

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Multi-Model Databases
- Categorical Algebra and Calculus
- Algebraic Transformation Rules
- UniBench: Multi-Model Database Benchmarking System
- Conclusion

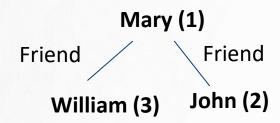
BIG DATA

Data come from different sources and have different formats

Smart phone

Camera

Social media


Acknowledgement: Icons created by Freepik - Flaticon

Variety challenge of big data facebook VISA Pinterest CHASE 🗅 **Banking Social Finance** Media **ORACLE®** 🞢 zynga Customer Personal **Gaming** Information IBW. **XBOX** 360. **NORDSTROM Entertain** Customers NETFLIX **Purchase** ment have different amazon hulu types of data. Customer-360-Degree-View

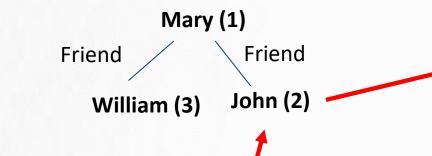
An example of different data and query in databases

Social network

Table

Customer_ID	Name	Credit_limits
1	Mary	5,000
2	John	3,000
3	William	2,000

Persons made the order:


```
"1"--> "34e5e759"
"2"--> "0c6df508"
```

Order information:

An example of different data and query

Social network

Table

Customer_ID	Name	T	Credit_limits
1	Mary		5,000
2	John		3,000
3	William	1	2,000

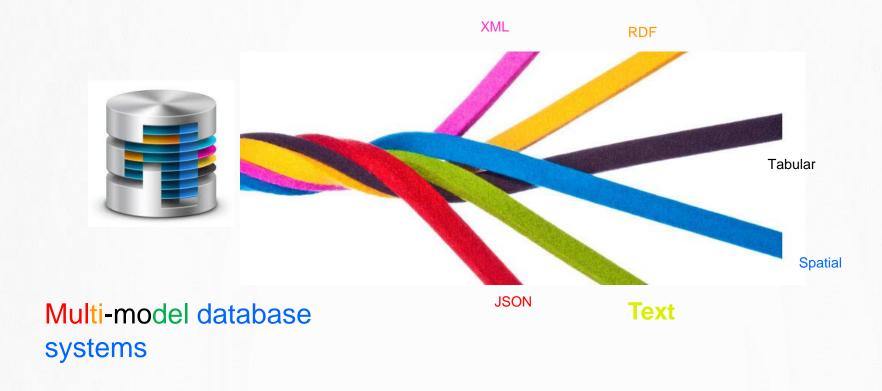
Persons made the order:

```
"1" -- > "34e5e759"

"2"-- > "0c6df508"
```

Order information:

One application with different models of data


- Relational data: customer databases
- Graph data: social networks
- Hierarchical data: catalog, product
- Key-value data: orders by customers

How to integrate those heterogenous data to provide a unified service?

Multi-Model Databases System

One unified database system for multi-model data

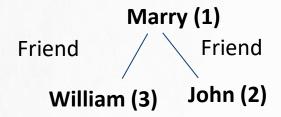
What is DBMS?

 A Database Management System (DBMS) is software designed to efficiently manage data, with traditional systems storing data in the form of tables (RDBMS).

Student ID	First name	Last name	Department
001	John	Smith	Biology
002	Emily	Johnson	Physics
003	Michael	Brown	History
004	Sarah	Davis	English

Students Relational Table

What is multi-model database management system


• A multi-model database management system (MMDBMS) is designed to support multiple data models against a single, integrated backend.

• Document, graph, relational and key-value models are examples of data models that may be supported by a multi-model database.

Four models of data

Graph:

Relation:

Customer_ID	Name	Credit_limits
1	Mary	5,000
2	John	3,000
3	William	2,000

Key-value:

```
"1"--> "34e5e759"
"2"--> "0c6df508"
```

Document:

Advantages of MMDBMS over the traditional relational database

Handling diverse data types

 Handle various types of data, such as graph, relation, document and key-value data and more models

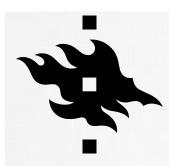
Enhanced query capabilities

 Support content-based search for multi-model data or spatial queries for geospatial data.

