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1. INTRODUCTION

As data with different types and formats are crucial for the optimal business decisions,
we observe the substantial increase of demands to analyze and manipulate multi-
model data, including structured, semi-structured and unstructured data. In partic-
ular, structured data includes relational, key/value, and graph data. Semi-structured
data commonly refer to XML and JSON documents. Unstructured data are typically
text files, containing dates, numbers and facts.

We illustrate the challenge of the variety of data with three examples as follows.
First, let us consider customer-360-view [Kotorov 2003] to enable a holistic analysis on
customer behaviors. This application demands to analyze the information from differ-
ent data sources, such as product catalog (XML or JSON documents), customer social
networks (graph data), social media (unstructured data) and relational tables of cus-
tomer shopping records. Second, in the context of healthcare, high volumes of data
are generated by multiple data sources [Aboudi and Benhlima 2018], including elec-
trical health records (relational data), treatment plans and lab test reports (unstruc-
tured data), and health condition parameters for real-time patient health monitoring
(key/value data). Finally, an oil & Gas company [Hems et al. 2013] might generate over
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1.5 TB of diverse data every day [Baaziz and Quoniam 2014]. Those data come from di-
verse resources, such as sensors, GPS, and other instruments, and consequently have
heterogeneous formats. Therefore, the above three examples demonstrate the emerg-
ing challenges to manipulate and analyze multi-model data in complex application
scenarios.

We now exemplify the challenge of multi-model data management with a concrete
small example from E-commerce in Figure 1, which contains customers, social net-
work and orders information with four distinct data models. Customers information
are stored in a relational table — their ID, name, and credit limits. Graph data bear
information about mutual relationships between the customers, i.e. who knows whom.
In JSON documents each order has an ID and a sequence of ordered items, each of
which includes product number, name, and price. The fourth type of data, key/value
pairs, bears a relationship between customers (their IDs) and orders (their IDs).

Relation—graph join

- > Marry (1)
s "
knows knows Graph-key/value join 1"->"34e5e759
William (3) John (2) —> 2"-->"0c6df508"
(b) Graph data (d) Key/valuedata l Key/value-JSON join
L 1 M 5000 {"Order_no":"0cedf508",
ary ’ “Orderlines": [
2 John 3,000 { "Product no":"2724f”
3 William 2,000 “Product_Name":“Toy",
"Price":66 1},
(a) Relational table { "Product no":“3424g”,
Query: "Product_Name":“Book",
“Return all product_no which are ordered by a friend "Price":40 } 1]

of a customer whose credit_limit>3000" }
(c) Graph data

Fig. 1. Motivation example for multi-model data

In these multi-model data one may be interested in a recommendation query, which
returns “all product numbers ordered by a friend of a customer whose credit limit is
greater than 3000”. Such a query can be evaluated using various approaches depending
on the selected storage strategy. Either the data is stored in different database man-
agement systems (DBMSs) corresponding to the four data models, or the four types of
data are transformed into a single format, e.g., the relational format, and stored in a
relational database system. However, in the former case we need to solve the problems
of (1) the installation and administration of multiple distinct systems and (2) joining
data stored at distinct places. In the latter case, even though storing hierarchical or
graph data in a relational DBMS is feasible, the efficiency of query evaluation is a
bottleneck due to the inherent structural differences from flat relations.

A third option for the above task is to employ a single multi-model DBMS to exploit
advantages of both the previous solutions: (1) The data is stored in the way optimal for
the particular models and (2) only a single DBMS is employed to conveniently query
across all the models. In Figure 2, we show two sample queries to return the requested
result for two existing multi-model databases — ArangoDB [ArangoDB 2016] and Ori-
entDB [OrientDB 2016] respectively.! A single data platform for multi-model data is
beneficial to users by providing not only a unified query interface, but a single database
platform to simplify query operations, reduce integration issues, and eliminate migra-
tion problems.

1We will introduce these two systems in a more detail (together with other related representatives) in Sec-
tion 4.
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ArangoDB:
LET customerIDs = (FOR customer IN customers
FILTER customer.credit limit > 3000
RETURN customer.id)
LET friendIDs = (FOR customerID IN customerIDs
FOR friend IN 1..1 OUTBOUND customerID knows
RETURN friend.id)
FOR friend IN friendIDs
FOR order in 1..1 OUTBOUND friend customer2Order
RETURN order.orderlines[*].product no

OrientDB:

select expand(out ("knows") .orders.orderlines.product no)
from customers

where credit_limit > 3000

Result: ["2724f", "3424g"]

Fig. 2. Sample queries for multi-model data in Figure 1

In general, there are two existing approaches to manipulate and query multi-model
data: (1) polyglot persistence and (2) multi-model databases [Lu and Holubova 2017,
Lu et al. 2018a]. First, the history of polyglot persistence can be traced back to multi-
databases [Smith et al. 1981] and federation databases [Hammer and McLeod 1979],
which were intensively studied during the 1980s. Their main strategy is to leverage
different databases to store different models of data and then develop a mediator to
integrate them together to answer queries. Recently, some research prototypes are de-
veloped on polyglot persistence platform. For example, DBMS+ [Lim et al. 2013] tar-
gets at embracing several processing and database platforms with a unified declarative
processing. BigDAWG [Elmore et al. 2015] provides an architecture that supports for
location transparency and a middleware that provides a uniform multi-island inter-
face to run users’ queries with three different integrated systems: PostgreSQL, SciDB
and Accumulo.

The second kind of systems is to build one single database to manage different
data models with a fully integrated backend to handle the system demands for per-
formance, scalability, and fault tolerance [Lu et al. 2018b]. A framework of a fully
integrated single management system can be traced back to the concept of ORDBMS
(i.e., Object-Relational DataBase Management Systems), which borrow and adapt the
object-oriented programming model into the relational databases. An ORDBMS can
store and process various formats of data such as relational, text, XML, spatial and
object by leveraging domain specific functions. But the salient difference between the
ORDBMS and multi-model databases is that, in an ORDBMS framework, only the
relational model is the first-class citizen, meaning all other models are developed on
top of relational technology. But in multi-model databases, there is no indispensable
model and every model is equally important. Compared with the first system of poly-
glot persistence, the second one manages multiple models with an integrated backend
which can satisfy the growing requirements for scalability, high performance and fault
tolerance. In this survey, we will focus on the second approach by building a single
multi-model database. As for the first approach, interesting readers may refer to Ap-
pendix C.

Main Contributions. This survey reviews the representatives of multi-model
databases and summarizes their major features and techniques. The comprehensive
review and analysis make this article useful for motivating new multi-model process-
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ing techniques, developing real-world multi-model database applications, as well as
serving as a technique reference for selecting and comparing the existing multi-model
database products. In particular, the main contributions are summed up as follows:

(1) We introduce the area of multi-model DBMSs and their relation to other database
technologies. We provide historical background as well as a general classification
of related approaches.

(2) We compare the existing multi-model DBMSs from various viewpoints and using
distinct criteria. We also provide the timeline depicting their evolution and reflect-
ing the historical needs for such systems.

(3) We provide a detailed overview and description of key features of existing rep-
resentatives of multi-model DBMSs. Using examples we demonstrate their basic
capabilities and differences.

(4) We discuss the remaining open problems and demonstrate that multi-model
databases form a challenging research area where the solutions will find exploita-
tion in a broad range of real-world use cases.

Related Work. Currently there exist several surveys dealing with efficient manage-
ment and/or processing of Big Data. Paper [Sakr et al. 2015] describes existing Big
Data processing systems, namely big SQL systems, graph management systems, and
stream processing systems. Papers [Sakr et al. 2013; Li et al. 2014] focus on a detailed
study of the MapReduce programming framework and approaches built on top of it.
Considering Big Data DBMSs, there exist tens of papers which provide a general de-
scription and classification of NoSQL databases, experimental evaluations, compara-
tive studies, and/or benchmarks of selected representatives of various types of NoSQL
systems, eventually involving also relational DBMSs. For more specific studies, pa-
pers [Elshawi et al. 2015; Angles et al. 2017] survey graph DBMSs and their query
languages. Paper [Cattell 2011] provides an overview and comparison of key/value,
document, extensible record (i.e. column) and scalable relational DBMSs. There exists
also a web page? focusing on ranking of various types of DBMSs, including NoSQL,
which ranks database management systems according to their popularity which is
evaluated® on the basis of number of mentions of the system on websites, frequency of
technical discussions about the system etc. Recently, a general survey and a compar-
ison of three multi-model databases has been published in [Pluciennik and Zgorzalek
2017]. However, to the best of our knowledge, there exists no paper solely dealing with
multi-model databases in the extent and depth comparable to this survey.

