
system. To gain a high level of schema flexibility, we continue to use the “schema-
on-read” principle by employing a schema manager which tracks data accesses
(including read and write) and automatically generates schema and refines them
when necessary. By doing this we are able to give an answer without any input
schema - we can generate one by ourselves.
(iii) Model-agnostic data storage is to provide a model-agnostic abstraction of
multi-model data to the accesses of data. The physical data can be stored in
different formats and dispersed on a distributed platform, e.g. Hadoop and Spark.
(iv) Consistency controller controls the level of data consistency for a single
query by using multi-model locks on data. The locks have various types for
different models of data, and they support the fine-grained management for
better efficiency, e.g., record-, document-, and node/edge-level.

From the above description, it can be seen that UDBMS is different from the
existing wrapper-mediator systems [10, 13], where data resides in various stores
and query execution is divided between the mediator and the wrappers. Instead,
UDBMS imports data across the different-data model stores and employs the
same abstraction and approach to access and manage them.

3 Under the hood

UDBMS aims at efficiently managing heterogeneous datasets through a unified
set of interface and abstraction. In this section we lay out several model-agnostic
properties and discuss how we approach each of them respectively.

3.1 Model-agnostic data storage

Classical RDBMS makes a tight connection between logic data model and phys-
ical storage so that the storage engine assumes that data is physically stored
in a particular sequence of bytes to support relational access pattern. Though
Object-Relational Database Management System (ORDBMS) can be consid-
ered as an early version of multi-model DB via handling non-relational data in
RDBMS, its starting point is that relational data is the first class citizen. But in
UDBMS, relational data is just one kind of data models, and there is no specific
bias towards relational data. Therefore, the storage layer of UDBMS makes no
assumption of how multi-model data is internally laid out. It provides a collec-
tion of abstraction API that holds a set of objects. Each of the object is accessed
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by an object id with version based time stamp. There is a key-value interface
that supports generic put()/get()/replace()/delete() APIs for an object collec-
tion. From storage layer perspective, the value is a sequence of bytes which are
not interpreted by the storage engine. The sequence of bytes can be a relational
row with well-defined schema, or a piece of graph, or an XML document etc.

Specifically, the get(objectId, timeStamp, objectBytes) interface returns a se-
quence of bytes from the storage given an object id. In addition to the object
id, the get() interface accepts a time stamp snapshot parameter. This parameter
identifies the version of the object bytes for that object id that the data storage
engine will provide. The put(objectId, objectBytes) interface returns a new object
id for a sequence of bytes for storage. The replace(objectId, objectBytes) interface
replaces the content of the object with object id and a new sequence of bytes
and returning the new time stamp for the data. The delete(objectId) interface
deletes the object with the id. However, get(objectId, oldTimestamp) may still
be able to retrieve the object with the old time stamp. In addition, to support
both ACID, BASE or hybrid transactional semantics, the object collection can
be declaratively specified as ACID or BASE. The transaction layer then enforces
different transaction semantics for the model-agnostic data.

(a)

(b)

[
 {
  "id": 85,
  "name": "Keyboard",
  "price": 20,
  "stock": 70
 }, {
  "id": 86,
  "name": "Webcam",
  "price": 35,
  "stock": 8
 },
  

]

[
 {
  "id": 1,
  "customer_id": 101,
  "items": [
   {"product_id": 85, "quantity": 5,
    "price": 100, "rating": 5},
   {"product_id": 86, "quantity": 1,
    "price": 35, "rating": 4}
  ],
  "total_price": 135
 },
  
]
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Fig. 2. Example of (a) multi-model datasets and (b) query represented with a forest
pattern. The elements marked with asterisk (*) are returned in query results.

3.2 Multi-model query processing

The original ORDBMS does not embrace a language to process multi-model
data, nor does it address the idea of doing inter-model compilation and opti-
mization. To develop a unified query to accommodate all the data, there are
several existing works towards providing a global language to query multi-model
data simultaneously. For instance, SQL++ [21] is proposed to query both JSON
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native stores and relational data. ArangoDB AQL can be used to retrieve and
modify both document and graph data. We use the following example to demon-
strate the core structure in a multi-model query.