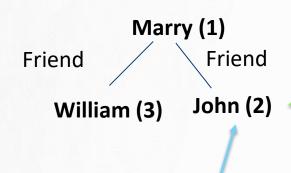
Flexible schema

 Greater flexibility in schema design and evolution. Relational DBMS has the fixed database schema definitions.

Multi-model databases products



• •


• Supporting graph, document, key/value and object models.

Query: Return all products which are ordered by a friend of a customer whose credit limit>4000

Answer: John is a friend of Mary (the credit_limit of Mary > 4000)

Customer_ID	Name	/	Credit_limits
1	Mary		5,000
2	John 4		3,000
3	William		2,000

```
"1" -- > "34e5e759"
     "2"--> "0c6df508"
{"Order no":"0c6df508",
"Orderlines": [
   { "Product no":"2724f"
     "Product Name": "Toy",
     "Price":66 },
   { "Product no": "3424g",
     "Product Name": "Book",
     "Price":40 } ]
```


Query language of OrientDB:

```
SELECT
expand(out("Knows").Orders.orderlines.Product_no)
FROM Customers
WHERE CreditLimit > 4000
```

Recommendation query:

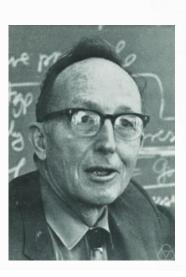
Return all products which are ordered by any friend of a customer whose credit_limit>4000

Challenge: a new theory foundation

Research goal:

Call for a unified model and theory for multi-model data!

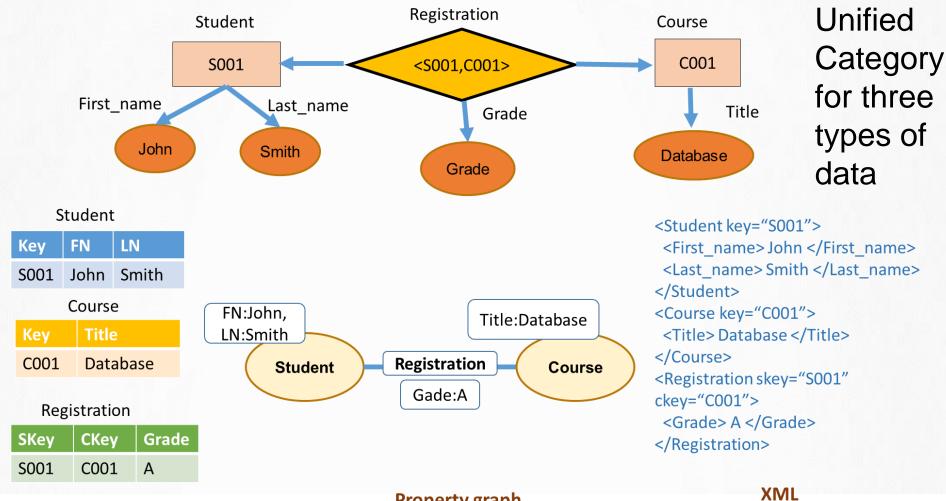
The theory of traditional relations is not adequate to mathematically describe modern database systems.



One possible theory foundation: Category Theory

- Introduced to mathematics world by Samuel Eilenberg and Sauders MacLane in 1944
- Developed for a unified language of topology and algebra

Sauders MacLane



- Databases are set categories:
 - Objects are sets and morphisms are functions

- We assume that it is a thin Category (or Posetal Category)
 - O Given a pair of objects X and Y in a category C, and any two morphisms f, g: $X \rightarrow Y$, we say that C is a thin category if and only if the morphisms f and g are equal.