It is worthy to mention the difference between multi-modal databases and multi-
model databases. The former means the multi-media databases where the types of
data may include speech, images, videos, handwritten text and fingerprints. But the
latter stands for a system to manage data with different models such as relational,
tree, graph and object models. The scope of this survey restricts to the latter one, i.e.
multi-model databases.

Outline. The rest of this article is organized as follows: Section 2 presents a brief in-
troduction of four common data models. Section 3 deals with classification and compar-
ison of existing multi-model DBMSs from the view of both history and contemporary
features. In Section 4 we provide a detailed description of particular multi-model sys-
tems. In Section 5 we discuss challenges and open problems, and finally we conclude
this article in Section 6.

2http://db-engines.com/en/ranking
3http://db-engines.com/en/ranking_definition
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2. PRELIMINARIES ON DATA MODELS

In this section, we briefly review the four data models which are supported by most
of multi-model databases, including relational, semi-structured, key/value and graph
model.

2.1. Relational Model

Relational model is based on the mathematical term relation, i.e. a subset of Cartesian
product. The data are logically represented as tuples forming relations. Each record
in a relation is uniquely identified by a key. The relational data can be both defined
and queried using a declarative approach, which is currently mainly represented by
the Structured Query Language (SQL) [ISO 2008]. The relational DBMS then ensures
both storing and retrieving of the data. Examples of relational databases include fi-
nancial and banking systems, computerized medical records, and on-line shopping.

2.2. Semi-structured Model for XML and JSON Documents

The semi-structured model is based on the idea of representing the data without ex-
plicit and separate definition of its schema. Instead, the particular pieces of informa-
tion are interleaved with structural/semantic tags that define their structure, nesting
etc. Such a representation enables more flexible processing and exchanging of the data.
In the following, we introduce two representative semi-structured data types: XML
and JSON.

The Extensible Markup Language (XML) [W3C 2008] is a human-readable and
machine-readable markup language. Its format is textual and based on the exploita-
tion of Unicode to enable the support of various languages. The data are expressed
using elements delimited by tags which can contain simple text, subelements or their
combination. Additional information can be stored in attributes of an element. XML
is widely used for the representation of arbitrary data structures. such as those used
in web services. The JSON (JavaScript Object Notation) [Ecma International 2013] is
a human-readable open-standard format. It is based on the idea of an arbitrary com-
bination of three basic data types used in most programming languages — key/value
pairs, arrays and objects.

2.3. Key/value Model

The key/value model is definitely the simplest data model used in NoSQL databases. It
corresponds to associative arrays, dictionaries, or hashes. Each record in the key/value
model consists of an arbitrary value and its unique key which enables to store, retrieve,
or modify the value. The simplicity of the model and respective operations enable effi-
cient data processing (at the cost of non existence of a powerful query language).

2.4. Graph Model

The graph data model is based on the mathematical definition of a graph, i.e., a set of
vertices (nodes) V and edges E corresponding to pairs of vertices from V. In the world
of Big Data there exists a special type of databases, called graph databases, devoted for
efficient storage and management of the graph data. We can further distinguish two
types of graph databases which correspond to two main types of graph data use cases
and differ in the respective usage [Sakr and Pardede 2011]. Transactional databases
work with a large set of smaller graphs, such as a set of linguistic trees or chemical
compounds. The respective operations usually search for supergraphs, subgraphs, or
similar graphs. Non-transactional databases conversely target a single large graph
(e.g., a social network), possibly having several components. The respective operations
correspond to searching a (shortest) path, communities (i.e., subgraphs with specific
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features) etc.

Interested readers may refer to other excellent surveys, such as [Angles and Gutiérrez
2008; Davoudian et al. 2018] for rigorous and comprehensive definitions on different
data models in databases.

3. TAXONOMY AND COMPARATIVE STUDY

Starting with a brief history of the multi-model databases, in this section we provide a
comparative study of existing multi-model DBMSs.

3.1. A brief History

In the mid-1960s, data was stored in file systems. Then, in the early 1980s, relational
databases began to gain commercial traction for enterprise data management mainly
owing to Edgar F. Codds relational model (which was described already in 1969). Later,
in 1990s, enterprises identified a need to process non-relational data in many appli-
cations and thus a number of databases were developed to focus on a special type of
applications, e.g. object-oriented databases, XML databases, spatial databases, or RDF
databases. Today, the evolution continues to manage Big Data and cloud applications,
i.e. to write, read, and distribute large scale of different types of data everywhere. In
the early 2010s, a number of NoSQL databases are created, such as Cassandra, HBase,
CouchDB, OrientDB, Neo4j, Asterix, ArangoDB, or MongoDB, to name a few.

By looking back at the history of databases above, one can identify a trend that more
and more types of data are stored and processed in databases. Therefore, this calls
for developing a multi-model database system to have the ability to manage different
kinds of data simultaneously. We can observe a recent trend among NoSQL databases
in moving towards multi-model databases. There are many databases which claim
to be multi-model databases currently. However, the level of support for multi-model
data varies greatly, with different ability to query across distinct models, to index the
internal structure of a model, and to optimize query plans across models, which will
be described in details in the following sections.

3.2. Taxonomy of multi-model databases

In this subsection, we discuss the taxonomy and the comparisons for diverse multi-
model database systems. In particular, the current multi-model databases can be clas-
sified according to various criteria. One classification on the basis of their original
(or core) data model is provided in Table I. As we can see, the table involves rela-
tional databases, all four types of NoSQL databases, and other types, such as object
databases. We will use this basic classification in Section 4 where we describe par-
ticular DBMSs in a more detail.* In this section we focus on various other types of
classification and comparative viewpoints.

First of all, in Fig. 3 we provide a timeline which depicts the journey where a system
became multi-model, i.e. either when its original data format was extended towards
additional ones, or when it was first released directly as a multi-model DBMS.

The evolution of the systems naturally corresponds to the growing popularity of
particular formats. For example, we can see that the first main wave of multi-model
databases has appeared soon after the beginning of the new millennium with the emer-
gence of XML data. The key relational DBMSs were extended towards XML, usually
via the SQL/XML standard or its variation, and thus they were transformed to so-
called XML-enabled databases. The second wave can be observed after 2010 with the

4In Appendix A we also provide an overview of the top 5 DBMSs in the respective classes.
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Table I. Classification of multi-model databases

Original Type | Representatives |

Relational PostgreSQL, SQL Server, IBM DB2, Oracle DB, Oracle MySQL, Sinew
Column Cassandra, CrateDB, DynamoDB, HPE Vertica
Key/value Riak, c-treeACE, Oracle NoSQL DB
Document ArangoDB, Couchbase, MongoDB, Cosmos DB, MarkLogic
Graph OrientDB
Object Caché
Other Not yet multi-model — NuoDB, Redis, Aerospike
Multi-use-case — SAP HANA DB, Octopus DB

MongoDB
Oracle DB CrateDB
(JSON) Oracle .
Caché
Oracle HPE Vertica OSA- DB (XML, JSON)
Couchbase MySQL PostgreSQL Sinew SQL Server
OrientDB ~ ArangoDB DynamoDB  (JSON) Riak Cassandra  (JSON) Cosmos DB
| : : | i | } >
2010 2011 2012 2013 2014 2015 2016 2017
SQL Server Oracle DB PostgreSQL
(XML) (XML)  C-treeACE (key/value) IBM DB2 MarkLogic
! | | | | | —>
2000 2001 .. 2003 .. 2006 2007 2008 2009

Fig. 3. Timeline of the support of multiple-models

arrival of the era of Big Data. The XML-enabled databases were often extended to-
wards the JSON format and there have also appeared representatives of other types
of DBMSs combining their original data format with other formats.

In Table IT we classify the systems according to the strategy used to extend the
original model to other models or to combine multiple models. We distinguish four
types of approaches:

(1) adoption of a completely new storage strategy suitable for the new data model(s),
(2) extension of the original storage strategy for the purpose of the new data model(s),
(3) creating of a new interface for the original storage strategy, and

(4) no change in the original storage strategy.

Note that in some cases the approach can be clearly categorized, whereas mainly in
case of the first and second group it is sometimes hard to decide where the particular
DBMS belongs.