Example 1. Consider an application involving JSON documents, a relational
table and a graph data in Figure 2(a). One example query is to return the
friends of the customers in Helsinki who bought a keyboard and gave a five-
star feedback. This query can be used for product recommendation. Note that
there are three types of joins in the query of Figure 2(b): graph-relational (./a),
relational-JSON (./b) and JSON-JSON (./c) joins. The answer of this query is
two pairs of customer IDs: (101,145) and (101,56). ut

To process the above query efficiently, as the order of joins can significantly
affect the execution time, a query optimizer evaluates available plans and selects
the best one. For example, how to decide the join orders among ./a, ./b and ./c
in Example 1. Therefore, one challenge is to develop new algorithms to select the
best query plan for a multi-model query. In addition, statistics, such as histogram
or wavelet can be used to provide detailed information about data distribution for
query optimization. The existing statistics techniques on RDBMS are developed
based on the static relation schema, but multi-model data requires the diverse
and flexible schema. Therefore, it starts to crystallize that dynamic statistics
techniques are necessary here to adapt for the frequent schema changes.

3.3 Model-agnostic index structure

Original ORDBMS builds up domain index for each data, cross-domain query
join is done by doing separate domain index probes for each domain data, and
then joining the index results which are typically at document object ID level.
This approach works if we do inter-document object join. However, in UDBMS,
such single domain index idea needs to be re-visited if we want to do intra-
document object join. For example, to support full text search and relational
scalar data search, we need to built up search indexes to incorporate IR-style
inverted lists to index various data together. But building a universal search
index for all data models requires more deep thoughts. Existing index structures
focus upon a single data model, e.g. B-tree is used for relational joins, XB-
tree [4, 20] is developed for XML data, and gIndex [23] is applicable for graph
queries, our visioned system, however, executes queries on more than one data
model. Therefore, how to index multiple data models to accelerate operations
such as cross-model filtering and join? For example, how to support ./a and ./b
operations in Example 1 for graph-relation and JSON-relation joins efficiently?

In general, we envision two types of auxiliary structures. The first is using
inverted index based search index for full-text search. This index integrates do-
main context aware inverted index for XML and JSON, full text, and leaf scalar
relational data together as one unified index. The second is building ad-hoc
global indexes to capture the structural feature in multi-model data to speedup
structural query processing.
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3.4 Multi-model in-memory structure

Classical RDBMS uses buffer cache and assumes that the data layout on disk
is the same as what is cached in memory. Nevertheless, UDBMS data storage
engine makes no assumption of the domain specific data layout, nor it makes
any assumption on how the domain specific data format is when it is cached in
memory for fast query. Each domain specific data model may cache the data in
different format from what is stored on disk.

Multi-model in-memory cache merely uses callback to delegate to each data-
model to get its specific in-memory format. For example, the proposed in-
memory data structures for relational database include, to name a few, Ora-
cle columnar layout, IBM DB2 BLU Acceleration and SQL Server In-Memory
Columnstore. Through adopting the idea of decoupling the storage format with
in-memory query friendly format, UDBMS will provide fast in-memory access
for multi-model data using its domain specific query language without worrying
about finding the optimal storage model for multi-model data. In fact, there
is probably no single best storage format for a domain specific data to satisfy
all the workload requirements. For example, columnar layout of the relational
data might not always be faster than row layout of the relational data for OLTP
query. Another aspect of in-memory cache for domain specific model data is to
enable efficient intra-object navigation and traversal when domain specific query
language is being evaluated.

3.5 Model-agnostic transaction

RDBMS supports ACID guarantee, while NoSQL employs BASE pertaining as
the ways for scaling and workaround on CAP theorem. We envision a per-query
choice of consistency between ACID and BASE for multi-model data, which is
flexible so that the user has a clear understanding and control over the perfor-
mance as well as the consistency guarantees. To support a hybrid transactional
semantics, the model-agnostic object collection can be declaratively specified
as ACID or BASE. The transaction layer then enforces different transaction
semantics for the data.

Further, to boost the performance of transaction execution, a fine-granular
isolation at different levels in multi-model data can achieve the flexibility and
performance benefit. For example, objects can be isolated in the forms of subtree
locks, subgraph locks, path locks and neighbor node locks. Further, an effective
global node labeling scheme can be developed to enable the quick jump to a
particular inner data node as required in the lock manager (e.g. to support
getParent operations in a tree).