An example of Categorical Unification

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

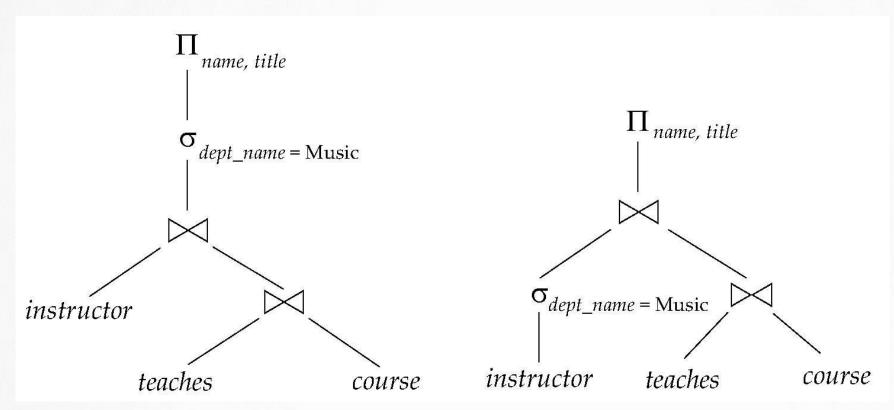
Relation

Property graph

Relational algebra and relational calculus

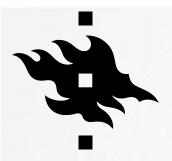
 In the field of relational databases, relational algebra and relational calculus are developed as two formal languages for query databases.

 Similarly, categorical algebra and categorical calculus are developed to query category databases.



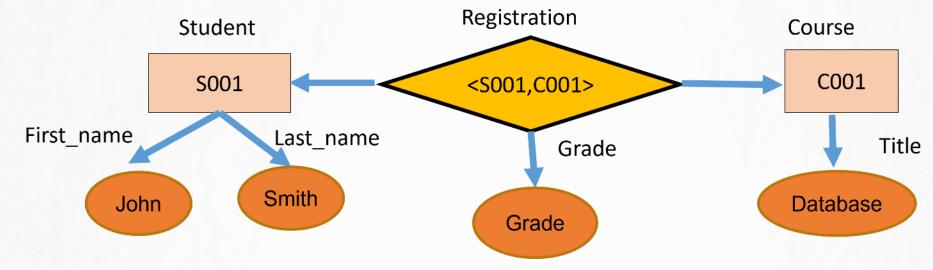
Relational algebra

- Operators:
 - Selection: σ (sigma)
 - Projection: Π
 - Union: ∪
 - Intersection : ∩
 - Difference: -
 - Cartesian Product: ×
- Derived operators:
 - Joins (equi-join) ⋈


Examples of query trees:

Categorical algebra

- Set operators:
 - Unary operator:
 - Map: f
 - Selection: σ
 - Projection: Π
 - Binary operator:
 - Division: ÷
 - getParent(D₁,D₂) (tree data)
 - getAncestor(D₁,D₂) (tree data)
 - Tenary operator:
 - getReach(S,T,E) (graph data)
 - getNHop(S,T,E) (graph data)

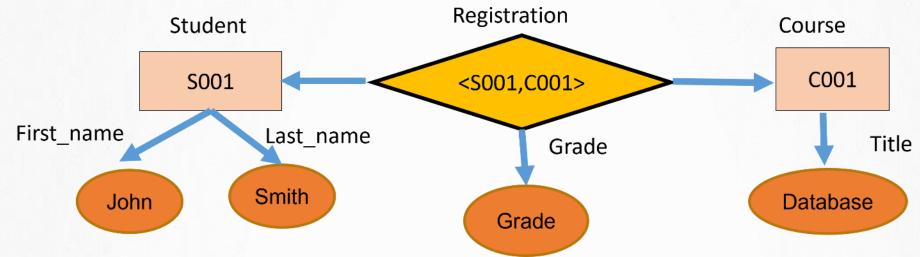


Categorical algebra

- Category operators:
 - Sets and Functions to Category:
 - Cat($S_1,...,S_n, f_1: S_{i1} \to S_{j1},..., f_m: S_{im} \to S_{jm}$)
 - This operator, called **Categorification**, constructs a category using a given set of objects and morphisms.
 - Category to Set
 - Limit which converts a category into a relational object (set).
 - Lim(Cat($S_1,...,S_n, f_1: S_{i1} \to S_{i1},..., f_m: S_{im} \to S_{im}$))