The typical representative of the first group are XML-enabled databases which use
a native XML approach for their efficient storing and querying. An example of the sec-
ond group is a document database ArangoDB where special edge collections are used
to bear information about edges in a graph. Similarly MongoDB uses for this purpose
references amongst documents. An example of the third group is Sinew which builds a
new layer above traditional relational storage strategy. Another example can be Mark-
Logic which stores JSON documents in the same way as XML documents, but adds
the support for Javascript to work with the data. And, it also supports processing of
JSON data using XQuery [W3C 2015b]. Examples of the fourth group are all database
systems which naturally involve storage and processing of data formats simpler than
the original one. Hence, for example, all document databases can also be considered
as key/value and column stores. Or, all column stores can be considered as key/value
stores.
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Table II. A strategy for extension towards multiple models

| Approach | DBMS | Type |

New storage strategy PostgreSQL relational
SQL server relational
IBM DB2 relational
Oracle DB relational
Cassandra column
CrateDB column
DynamoDB column
Riak key/value
Cosmos DB document

Extension of the original storage strategy MySQL relational
HPE Vertica column
ArangoDB document
MongoDB document
OrientDB graph
Caché object

New interface for the original storage strategy | Sinew relational
c-treeACE key/value
Oracle NoSQL Database | key/value
Couchbase document
MarkLogic document

Next, in Table III we provide a matrix which visualizes the data models supported
in the particular multi-model DBMSs. Note that in case of the document model we
consider the most common JSON format or its variants, whereas there is a separate
column for the XML format which has specific features and history of support. For
the same reason we distinguish the general graph model and RDF [W3C 2014] data
format. We also devote a separate column to object-like models (i.e., except for the clas-
sical object model we add here also distinct user-defined types and nested structures).
The final column shows the popularity of different system on Nov. 2018 based on the
statistics from the DB-Engines Ranking®.

In case of the RDF model we have to point out its specific relation to this survey.
Currently there exists a number of RDF triple stores. These systems are usually imple-
mented as an extension of an existing DBMS, either as a part of it or as a module built
on top of it. For example, a relational DBMS can be used as a back-end which stores
RDF triples, not knowing anything about SPARQL [W3C 2013] etc. From the point of
view of our survey this is not a multi-model database, but a possible use case of the
respective DBMS; there is no cross-model query language respective optimization of
query evaluation etc In this article we focus on extensions towards a new model which
can be interlinked with other models supported by the DBMSs. Hence, in Table III we
provide the indication of RDF support for DBMSs which are truly multi—model and
which state the support for RDF directly as a part of the system. There exists a num-
ber of sources discussing various implementations of RDF support, such as, e.g. W3C
wiki [W3C 2018a; 2018b] and comparative surveys focusing on triple stores [Wylot
et al. 2018; Abdelaziz et al. 2017; Ozsu 2016; Sakr and Al-Naymat 2010]. We refer an
interested reader to them.

Tables IV, V and VI provide a closer look at the particular systems®. They overview
the key characteristics of the systems divided according to their original type (i.e.,
relational, key/value, column etc.). In the first two tables we focus on:

(1) supported data formats,

5https:/db-engines.com/en/ranking
6We deal with a more detailed description of each system in Section 4.
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Table Ill. Overview of supported data models in multi-model DBMSs
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(2) storage strategy used for the diverse data,
(3) what query language(s) it supports’, and
(4) types of indices supported for the purpose of optimization of query evaluation.

In the third table we provide yes (/) / no (x) / unknown or unspecified (-) features
informing:

(5) whether the database is distributed,

(6) whether the database requires schema definition for storing the data,

(7) whether the diverse data can be queried together using a single common language,

(8) whether there exists also a version for the cloud, and

(9) whether a special transaction management was introduced to handle the diverse
data.

Characteristics (1) and (2) have already been described, while characteristics (4)
are further analyzed and discussed later in this section. Considering characteristics
(3), as we can see, query languages involve various approaches, both declarative and
imperative. The options range from simple API (DynamoDB), full-text search (Riak),
to extensions of popular standard query languages, such as SQL (e.g., PostgreSQL,
Cassandra, or OrientDB) or XQuery (MarkLogic). Naturally SQL-extensions and SQL-
like languages form the main approach (we devote to this aspect a separate Table VII).

7In Appendix B we also provide an overview of current query languages for popular data formats.
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If we have a closer look at characteristics provided in Table VI. As we can see, most
of the systems support data distribution. For the NoSQL databases, especially those of
type key/value regardless the complexity of the value part (i.e., including column and
document DBMSs) it is quite a natural feature. However, we can find this tendency
also amongst other types of systems which reflects the general need for Big Data man-
agement. Flexible schema is not that common feature in general although we can find
it, for example, also amongst relational databases which do not require schema for
JSON or XML data. For NoSQL databases it is usually a common feature. Queries
across multiple models are a kind of a must in multi-model databases, so most of the
systems support them. In some cases, however, this information is unknown or irrele-
vant, depending on the type of the system. On the other hand, we have not managed to
find any explicit information about existence of a special type of transaction manage-
ment across diverse data models. This feature is however highly related to the way the
system was extended towards multiple data models. Regarding cloud computing, we
can witness a strong tendency of the DBMSs vendors towards the support of a version
for the cloud. Again, this corresponds to the general trend in Big Data management,
where the DaaS (Database as a Service) approach enables to create a solution for com-
plex Big Data applications instantly.

Table VII is devoted to the overview of SQL extensions and SQL-like languages used
in multi-model DBMSs. Again the systems are classified according to their original
type in order to show that this probably most common and with regards to the popu-
larity of SQL also logical approach can be found in all types of multi-model databases.
At first sight, the least natural usage of SQL-like interface can probably be found
amongst graph and document DBMSs. However, in this case the SQL clauses are sim-
ply extended towards the access of more complex data structures — in case of graph
data the dot notation represents the edges, in case of nested document (JSON) data
various operators enable to access deeper data levels including items of arrays. It is es-
pecially interesting to compare the latter approach with the way SQL/XML combines
the access to relational and XML data via embedding XQuery.

Last but not least, in Table VIII we provide a summary of query optimization strate-
gies used in the multi-model databases for the “non-native” formats. As expected, the
most common type of query optimization is a kind B-tree/B+-tree index, especially
in the case of relational databases which naturally exploit their most common and
verified approach. Systems which support XML data also exploit a kind of native
XML index, most commonly an ORDPATH-based approach which enables both effi-
cient querying and data updates. A kind of hashing, a technique which can be used
almost universally, is also a common approach in various types of DBMSs. However,
in general there seems to be no universally acknowledged optimal or sub-optimal ap-
proach suitable for the multi-model query optimization. The distinct approaches are
usually highly related to the way the system was extended towards other data models.

Summary. From the preceding discussion with regard to the varied aspects of multi-
model databases, we summarize the observations in the following:

— The data models supported by multi-model databases include relational, column,
key/value, document, XML, graph, and object.

— Multi-model databases employ cross-model languages based on the extension of
SQL, XML, and graph languages.

— The data indices in multi-model databases include inverted index, B-tree, material-
ized view, hashing, and bitmap index. Most of them are based on an extension for
relational or XML databases.
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Table V. Comparison of multi-model single-database DBMSs (part A).

0:11

Type DBMS Supported Storage strat- | Query lan- | Indices
formats egy guages
Relational | PostgreSQL | relational, relational ta- | extended SQL inverted
key/value, bles — text or
JSON, XML binary format
+ indices
SQL relational, text, relational | extended SQL B-tree, full-text
Server XML, JSON, ... | tables
IBM DB2 relational, native XML | extended XML paths /
XML type SQL/XML B+ tree, full-
text
Oracle DB relational, relational SQL/XML or | bitmap,
XML, JSON, JSO extension | B+tree,
RDF of SQL function-based,
XMLIndex
Oracle relational, relational SQL, mem- | B-tree
MySQL key/value cached API
Sinew relational, logically a uni- | SQL -
key/value, versal relation,
nested docu- | physically par-
ment, ... tially material-
ized
Column Cassandra text, user- | sparse tables SQL-like CQL inverted, B+
defined type tree
CrateDB relational, columnar SQL Lucene
JSON, BLOB, | store based on
arrays Lucene and
Elasticsearch
DynamoDB | key/value, doc- | column store simple APT | hashing
ument (JSON) (get/put/update)
+ simple
queries  over
indices
HPE Ver- | JSON, CSV flex tables + | SQL-like for material-
tica map ized data
Key/value | Riak key/value, key/value pairs | Solr Solr
XML, JSON in buckets
c-treeACE key/value + | record-oriented | SQL ISAM
SQL API ISAM
Oracle key/value, (hi- | key/value SQL B-tree
NoSQL DB | erarchical) ta-
ble API, RDF
Document | ArangoDB key/value, doc- | document store | SQL-like AQL mainly  hash
ument, graph allowing refer- (eventually
ences unique or
sparse)
Couchbase key/value, document store | SQL-based B+tree, B+trie
document, + append-only | N;QL
distributed write
cache
MongoDB document, BSON format + | JSON-based B-tree, hashed,
graph indices query language | geospatial
Cosmos DB | document, key- | JSON format + | SQL-like query | forward and
value, graph, | indices language inverted index
column mapping
MarkLogic XML, JSON, | storing like | XPath, XQuery, | inverted + na-
binary, text, ... hierarchical SQL-like tive XML
XML data
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Table V. Comparison of multi-model single-database DBMSs (part B). In the lower part of the table we

include also systems which are not (yet) multi-model.