3.6 Other research challenges

Schema discovery Original ORDBMS assumes the perfect schema based
world. Semi-structure data and unstructured data challenge ORDBMS with
schema-less design. We understand the value of NoSQL point of schema-less
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DB development, but further enhances it to argue that schema-less for write is
half of the story, schema-rich for query is the other half of the story via auto-
schema discovery. Therefore, UDBMS is expected to support schema discovery
interface. Enhancing schema discovery for multi-model data is a new challenge
which involves knowledge and techniques from neighboring research communities
such as data mining, machine learning and human-computer interaction.

Model evolution is a unique challenge in a multi-model database [17]. With
the increasing maturity of NoSQL databases, a plethora of applications turn
to store data with JSON documents or graph representations. But the legacy
data are still stored in the traditional RDBMS. Thus, the model evolution may
affect the usability of queries and applications developed on the RDBMS. There-
fore, a research challenge is how to perform model mapping and query rewriting
to automatically handle such model evolution. Note that model evolution is a
more complicated than schema evolution on RDBMS, because it raises the issues
involving both the attribute difference and the structural difference.

Multi-model sharding is a method for distributing data across multiple ma-
chines. A relational database shard is a horizontal partition of data and each
shard is held on a separate database server instance to spread load. But in the
scenario of multi-model data management, do we support inter-object or intra-
object sharding ? It is easy to support inter-object sharding. But if a graph or
a tree is a big object, then we need to consider about intra-object sharding.
Therfore, the distributed data sharding technology needs further investigation
in UDBMS.

4 Related work

Heterogeneous Query Processing The interests of providing a unified data
access and processing interface for heterogeneous data sets have been extensively
explored in previous systems and prototypes [6, 9, 18]. For example, BigIntegra-
tor [24] supports SQL-like queries that combines data in Bigtable stores in the
cloud and data in relational stores; Forward presents SQL++ [21], an SQL-like
language designed to unify the data model and query language capabilities of
NoSQL and relational databases; Dremel [2] uses semi-structure data model,
however, it can execute queries based on a flattened columnar storage. Vertex-
ica [12] runs graph queries in a relational database; Asterix follows the motto
“one size fits a bunch” and has built a data model-agnostic query compiler sub-
strate, called Algebricks [3], and has used it to implement three different query
languages: HiveQL, AQL, and XQuery, on different format of data. Compared to
the previous works which focus on specific models, our approach is more generic,
with several model-agnostics principles (for data storage, query processing and
index structures) that enable the efficient heterogeneous query processing for
multiple data stores.

Tightly-Coupled Multistore System Recent works (e.g. Polybase [7] ,
HadoopDB [1] and Estocada [5]) also demonstrate the performance benefits of
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using seamless integrated multi-stores, these systems aim at efficient manage-
ment of structured and unstructured data for big data analytic, particularly for
integration of HDFS and RDBMS data. Different from the purpose of combining
relational and distributed unstructured stores, UDBMS focus on the unification
of relational and transactional NoSQL stores for on-line hybrid OLTP and OLAP
data processing.

5 Conclusion and future works

“The intellect seeking after a unified theory cannot rest content with the
assumption that there exist two distinct fields totally independent of each
other by their nature.”
— Albert Einstein in his Nobel lecture in 1923

In this paper, we present our visions to build a system to query, index and
update multi-model data in a unified fashion. While the road to unification is
full of challenges, this paper has laid down our visions to build a UDBMS with
model agnostic properties and structures. In the future work, we shall investigate
the following three categories of challenges on UDBMS: diversity, extensibility
and flexibility.
(1) Diversity: The first challenge is the “diversity” of multi-model data. The
existing results for query optimization and transaction model mainly work on
a single model, either structured or semi-structured data. The highly diverse
nature of multi-model data makes a unified system complicated and fascinated.
(2) Extensibility: The second challenge is to identify the boundary of UDBMS.
In this paper, we envision a unified system for several types of data, i.e. relation,
JSON, XML and graph. A further question is how to adopt more types of data
such as streaming data and time series data. This calls for the future research
on the extensibility of a multi-model system.
(3) Flexibility: Finally, NoSQL DBMS can support schema-less for storage,
and schema-rich for query according to the automatically discovered schema. It
would be interesting to explore the model-agnostic storage and query processing
in UDBMS – in particular, we call this “what we store is not what we get”.
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