Example of categorical algebra: Selection

Query: Find all courses taken by "Smith"


S1:= $\sigma_{\text{student} \cdot \text{Last_name}=\text{"Smith"}}$ (Registration)

S2:= S1 · Course · Title

Return S2

Example of categorical algebra: Division

Query: Find the titles of courses taken by all students

S1:= Registration[Student] ÷ Student

S2:= S1 · Course · Title

Return S2

Two examples of query plan with categorical algebra

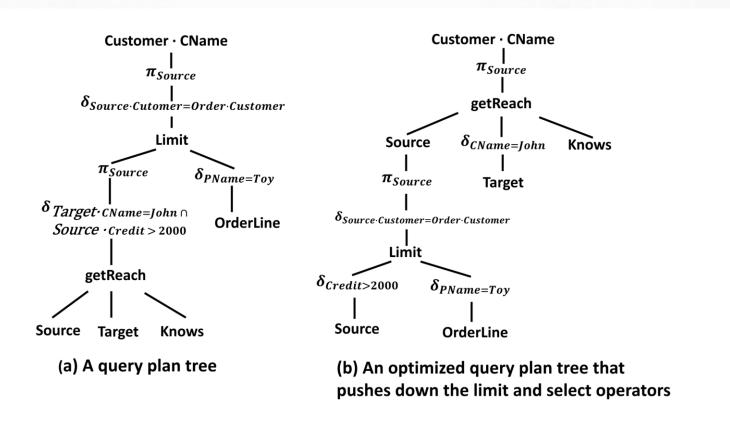


Figure 4: Two holistic query plans involving three types of data

- Categorical calculus, a declarative language for describing results in the category; Categorical algebra, a procedural language for listing operations in the category.
- The formulae of the Categorical Calculus

Formulae with range terms	Safe variables
$x_1 \in O_1$	x_1
$x_1 \in O_1 \land \neg (x_1 \in O_2)$	x_1
Formulae with function and range terms	Safe variables
$((f_1: x_1 \to x_2) = f_2 \circ g_1) \land (x_1 \in S_1) \land (x_2 \in S_2)$	x_1, x_2
$(\pi_1:(x_1,x_2)\to x_1)\land (x_1\in S_1)\land (x_2\in S_2)$	x_1, x_2
Formulae with predicate, range and function terms	Data model
$(x_1 \in S_1) \land (x_2 \in S_2) \land (x_1 \leadsto^E x_2) \land (x_1 \cdot \text{Name} = \text{"John"})$	Graph
$(x_1 \in D_1) \land (x_2 \in D_2) \land (x_1 \text{ isAncestor } x_2)$	Tree
Formulae with unsafe terms	Unsafe variable
$x_2 \in S_2, x_3 \in S_3, \exists x_1(x_1 > x_3 \land x_2 = 6)$	x_1
$\forall x_1 \exists x_2 \in S_2(x_1 > x_2)$	x_1
$(x_1 \in S_1) \vee f(x_1) = a_1$	x_1