Type DBMS Supported Storage strat- | Query lan- | Indices
formats egy guages
Graph | OrientDB graph, doc- | key/value Gremlin, ex- | SB-tree, ex-
ument, pairs + object- | tended SQL tendible hash-
key/value, oriented links ing, Lucene
object
Object | Caché object, SQL | multi- SQL with ob- | bitmap, bit-
or multi- | dimensional ject extensions | slice, standard
dimensional, arrays
document
(JSON, XML)
API
Other | NuoDB relational key/value - —
Redis flat lists, sets, | key/value - -
hash tables
Aerospike key/value key/value — —

Table VI. Comparison of multi-model single-database DBMSs
(yes/no features. In the lower part of the table we include also
systems which are not (yet) multi-model.)

DBMS

PostgreSQL
SQL Server
IBM DB2
Oracle DB
Oracle MySQL
Sinew

Type
Relational

I'| x| x| x| X|x|| Multi-model transactions

Cassandra
CrateDB
DynamoDB
HPE Vertica
Riak
c-treeACE
Oracle NoSQL DB
ArangoDB
Couchbase
MongoDB
Cosmos DB
MarkLogic

| Graph | OrientDB [
Object | Caché \

Other NuoDB
Redis
Aerospike

Column

Key/value

Document

X XXX XXX T X || X | X]|X]| X

PRI T IR R T IR R R k&K [ || Quieries across models

SRS PR X RO X [ X | X[« << | F1exible schema

< [ [ RS IR R -] (] ¢ | | Data distribution
<SS [ [ R X R RS- X0 | Version for cloud

<J!
|
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Table VII. Support of SQL extensions and SQL-like languages in multi-model databases)

| Type | DBMS | SQL extension |
Relational | PostgreSQL Getting an array element by index, an object field by key, an ob-
ject at a specified path, containment of values/paths, top-level key-
existence, deleting a key/value pair / a string element / an array
element with specified index / a field / an element with specified
path, ...
SQL Server JSON: export relational data in the JSON format, test JSON for-
mat of a text value, JavaScript-like path queries
SQLXML: SQL view of XML data + XML view of SQL relations
IBM DB2 SQL/XML + embedding SQL queries to XQuery expressions
Oracle DB SQL/XML + JSON extensions (JSON_VALUE, JSON_QUERY,
JSON_EXISTS, ...)
Document | Couchbase Clauses SELECT, FROM (multiple buckets), ... for JSON
Cosmos DB Clauses SELECT, FROM (with inner join), WHERE and ORDER BY for
JSON
ArangoDB key/value: insert, look-up, update
document: simple QBE, complex joins, functions, ...
graph: traversals, shortest path searches
Key/value | Oracle NoSQL DB | SQL-like, extended for nested data structures
c-treeACE Simple SQL-like language
Column Cassandra SELECT, FROM, WHERE, ORDER BY, LIMIT with limitations
CrateDB Standard ANSI SQL 92 + nested JSON attributes
Graph OrientDB Classical joins not supported, the links are simply navigated using
dot notation; main SQL clauses + nested queries
[ Object | Caché | SQL + object extensions (e.g. object references instead of joins) |
Table VIII. Query optimization strategies in multi-model
databases)
| Optimization | DBMS | Type |
Inverted index PostgreSQL relational
Cosmos DB document
B-tree, B+-tree SQL server relational
Oracle DB relational
Oracle MySQL relational
Cassandra column
Oracle NoSQL DB | key/value
Couchbase document
MongoDB document
| Materialization | HPE Vertica | column ]
Hashing DynamoDB column
ArangoDB document
MongoDB document
Cosmos DB document
OrientDB graph
Bitmap index Oracle DB relational
Caché object
| Function-based index | Oracle DB | relational |
Native XML index Oracle DB relational
SQL server relational
DB2 relational
MarkLogic document
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— The existing multi-model databases have the features of data sharding, flexible
schema, and a version for cloud. But they still lack of the support for multi-model
transactions.

4. A CLOSER LOOK AT MULTI-MODEL DATABASE REPRESENTATIVES

In this section we explore in more detail different multi-model databases using the
classification introduced at the beginning of Section 3. For each category we briefly
describe key features of each of the representatives. We focus mainly on the aspects
related to multi-model data management classified in the previous section. The aim is
to provide the readers with a detailed look at each of the systems in the context of its
competitors.

4.1. Relational Stores

One of the biggest sets of multi-model systems is naturally formed by relational stores.
This is given by several reasons:

(1) Historically relational DBMSs are the most popular type of databases.

(2) The SQL standard has been extended towards other data formats (e.g., XML in
SQL/XML) even before the arrival of Big Data and NoSQL DBMSs.

(3) The simplicity and universality of the relational model enables its extension to-
wards other data models relatively easily.

PostgreSQL. The development of PostgreSQL® began in the mid-1980s aiming at a
classical relational DBMS. The recent versions, however, bring many NoSQL features
(like, e.g., materialized views enabling data duplicities for faster query evaluation or
synchronous and asynchronous master-slave replication). There also exists a number
of vendors of facilities to make it easy to set up, operate and scale PostgreSQL deploy-
ments in the cloud.

Following the support of the XML format, since 2006 it supports also storing of
key/value pairs? in data type HStore. And since 2013 it supports storing of the JSON
format in data types json and jsonb. In the former case an exact copy of the data is
stored and it must be re-parsed on each access. Also not all operations are supported
for data type json (such as containment and existence operators). In case of jsonb a
decomposed binary format is used for data storage. It does not require re-parsing and
supports indexing. However, the order of object keys, white space, and duplicate object
keys are not preserved. The primitive types are mapped to native PostgreSQL types.

Both json and jsonb types can be used as other data types of PostgreSQL, such as
in definition of table columns. There is no checking of schema of the stored JSON data;
however, the documentation naturally recommends the JSON documents to have a
somewhat fixed structure within a particular set stored at one place. An example of
storing both relational and JSON data in PostgreSQL can be seen in Fig. 4.

Data stored in PostgreSQL data types json or jsonb can be queried using an SQL
extension for JSON involving operators for getting an array element by index (->int),
an object field by key (->string), or an object at a specified path (#>text[1).1° Standard
comparison operators are available only for jsonb. It also supports further operators
like containment of values/paths in both directions (@> and <@), top-level key-existence
for a string, any of the strings, or all of the strings (7, 7& and ?|), concatenation (| |),
and deleting either a key/value pair or a string element (-text), an array element with
specified index (-int), or a field or element with specified path (#-text[1). PostgreSQL

Shttp://www.postgresql.org/
9Note that the first releases of NoSQL databases Redis and MongoDB are from 2009.
10Qr, there exist their counterparts (with >> instead of >) returning the result in the form of text.
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CREATE TABLE customer (
id INTEGER PRIMARY KEY,
name VARCHAR (50) ,
address VARCHAR (50),
orders JSONB
)i

INSERT INTO customer
VALUES (1, 'Mary', 'Prague',
'{"Order_no":"0cédf508",
"Orderlines": [
{"Product_no":"2724f", "Product Name":"Toy", "Price":66},
{"Product_no":"3424g", "Product Name":"Book", "Price":40}]
Y

INSERT INTO customer
VALUES (2, 'John', 'Helsinki',
'{"Order_no":"Océdf511",
"Orderlines": [
{"Product_no":"2454f", "Product Name":'"Computer", "Price":34}]

Y

id name address orders
integer | character varying (50) | character varying (50) | jsonb

1| Mary Prague {"Orderlines":[{"Price":66,"Product_Name":"Toy","Product_no":"2724f"},{"Price":40,"Product_Name":

2 John Helsinki {"Orderlines":[{"Price":34,"Product_Name":"Computer”,"Product_no":"2454f"}],"Order_no":"0c6df511"}

Fig. 4. An example of storing multi-model data in PostgreSQL

also provides functions for JSON creation, returning the length of an array, JSON
object/array expansion, checking data types, transforming JSON data to records, or
JSON data aggregation. An example of querying both relational and JSON data (de-
fined in Fig. 4) can be seen in Fig. 5.

SELECT name,
orders->>'Order_no' as Order_no,
orders#>'{Orderlines,1l}'->>'Product_Name' as Product_ Name
FROM customer
WHERE orders->>'Order no' <> '(Oc6df511"';

name order_no product_name
character varying (50) text text

Mary 0c6dfS08 Book

Fig. 5. An example of querying multi-model data in PostgreSQL

Data stored in jsonb can be indexed using the Generalized Inverted Index (GIN)
corresponding to a set of pairs (key, posting list). GIN consists of a “B-tree index con-
structed over keys, where each key is an element of one or more indexed items and
where each tuple in a leaf page contains either a pointer to a B-tree of heap point-
ers (posting tree), or a simple list of heap pointers (posting list) when the list is small
enough”.

By default the GIN index supports top-level key-exists operators (7, 7& and 7|, for a
single string, all given strings, or any of the given strings respectively) and path/value-
containment operator @>. Non-default GIN index supports only operator @>. The dif-
ference is that in case of default indexing for each key and value an independent index
item is created. In case of non-default indexing for each value an index item is created
as a hash of the value and all the related key(s).
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SQL Server. Microsoft SQL Server!! started in late 1980s as a relational DBMS.
Since 2000 it supports XML and its access using SQLXML [Microsoft 2017c] (a depre-
cated Microsoft version of SQL extension for XML data), and thus is classified as an
XML-enabled database. Since 2016 it supports also the JSON format [Popovic 2015],
whereas the work with JSON data is quite similar to XML support. JSON data can be
stored as a pure text in data type NVARCHAR. Or, function OPENJSON enables one to trans-
form JSON text to a relational table, either with a pre-defined schema and mapping
rules (JavaScript-like paths to JSON data), or without a schema as a set of key/value
pairs.

In addition, thanks to Polybase [Microsoft 2017b], SQL Server 2016 can be consid-
ered also as a multi-model multi-database DBMS. Polybase is a technology that ac-
cesses both non-relational and relational data. In particular, it allows one to run SQL
queries on external data in Hadoop!? or Azure blob storage!®. Microsoft Azure SQL
database is a cloud database providing SQL Server functionality.

Regarding querying, SQLXML has the same aim as SQL/XML, but different syn-
tax. [Holubova and Necasky 2009] Construct OPENXML enables to view XML data as
SQL relations using a mapping which can be utilized using user-defined parameters.
Construct FOR XML enables to view relational data as XML documents using four pre-
defined modes denoting the complexity of the hierarchical structure.

In case of JSON data, SQL Server enables to export relational data in the JSON
format (using clause FOR JSON), test whether a text value is in the JSON format (us-
ing function ISJSON), or parse a JSON text and on the specified JavaScript-like path
extract a scalar value (using function JSON_VALUE) or an object/array (using clause
JSON_QUERY). Function JSON_MODIFY enables one to update the value of a property.

Columns with XML data type can be indexed too. Using the ORDPATH
schema [O’Neil et al. 2004] all tags, values and paths in the stored XML data are
indexed within the primary XML index. Secondary indices can be created as well — a
B+ tree can be built over pairs (path, value), tuples (primary_key_of_base_table, path,
value), or pairs (value, path).

For the purpose of query optimization SQL Server does not support any special in-
dexing technique for JSON data. Depending on its storage, either B-tree or full-text
indices can be used.

IBM DB2. The first release of object-relational DBMS IBM DB24 dates back to early
1980s. IBM Db2 on Cloud is a fully managed database on cloud. Since 2007 it provides
a support for XML (using the native XML storage feature called pureXML [Saracco
et al. 2006]) and since 2012 it supports also RDF graphs (using extension called DB2-
RDF [Bornea et al. 2013]).

XML data are stored [IBM Knowledge Center 2017b] in native XML data type
columns in a parsed format reflecting the hierarchical structure, or using user-defined
shredding into relational tables. The data are accessed [[BM Knowledge Center 2017a]
using standard SQL/XML enhanced with several DB2-specific constructs, such as, e.g.,
embedding SQL queries to XQuery expressions.

In case of the XML data type DB2 supports several types of XML indices. [Hol-
ubova and Necasky 2009] The location (i.e., regions of storage) of each XML document
is automatically stored in the XML region index. Unique XML paths and their IDs

Hhttp://www.microsoft.com/en-us/server-cloud/products/sql-server/
12https://azure.microsoft.com/en-us/solutions/hadoop/
13https://azure.microsoft.com/en-us/services/storage/
Mhttp://www.ibm.com/analytics/us/en/technology/db2/
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are indexed automatically in the XML column path index. Query performance can be
increased using user-defined XML index for selected XPath [W3C 2015a] expressions.

Oracle DB. Object-relational DBMS Oracle DB was released in 1979 as the first
commercial RDBMS based on SQL. Oracle8 was released in 1997 as the object-
relational database. Oracle9i, released in 2001, introduced the ability to store and
query XML. Oraclel2c, released in 2013, was designed for the cloud, featuring an in-
memory column store and support for JSON documents as well as RDF data (thanks
to the Oracle Graph module).

XML data are stored similarly and in the case of DB2, i.e., either shredded into ta-
bles or in a native XML data type XMLType without the need to use the schema (but
the validity can be checked if required). On the other hand, JSON data is stored as
textual/binary data using VARCHAR2, BLOB (preferred, since it obviates the need for any
character-set conversion), or CLOB. Also in this case a schema of the data is not re-
quired. Oracle only recommends to use the is_json CHECK constraint.

XML data are in Oracle DB accessed using standard SQL/XML. For the purpose
of accessing JSON data Oracle extends SQL with SQL/JSON functions (json_value
for selecting a scalar value, json_query for selecting one or more values, json_table
for projecting JSON data to a virtual table), conditions (json_exists, is (not) json,
json_textcontains), as well as a dot notation which acts similarly to a combination of
json_value and json_query [Oracle 2017].

In case of XML data shredded into object-relational tables a B-tree index can be nat-
urally used. For native XML storage the XMLIndex indexes paths, values, and relations
parent-child, ancestor-descendant, and sibling. A variant of the ORDPATH numbering
schema is exploited for storing positions of nodes.

can be created for SQL function json_value. For XML data it is denoted as depre-
cated.

MySQL. Open-source relational DBMS MySQL'® was released in 1995. In 2008 it
was acquired by SUN Microsystems and in 2010 by Oracle. In 2014 the first version of
MySQL cluster enabling data sharding and replication was released. With the support
of Memcached API'7 (since 2011) it enables to combine relational and key/value data
access advantages. By default, pairs (key, value) are stored in the same table, i.e. no
schema has to be defined. User-defined key prefix can however determine a pre-defined
table and column where the value should be stored. [Keep 2011] Most MySQL indices
are stored in B-trees, R-trees are used for spatial data types, MEMORY tables support
hash indices.

Sinew. The DBMS Sinew [Tahara et al. 2014] is based on the idea of creating a new
layer above a traditional relational DBMS that enables to query multi-model data
(key/value, relational, nested document etc.) without a pre-defined schema. A logical
view of the data is provided to the user in the form of a universal table. Columns of the
table correspond to unique keys in the dataset (nested data is flattened).

Physically the data is stored in an underlying relational DBMS. Depending on the
query workload a subset of the columns of the logical table is materialized, others are
serialized in a single binary column. The storage schema is periodically adapted to the
evolving workload.

15https://www.oracle.com/database/index.html
16https://www.oracle.com/mysql/index.html
1Thttp://www.memcached.org/
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4.2. Column Stores

Another large group of multi-model databases is represented by NoSQL column stores.
Note that the term “column store” can be understood in two ways. (1) A column-
oriented store is a DBMS (not necessarily NoSQL) that does not store data tables
as rows, but as columns. These systems are usually used in analytics tools. An ex-
ample is, e.g., HPE Vertica. (2) Column-family (or wide-column) stores represent a
type of NoSQL databases which support tables having distinct numbers and types
of columns, like, e.g., Cassandra. The underlying storage strategy can be arbitrary,
including column-oriented, so these two groups can overlap. This section is devoted
primarily to the second group of databases — column-family stores.