The formulae of the Categorical Calculus

Reachable predicate from node x_1 to x_2

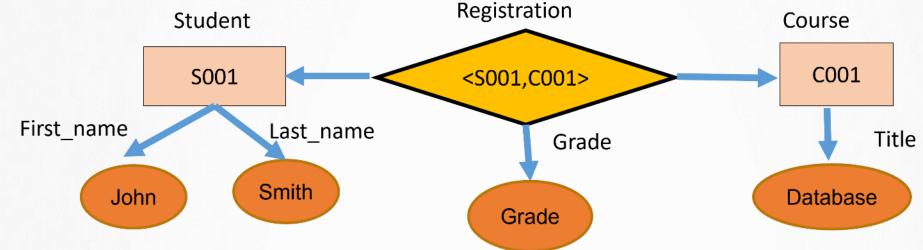
Formulae with range terms	Safe variables
$x_1 \in O_1$	x_1
$x_1 \in O_1 \land \neg (x_1 \in O_2)$	x_1
Formulae with function and range terms	Safe variables
$((f_1: x_1 \to x_2) = f_2 \circ g_1) \land (x_1 \in S_1) \land (x_2 \in S_2)$	x_1, x_2
$(\pi_1:(x_1,x_2)\to x_1)\land (x_1\in S_1)\land (x_2\in S_2)$	x_1, x_2
Formulae with predicate, range and function terms	Data model
$(x_1 \in S_1) \land (x_2 \in S_2) \land (x_1 \leadsto^E x_2) \land (x_1 \cdot \text{Name} = \text{"John"})$	Graph
$(x_1 \in D_1) \land (x_2 \in D_2) \land (x_1 \text{ isAncestor } x_2)$	Tree
Formulae with unsafe terms	Unsafe variable
$x_2 \in S_2, x_3 \in S_3, \exists x_1(x_1 > x_3 \land x_2 = 6)$	x_1
$\forall x_1 \exists x_2 \in S_2(x_1 > x_2)$	x_1
$(x_1 \in S_1) \vee f(x_1) = a_1$	x_1

The formulae of the Categorical Calculus

Ancestor predicate to determine the relationship between two nodes in trees.

Formulae with range terms	Safe variables
$x_1 \in O_1$	x_1
$x_1 \in O_1 \land \neg (x_1 \in O_2)$	x_1
Formulae with function and range terms	Safe variables
$((f_1: x_1 \to x_2) = f_2 \circ g_1) \land (x_1 \in S_1) \land (x_2 \in S_2)$	x_1, x_2
$(\pi_1:(x_1,x_2)\to x_1)\land (x_1\in S_1)\land (x_2\in S_2)$	x_1, x_2
Formulae with predicate, range and function terms	Data model
$(x_1 \in S_1) \land (x_2 \in S_2) \land (x_1 \leadsto^E x_2) \land (x_1 \cdot \text{Name} = \text{"John"})$	Graph
$(x_1 \in D_1) \land (x_2 \in D_2) \land (x_1 \text{ isAncestor } x_2)$	Tree
Formulae with unsafe terms	Unsafe variable
$x_2 \in S_2, x_3 \in S_3, \exists x_1(x_1 > x_3 \land x_2 = 6)$	x_1
$\forall x_1 \exists x_2 \in S_2(x_1 > x_2)$	x_1
$(x_1 \in S_1) \vee f(x_1) = a_1$	x_1

The formulae of the Categorical Calculus


Formulae with range terms	Safe variables
$x_1 \in O_1$	x_1
$x_1 \in O_1 \land \neg (x_1 \in O_2)$	x_1
Formulae with function and range terms	Safe variables
$((f_1: x_1 \to x_2) = f_2 \circ g_1) \land (x_1 \in S_1) \land (x_2 \in S_2)$	x_1, x_2
$(\pi_1:(x_1,x_2)\to x_1)\land (x_1\in S_1)\land (x_2\in S_2)$	x_1, x_2
Formulae with predicate, range and function terms	Data model
$(x_1 \in S_1) \land (x_2 \in S_2) \land (x_1 \leadsto^E x_2) \land (x_1 \cdot \text{Name} = \text{"John"})$	Graph
$(x_1 \in D_1) \land (x_2 \in D_2) \land (x_1 \text{ isAncestor } x_2)$	Tree
Formulae with unsafe terms	Unsafe variable
$x_2 \in S_2, x_3 \in S_3, \exists x_1(x_1 > x_3 \land x_2 = 6)$	x_1
$\forall x_1 \exists x_2 \in S_2(x_1 > x_2)$	x_1
$(x_1 \in S_1) \vee f(x_1) = a_1$	x_1