Cassandra. Apache Cassandra'® (first released in 2008) is an open source NoSQL
column-family store. DataStax Enterprise!?, a database for cloud applications, results
from Cassandra. Using SQL-like Cassandra Query Language (CQL) it enables to store
the data in sparse tables. Apart from scalar data types (like text or int), it supports
three types of collections (1ist, set and map), tuples, and user defined data types (which
can consist of any data types), together with respective operations for storing and re-
trieval of the data.

Internally the data are stored in SSTables (Sorted String Tables) originally proposed
in Google system Bigtable [Chang et al. 2008]. An SSTable is “an ordered immutable
map from keys to values, where both keys and values are arbitrary byte strings”. It is
further divided into blocks which are indexed to speed up data look up. Since SSTables
are immutable, modified data are stored to a new SSTable and periodically merged
using compaction.

Since 2015 Cassandra supports also the JSON format [DataStax, Inc. 2015]; how-
ever, the respective tables, i.e., the schema of the data, must be first specified. An
example of storing both simple scalar and JSON data in Cassandra can be seen in
Fig. 6.

The Cassandra Query Language (CQL) [The Apache Software Foundation 2017] can
be considered as a subset of SQL. It consists of clauses SELECT, FROM, WHERE, GROUP BY,
ORDER BY, and LIMIT. However, only a single table can be queried in FROM clause and
there are certain limitations for conditions in WHERE clause, such as restrictions only
to the primary key or columns with a secondary index etc. Sorting is supported only
according to the columns which determine how data are sorted and stored on disk.
Clause SELECT JSON can be used to return each row as a single JSON encoded map;
the mapping between JSON and Cassandra types is the same as in case of storing.

There are several types of indices in Cassandra. The primary key is always auto-
matically indexed using an inverted index implemented using an auxiliary table. Sec-
ondary indices can be explicitly added for the columns according to which we want
search data, including collections. The respective SSTable Attached Secondary Indices
(SASI) are implemented using memory mapped B+ trees and thus allow also range
queries. Indices are, however, not recommended for “high-cardinality columns, tables
that use a counter column, a frequently updated or deleted column, and to look for a
row in a large partition unless narrowly queried” [DataStax, Inc. 2013].

CrateDB. CrateDB?° was released in 2016 after 3 years of development. It is a dis-
tributed column-oriented SQL database with a dynamic schema which can store also
nested JSON documents, arrays, and BLOBs. It is built upon several existing open

18http://cassandra.apache.org/
L9http://www.datastax.com/products/datastax-enterprise
20https://crate.io/

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2019.



create keyspace myspace

WITH REPLICATION = { 'class' : 'SimpleStrategy',
'replication_factor'

CREATE TYPE myspace.orderline (
product_no text,
product name text,
price float

)

CREATE TYPE myspace.myorder (
order_no text,
orderlines list<frozen <orderline>>

0:19

INSERT INTO myspace.customer JSON
vo{ridr:1,
"name" :"Mary",
"address":"Prague",
"orders" : [
{ "order no":"0c6df508",
"orderlines": [

{ "product no" : "2724f",
"product_name" : "Toy",
"price" : 66 },

{ "product_no" : "3424g",
"product_name" :"Book",

"price" : 40 } 1 } ]
) |
INSERT INTO myspace.customer JSON
to{ridr:2,
"name" :"John",
"address":"Helsinki",
"orders" : [
{ "order no":"Oc6df511",
"orderlines": [
{ "product no" : "2454f",
"product_name" : "Computer",
"price" : 34 } 1 1} 1]

CREATE TABLE myspace.customer (
id INT PRIMARY KEY,
name text,
address text,
orders list<frozen <myorder>>
)i

b
Fig. 6. An example of storing multi-model data in Cassandra

source technologies, such as Elasticsearch?! or Lucene??. CrateDB can be deployed to
any operating system capable of running Java and thus also various cloud platforms.

Each row of a table in CrateDB is a semi-structured document. [Crate.io 2017] Every
table in CrateDB is sharded across the nodes of a cluster, whereas each shard is a
Lucene index. Operations on documents are atomic.

Data in CrateDB can be accessed via a standard ANSI SQL 92. Nested JSON at-
tributes can be included in any SQL command. For this purpose, CrateDB added an
SQL layer to a Lucene index-based data store using Elasticsearch interface to access
the underlying Lucene indices.

DynamoDB. Amazon DynamoDB?3 was released in 2012 as a cloud database which
supports both (JSON) documents and key/value flexible data models. In DynamoDB, a
table is schemaless and it corresponds to a collection of items. An item is a collection of
attributes and it is identified by a primary key. An attribute consists of a name, a data
type, and a value. The data type can be a scalar value (string, number, Boolean etc.), a
document (list or map), or a set of scalar values. The data items in a table do not have
to have the same attributes. [Amazon 2017]

DynamoDB primarily supports a simple API for creating / updating / deleting / list-
ing a table and putting / updating / getting / deleting an item. A bit more advanced
feature enables to query over primary or secondary indices using comparison opera-
tors.

Two types of primary keys are supported in DynamoDB: The partition key deter-
mines the partition where a particular data item is stored. The sort key determines
the order in which the data items are stored within a partition. DynamoDB also sup-

21https://www.elastic.co/
22http://lucene.apache.org/
23https://aws.amazon.com/dynamodb/
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ports two types of secondary indices — global and local. A secondary index consists of
a subset of attributes from a selected base table and a corresponding alternate key.
Global secondary index can have the partition key different from the base table, local
secondary index can not.

HPE Vertica. HPE Vertica?* is a high-performance analytics engine which was de-
signed to manage Big Data. Vertica offers two deployment modes for running in the
clouds. The storage organization is column-oriented, whereas it supports standard
SQL interface enriched by analytics capabilities. Since 2013 it was extended with flex
tables [Hewlett Packard Enterprise 2018] which do not require schema definitions, en-
able to store also semi-structured data (e.g., JSON or CSV formats), and support SQL
queries.

Creating flex tables is similar to creating classical tables, except column definitions
are optional (if present, the table is denoted as hybrid). Vertica implicitly adds a NOT
NULL column __raw__ which stores the loaded semi-structured data. For a flex table
without other column definitions, it also adds auto-incrementing column __identity__
used for segmentation and sort order. The loaded data are stored in an internal map
data format VMap, i.e., a set of key/value pairs, called virtual columns. Selected keys
can be then materialized by promoting virtual columns to real table columns.

Besides the flex table itself, Vertica creates also associated keys table (with self-
descriptive columns key_name, frequency, and data_type_guess) and a default view for
the main flex table. The records under the key name column of the table are used as
view columns, along with any values for the key. If no values exist, the column value is
NULL. Both the keys table and the default view enable to explore the data to determine
its contents since the schema of the stored data is not required.

A flex table can be processed using SQL commands SELECT, COPY, TRUNCATE, and
DELETE. Custom views can also be created. Both virtual and real columns can be
queried using classical SELECT command. A SELECT query on a flex table or a flex table
view invokes the maplookup() function to return information on virtual columns. Ma-
terializing virtual columns by promoting them to real columns improves query perfor-
mance (at the cost of more space requirements). Promoting flex table columns results
in a hybrid table so both raw and real data can still be queried together.

4.3. Key/value Stores

In general, key/value stores are considered as the least complex NoSQL DBMSs which
support only a simple (but fast) API for storing and retrieving an item having a partic-
ular ID. These systems, however, usually provide more complex operations of the value
part; hence, the convergence to multi-model systems is a relatively natural evolution
step.

Riak. Riak?® was first released in 2009 as a classical key/value DBMS. On top of it
Riak CS provides a distributed cloud storage. Since 2014 two features — Riak Search
and Riak Data Types — make it possible to use Riak also as a document store with
querying capabilities [Basho Technologies, Inc. 2014]. Riak Data Types, based on a
conflict-free replicated data type (CRDT), involve sets, maps (which enable embed-
ding of any data type), counters etc. and can be indexed and searched through. Riak
Search 2.0 is in fact an integration of Solr?® for indexing and querying and Riak for
storage and distribution. Riak Search must first be configured with a Solr schema
(eventually the default one) so that Solr knows how to index value fields. Indices, e.g.,

24http://www.vertica.com/
25http://basho.com/products/riak-kv/
26http://lucene.apache.org/solr/
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over particular fields of an XML or JSON document, are named Solr indices and must
be associated with a bucket (i.e., a named set of key/value pairs) or a bucket type Gi.e.,
a set of buckets). The fields to be indexed are extracted from the data using extractors.
Riak currently supports JSON, XML, plain text, and Riak Data Types extractors, but
it is possible to implement an own extractor as well.

As we have described before, using Solr, Riak enables to query over data that have
been previously indexed. All distributed Solr queries are supported [Basho Technolo-
gies, Inc. 2017], including wild-cards, proximity search, range search, Boolean opera-
tors, grouping etc.

c-treeACE. FairCom c-treeACE?” is denoted by its vendor as a No+SQL
DBMS [Brown 2016], offering both NoSQL and SQL in a single database. c-treeACE
supports both relational and non-relational APIs. It is based on an Indexed Sequential
Access Method (ISAM) structure supporting operations with records, their sets, or files
in which they are stored. The original version supported only the ISAM API; the SQL
API was added in 2003.

Oracle NoSQL Database. Oracle NoSQL Database?®, first released in 2011, is a scal-
able, distributed NoSQL database built upon the Oracle Berkeley DB?. It can be
also run as a fully managed cloud service using the Oracle Cloud. Contrary to Ora-
cle MySQL, Oracle NoSQL Database is a key/value DBMS which (since release 3.0
in 2014) supports a table API, i.e., SQL. In addition, RDF support was added thanks
to the Oracle Graph module. First, a definition of the tables must be provided, which
includes table and attribute names, data types (involving scalar types, arrays, maps,
records, and child tables corresponding to nested subtables), primary (and eventually
shard) key, indices etc. (When using child tables, by default, child tables are not re-
trieved when retrieving a parent table, nor is the parent retrieved when a child table
is retrieved.) An example of storing both relational and JSON data in Oracle NoSQL
Database can be seen in Fig. 7; the structure of the resulting table can be seen in Fig. 8.
An example of querying both relational and JSON data is provided in Fig. 9.

Oracle NoSQL Database secondary indices are implemented using distributed,
shard-local B-trees [Oracle 2014]. The DBMS supports secondary indexing over sim-
ple, scalar as well as over non-scalar and nested data values.

4.4. Document Stores

Document DBMSs can be considered as advanced key/value stores with complex value
part that can be queried. Hence, each document store can be considered as a kind
of multi-model DBMS since it naturally supports also storing of key/value or column
data.

ArangoDB. Contrary to most of the other DBMSs, ArangoDB was from the begin-
ning created as a native multi-model system. Its first release is from 2011. It can
be also run as a cloud-hosted database service. It supports key/value, document, and
graph data. For the purpose of querying across all the data models it provides a com-
mon language [ArangoDB 2017]. ArangoDB however primarily serves documents to
clients. Documents are represented in the JSON format and grouped in collections. A
document contains a collection of attributes, each having a value of an atomic type or
a compound type (an array or an embedded document/object).

2Thttps://www.faircom.com/products/c-treeace
28http://www.oracle.com/technetwork/database/database-technologies/nosqldb/overview/index.html
2%http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
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create table Customers ( Content of file customer.json
id integer,
name string, { "id":1,
address string, "name" : "Mary",
orders array ( "address":"Prague",
record ( "orders" : [
order_no string, { "order_no":"0c6df508",
orderlines array ( "orderlines": [
record ( { "product_no" : "2724f",
product_no string, "product_name" : "Toy",
product_name string, "price" : 66 },
price integer ) ) ) { "product_no" : "3424g",
), "product name" :"Book",
primary key (id) "price" : 40 } ] } 1
)i }
{ "id":2,
import -table Customers -file customer.json "name" :"John",
"address":"Helsinki",
"orders" : [

{"order_no":"0Oc6df511",
"orderlines": [
{ "product_no" : "2454f",
"product name" : "Computer",
"price" : 34 } 1 1} 1
}

Fig. 7. An example of storing multi-model data in Oracle NoSQL Database

sgql-> select * from Customers;

Fomm e R B et T +
| id | name | address | orders

B ettt R B et et T +
| 2 | John | Helsinki | order no | Ocedf511

| | | | orderlines |
I I I I product no | 2454f

| | | | product name | Computer |
| | | | price | 34

R fommm e R ettt +
| 1 | Mary | Prague | order no | 0c6df508 |
I I I | orderlines |
| | | | product_no | 2724f

| | | | product name | Toy

| | | | price | 66 |
I I I I I
| | | I product_no | 34249 |
| | | | product name | Book

| | | | price | 40 |
et fommm o +

Fig. 8. An example of storing multi-model data in Oracle NoSQL Database — the resulting table

A document collection always has a primary key attribute key and in the absence
of further secondary indices the document collection behaves like a simple key/value
store. Special edge collections store documents as well, but they include two special at-
tributes, _from and _to, which enable to create relations between documents. Hence
two documents (vertices) stored in document collections are linked by a document
(edge) stored in an edge collection. This is ArangoDB’s graph data model.

ArangoDB query language (AQL) allows complex queries. Despite the different data
models, it is similar to SQL. In case of the key/value store the only operations that are
possible are single key lookups and key/value pair insertions and updates. In case of
the document store queries can range from a simple “query by example” to complex
“joins” using many collections, usage of functions (including user-defined ones) etc. For
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sql-> SELECT c.name, c.orders.order no, sql-> SELECT c.name, c.orders.order_no,

c.orders.orderlines[0].product_ name -> [c.orders.orderlines[$element.price > 35]]

-> FROM customers c -> FROM customers c;

-> where c.orders.orderlines[0].price > 50; Rl Fommm Fomm e +
R o fomm e + | name | order no | Column_3 |
| name | order no | product name | Rl i Fommm e +
fomm——— JFIS o + | Mary | 0cédf508 | product_no | 2724f |
| Mary | 0c6df508 | Toy | I | | product_name | Toy |
fomm— fommm fommm + I | | price 66 |

| | | |
| | | product_no | 3424g |
| | | product_name | Book |
| | | price | 40 |
fo—— fomm et e T P +
| John | Océdf511 | |
fom fomm R et P P +

Fig. 9. An example of querying multi-model data in Oracle NoSQL Database

the purpose of graph data various types of traversing graph structures and shortest
path searches are available. The most notable difference is probably the concept of
loops borrowed from programming languages.

ArangoDB involves several types of indices. Some of them are created automatically,
others which can be created on collection level are user-defined. For each collection
there is a primary index which is a hash index for the document keys (attribute _key) of
all documents in the collection. Every edge collection also has an automatically created
edge index which provides quick access to documents by either their attributes _from or
_to. It is also implemented as a hash index which stores a union of all the attributes. A
user-defined index is also hash, in particular unsorted, so it supports equality lookups
but no range queries or sorting. Optionally it can be declared as unique or sparse.

Another type of index is called a skiplist. It is a sorted index structure used for
lookups, range queries and sorting. Optionally it can also be declared as unique or
sparse. Other types of indices, such as persistent, full-text or geo, are available too.

Couchbase. Another document DBMS with a support for multiple data models is
Couchbase??, originally known as Membase, first released in 2010 and it can be easily
deployed in the cloud. It is both key/value and document DBMS with an SQL-based
query language. Documents (in JSON) are stored in data containers called buckets
without any pre-defined schema. The storage approach is based on an append-only
write model for each file for efficient writes which also requires regular compaction for
cleanup. A special type of memcached buckets support caching of frequently-used data.
Hence they reduce the number of queries a database server must perform. The server
provides only in-RAM storage and data does not persist on disk. If it runs out of space
in the buckets RAM quota, it uses the Least Recently Used (LRU) algorithm to evict
items from the RAM.

The SQL-based query language of Couchbase, denoted as N;QL, enables to access
the JSON data. In addition, key/value API, MapReduce API, and spatial API for geo-
graphical data is provided. N; QL involves classical clauses such as SELECT, FROM (tar-
geting multiple buckets), WHERE, GROUP BY, and ORDER BY.

Two types of indices are supported in Couchbase — B+tree indices similar to those
used in relational databases and B+trie (a hierarchical B+-tree based trie). B+trie
provides a more efficient tree structure compared to B+trees and ensures a shallower
tree hierarchy.

30http://www.couchbase.com/
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MongoDB. Probably the most popular document DBMS MongoDB?3! (whose develop-
ment began in 2007) has been declared as multi-model at the end of 2016. Its document
model, that can naturally store also simple key/value pairs and table-like structures,
has been extended towards graph data. In addition, MongoDB Atlas is a cloud-hosted
database service.

In general, documents in MongoDB (expressed in JSON) have a flexible schema and
hence the respective collections do not enforce document structure (except for field _id
uniquely identifying each document). The user can decide whether to embed the data
or to use references to other documents (which enable to form a graph). Operations are
atomic at the document level.