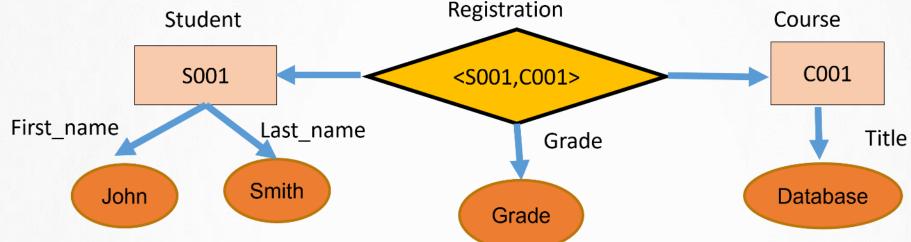
Unsafe

variables refer to a variable that has possibly infinite number of values or is unbounded.

Categorical calculus and categorical algebra are equivalent (I)

Query: Find all courses taken by "Smith"

S1:= $\sigma_{\text{student} \cdot \text{Last_name}=\text{"Smith"}}$ (Registration)


S2:= S1 · Course · Title

Equivalent calculus:

 $\{x \mid x \in Title, \exists y \in Registration, y \cdot Student \cdot Last_Name =$ "Smith" ∧ $y \cdot Course \cdot Title = x\}$

Categorical calculus and categorical algebra are equivalent (II)

Query: Find the titles of courses taken by all students

S1:= Registration[Student] ÷ Student

S2:= S1 · Course · Title

Equivalent calculus:

 $\{x \mid x \in Title, \forall y \in Student, \exists r \in Registration, r \cdot Student = y \land r \cdot Course \cdot Title = x\}$

- Multi-model Databases
- Categorical Algebra and Calculus
- Algebraic Transformation Rules (Query optimization)
- Conclusion

Algebraic transformation rules (I)

- Rewrite the algebraic operators for query optimization.
- Limit and Projection:

$$\pi_{S_1}(Lim(Cat(S_1, S_2, f : S_1 \to S_2))) \equiv S_1$$

$$\pi_{S_2}(Lim(Cat(S_1,S_2,f:S_1\rightarrow S_2)))\subseteq S_2$$

• Pushing σ to one or multiple objects in lim

$$\sigma_C(Lim(S_1,S_2)) \equiv Lim(\sigma_C(S_1),S_2)$$

$$\sigma_C(Lim(S_1,S_2)) \equiv Lim(\sigma_{C_1}(S_1),\sigma_{C_2}(S_2))$$

Algebraic transformation rules (II)

• Pushing σ to one or multiple objects in getReach:

$$getReach(\sigma_{C_1}(S), \sigma_{C_2}(T), E) \equiv \sigma_{C_1 \wedge C_2}(getReach(S, T, E))$$

Commuting function mapping with the product operator.

$$(f \otimes g)(S_1 \times S_2) \equiv f(S_1) \times g(S_2)$$

• Commuting π with the Lim operation.

$$\pi_L(Lim(Cat(R_1,R_2,f_1:R_1\to R_2)))\equiv Lim(Cat(\pi_{L_1}(R_1),\pi_{L_2}(R_2),f_2:\pi_{L_1}(R_1)\to\pi_{L_2}(R_2)))$$

Algebraic transformation rules (III)

- Commuting g with the Lim operation...
- The following diagram holds:

$$S_1 \xrightarrow{f_1} S_2$$

$$g_1 \downarrow \qquad \qquad \downarrow g_2$$

$$S'_1 \xrightarrow{f_2} S'_2$$

then the two operators g and Lim can be commuted as follows:

$$g(Lim(Cat(S_1, S_2, f_1 : S_1 \to S_2))) \equiv Lim(Cat(g_1(S_1), g_2(S_2), f_2 : g_1(S_1) \to g_2(S_2)))$$

An optimization query plan with algebraic operators transformation

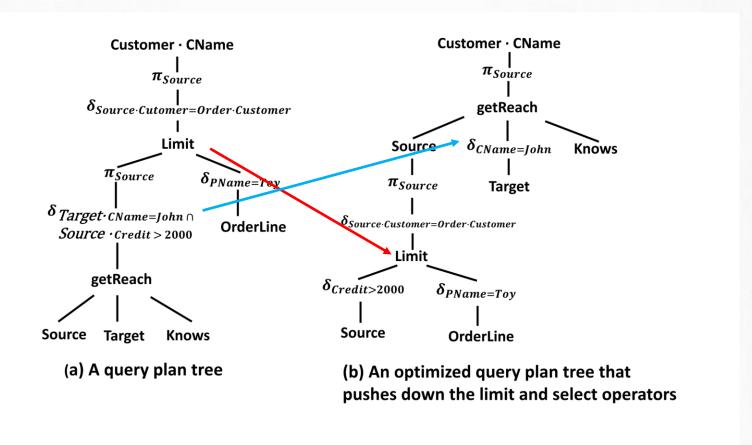


Figure 4: Two holistic query plans involving three types of data

EXPRESSIBILITY POWER

- Categorical calculus and categorical algebra can express all of the following:
 - Relational calculus and algebra queries;
 - Graph pattern matching and graph reachability queries;
 - XML twig pattern queries.

RELATED WORK

- Previous works use category theory on relational databases, but our work focuses on multi-model databases.
 - Libkin and Wong (1997) showcase the connection between database operations and the categorical notion of a monad.
 - Schultz and Spivak (2016) introduce a categorical query language that serves as a data integration scripting language
 -
- There are existing algebra and calculus for relational data, graph data, and object-oriented data, but not multi-model data.

UniBench: Multi-model data bencharking system

How to compare the performance of different multi-model database?

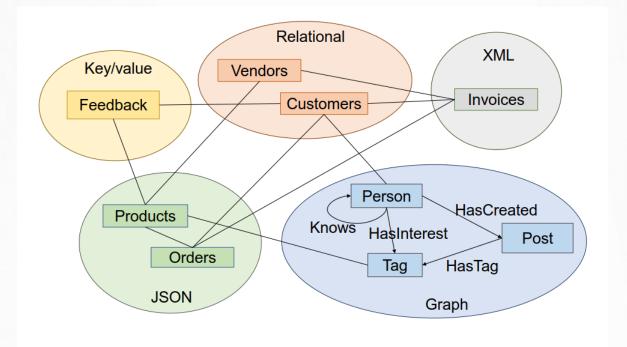
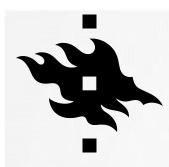



Fig. 1: Unibench Data Model

Workload:

4 business categories, 10 queries, 2 transactions

Jabel	Business category	Technique dimension	Description
Q1	Individual	Perform point query on a cus-	
		tomer's all multi-model data.	orders, feedback, and posts.
Q2	Conversation	Join data from Relation, Graph, and JSON.	For a given product, find the person who had bought it and posted on it.
Q3	Conversation	Join data from Relation, Graph,	For a given product, find persons wh
-		and Key-value, filter structured	have commented and posted on i
		and unstructured data.	and detect negative sentiments from
			them.
04	Cit	A to andt the ISON	Find the top-2 persons who spen
Q4	Community		
			the highest amount of money in o
			ders. Then for each person, travers
		turn the intersection of two sets.	her knows-graph with 3-hop to find th
			friends, and finally return the commo
			friends of these two persons.
Q_5	Community	Join data from Relation, Graph,	Given a start customer and a pro-
		and Key-value with two predi-	uct category, find persons who are th
		cates, recursive path query for	customer's friends within 3-hop friend
			ships in knows-graph, and they have
			bought products in the given category
		key lookup for Key-value.	Finally, return feedback with the
		lacy tooling for they thank.	rating review of those bought product
Q6	Community	Perform the shortest path calcu	Given customer 1 and customer 2, fin
20	Community	_	persons in the shortest path between
			them in the subgraph, and return th
			TOP 3 best sellers from all these pe
		on returned JSON orders.	sons' purchases.
Q7	Commerce		For the products of a given vendor wit
			declining sales compare to the former
		gregation results between two	quarter, analyze the reviews for the
		periods, identify the reviews	items to see if there are any negative
		with negative sentiment.	sentiments.
Q8	Commerce	Perform the embedded array fil-	For all the products of a given categor
		tering and aggregation on JSON	during a given year, compute its tota
		order, aggregate the correlated	sales amount, and measure its pop
		graph data for each records.	ularity in the social media.
Q9	Commerce	Perform the embedded array fil-	Find top-3 companies who have the
-			largest amount of sales at one country
			for each company, compare the number
		correlated graph data.	of the male and female customers, an
	I	graph then.	return the most recent posts of then
Q10	Commerce	Perform the sugregation and	Find the top-10 most active person
210	Commerce		by aggregating the posts during th
	I		
	I		last year, then calculate their RFN
		data.	(Recency, Frequency, Monetary
	I	l	value in the same period, and retur
	I	l	their recent reviews and tags of in
			terest
T1	New Order Transaction	Check the ACID properties and	(i) create and insert the order, (ii) up
		evaluate the efficiency on read-	date the quantity of involved proc
	I	heavy multi-model transaction	ucts, (iii) insert the invoice.
		that involves JSON and XML.	
T2	Payment Transaction	Check the ACID properties and	(i) retrieve the unpaid order, (ii) up
			date the balance of the seller an
			buyer, (iii) update the order status
	I		paid, (iv) update the related invoice
	I	and XML.	para, (17) aparace she related invoice

Technique dimension

Label Business category

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

EXPERIMENTAL RESULTS

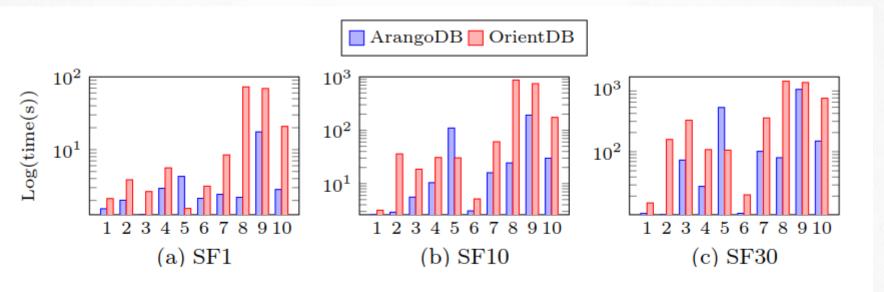


Fig. 5: Processing time on a logarithmic scale for queries, x-axis labels are query ids, i.e., Q1 to Q10.

This open-source benching mark system has been widely used in DataBricks, MongoDB and Amazon.

MAIN CONTRIBUTION AND CONCLUSION

- Define categorical algebra and calculus for multi-model database
- Develop the algebraic transformation rules for query optimization
- Develop a benchmark system for multi-model database

Applied category theory (ACT) here can contribute to practical query processing and optimization of multi-model databases.

REFERENCES

- Jeremy Gibbons, Fritz Henglein, Ralf Hinze & Nicolas Wu (2018): Relational algebra by way of adjunctions. Proc. ACM Program. Lang. 2(ICFP), pp. 86:1–86:28.
- Leonid Libkin & Limsoon Wong (1997): Query Languages for Bags and Aggregate Functions. J. Comput. Syst. Sci. 55(2), pp. 241–272.
- Patrick Schultz, David I. Spivak, Christina Vasilakopoulou & Ryan Wisnesky (2016): Algebraic Databases. arXiv:1602.03501.
- Allen Van Gelder & Rodney W. Topor (1991): Safety and translation of relational calculus. ACM Trans Database Syst. 16(2), p. 235–278, doi:10.1145/114325.103712.
 Available at https://doi.org/10.1145/114325.103712.
- Jiaheng Lu, Irena Holubová: Multi-model Databases: A New Journey to Handle the Variety of Data. ACM Comput. Surv. 52(3): 55:1-55:38 (2019)
- Jiaheng Lu: A Categorical Unification for Multi-Model Data: Part I Categorical Model and Normal Forms. CoRR abs/2502.19131 (2025)

Answer questions in Poll about multi-model database.