MongoDB query language uses a JSON syntax. It supports both selection of docu-
ments using conditions (involving logical operators, comparison operators, field exis-
tence, regular expressions, bitwise operators etc.), projections of selected fields of the
result, accessing of document fields in an arbitrary depth etc. MongoDB does not sup-
port joins. There are two methods for relating documents: (1) Manual references where
one document contains field _id of another document and thus a second query must be
always used to access the referenced data. (2) DBRefs references, where a document
is referenced using field _id, collection name, and (optionally) database name, i.e. dif-
ferent document collections can be mutually linked. Also in this case a second query
must be used to access the data, but there are drivers involving helper methods that
form the query for the DBRefs automatically.

Documents are physically stored in BSON>2 — a binary representation of JSON docu-
ments. The maximum BSON document size is 16 MB. MongoDB automatically creates
a unique primary index on field _id. It also supports a number of secondary indices,
such as single-field, compound (to index multiple fields), multikey (to index the con-
tent stored in arrays), geospatial, text, or hashed. Most types of MongoDB indices are
based on a B-tree data structure [MongoDB, Inc. 2017].

Cosmos DB. Azure Cosmos DB?? (before May 2017 called DocumentDB) from Mi-
crosoft is a cloud, schema-less, originally document database which supports ACID
compliant transactions. It is multi-model and it supports document (JSON), key/value,
graph, and columnar data models. For a new instance of Cosmos DB, the user chooses
one of the data models and respective APIs to be used.

For accessing document, columnar, or key/value data Cosmos DB uses an SQL-like
query language [Microsoft 2017a]. Every query consists of clause SELECT and optional
clauses FROM, WHERE and ORDER BY. Clause FROM can involve inner joins whereas we
join fields in JSON documents accessible via dot notation and positions of items in the
arrays. Clause WHERE can involve arithmetic, logical, comparison, bitwise and string
operators. For working with graph data the standard Gremlin [Rodriguez 2015] API is
supported.

By default, Cosmos DB automatically indexes all documents in the database and
it does not require any schema or creation of secondary indices. These defaults
can be modified by setting an indexing policy specifying including/excluding docu-
ments and paths (selecting document fields) to/from index, configuring index types
(hash/range/spatial for numbers/strings/points/polygons/linestrings and their required
precision), and configuring index update modes (consistent/lazy/none). The indexing
strategy in Cosmos DB [Shukla et al. 2015] is based on two strategies: (1) a map of

31https:/www.mongodb.com/
32http://bsonspec.org/
33http://www.cosmosdb.com
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tuples (document id, path) and (2) a map of tuples (path, document id). Particular path
patterns can be excluded from the index.

4.4.1. XML Stores. XML stores can be considered as a special type of document
databases. However, XML stores do not belong to the group of core NoSQL databases,
so they are usually not intended for Big Data and respective distributed processing.

MarkLogic. The development of MarkLogic®* began in 2001 as a native XML
database, i.e., a system natively supporting hierarchical semi-structured XML data.
Since 2008 it supports also the JSON format [MarkLogic Corporation 2017a] and cur-
rently also other data formats, like, e.g., RDF, binary, or textual. It can be deployed,
managed and monitored in various cloud platforms.

As can be seen in Fig. 10, MarkLogic models a JSON document like an XML doc-
ument, i.e., as a tree of nodes, rooted at an auxiliary document node. The nodes rep-
resent objects, arrays, text, number, Boolean, or null values. The name of a node cor-
responds to the property name if specified, otherwise unnamed nodes are supported.
This similarity provides a unified way to manage and index documents of both types.
MarkLogic indexes the structure of the data upon loading regardless their eventual
schema. An example of storing both XML and JSON data in MarkLogic can be seen in
Fig. 11.

Document
unnamed

{
"name": "Oliver", (::)
"scores": [88, 67, 73],
Object
unnamed

"isActive": true,

"affiliation": null - /-
} _— __— N~
Array
@ 0=0 @

Text ~ ‘ ~ Boolean Null

name \\\ isActive affiliation

®& @ @

Number Number Number
scores scores scores

Fig. 10. An example of modeling JSON data as trees in MarkLogic (source: https://developer.marklogic.com/
features/json)

JavaScript for JSON documents:

declareUpdate () ;
xdmp .documentInsert ("/myJSON1.json",
{
"Order no":"0c6df508",
"Orderlines": [

{ "Product no":"2724f",
"Product_Name":"Toy",
"Price":66 },

{"Product_no":"3424g",

"Product_Name":"Book",
"Price":40}]

XQuery update extension for XML documents:

xdmp :document-insert ("/myXML1.xml",
<product no="3424g">
<name>The King's Speech</name>
<author>Mark Logue</author>
<author>Peter Conradi</author>
</product>
)

Fig. 11. An example of storing multi-model data in MarkLogic

34http://www.marklogic.com/
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Thanks to the tree representation, the JSON documents can be traversed using
XPath queries which can be called also from the JavaScript and XQuery code. For
querying using SQL MarkLogic enables to create a view which flattens the JSON/XML
hierarchical data into tables. An example of querying both XML and JSON data using
XQuery can be seen in Fig. 12.

let $product := fn:doc("/myXML1l.xml")/product
let Sorder := fn:doc("/myJSONl.json") [Orderlines/Product no = $product/@no]
return $order/Order_no

Result: 0c6df508

Fig. 12. An example of querying multi-model data in MarkLogic

Actually, MarkLogic stores, retrieves and indexes document fragments. By default
a fragment is the whole document. But, MarkLogic also enables users to break large
XML documents into document fragments. JSON documents are single-fragment; the
maximum size of a JSON document is 512 MB for 64-bit machines.

MarkLogic maintains a default universal index [MarkLogic Corporation 2017b] to
search the text, structure, and their combinations for XML and JSON data. It includes
an inverted index for each word (or phrase), XML element and JSON property and
their values (further optimized using hashing) and an index of parent-child relation-
ships. Range indices for efficient evaluation of range queries can be further specified.
A range index can be described as two data structures: (1) an array of pairs (document
id, value) sorted by document ids and (2) an array of pairs (value, document id) sorted
by values (whereas both are further optimized so that the values are stored only once).
A path range index further enables to index JSON properties defined by an XPath
expression. Last but not least, MarkLogic enables one to create lexicons, i.e., lists of
unique words/values that enable identification of a word/value in the database and the
number of its appearances. There are several types of lexicons, such as word, value,
value co-occurrence, range etc.

4.5. Graph Stores

NoSQL graph databases enable to store the most complex data structures and involve
a specific data access. Adding another type of data model thus increases the complexity
of the problem. This is probably the reason why there seems to exist only a single
representative of a graph multi-model database.

OrientDB. The first release of OrientDB?® from 2010 was implemented on the basis
of an object DBMS. Currently it is an open source NoSQL DBMS supporting graph,
key/value, document, and object models. It can be deployed and managed in most cloud
environments.

An element of storage [OrientDB 2017a] is a record having a unique ID and corre-
sponding to a document (formed by a set of key/value pairs), a BLOB, a vertex, or an
edge. Classes contain and define records; however, they can be schema-full, schema-
less, or schema-mixed. Classes can inherit (all properties) from other classes. If class
properties are defined, they can be further constrained or indexed.

Classes can have relationships of two types: (1) Referenced relationships are stored
as physical links managed by storing the target record ID in the source record(s), sim-
ilarly to storing pointers between two objects in memory. Four kinds of relationships
are supported — LINK pointing to a single record and LINKSET, LINKLIST, or LINKMAP

35http://orientdb.com/orientdb/
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pointing to several records. (2) Embedded relationships are stronger and stored within
the record that embeds. Embedded records do not have their own record, they are only
accessible through the container record and cannot exist without it. Similarly to links,
four kinds of embedded links are supported: EMBEDDED, EMBEDDEDSET, EMBEDDEDLIST,
and EMBEDDEDMAP. An example of storing both graph and JSON data in OrientDB to-
gether with a graphical visualization of the result can be seen in Fig. 13.

CREATE CLASS orderline EXTENDS V

CREATE PROPERTY orderline.product_no STRING @ customer
CREATE PROPERTY orderline.product_name STRING © order
CREATE PROPERTY orderline.price FLOAT Orde,

CREATE CLASS order EXTENDS V

CREATE PROPERTY order.order no STRING s
CREATE PROPERTY order.orderlines EMBEDDEDLIST orderline s
CREATE CLASS customer EXTENDS V
CREATE PROPERTY customer.id INTEGER
CREATE PROPERTY customer.name STRING %,
CREATE PROPERTY customer.address STRING s
CREATE CLASS orders EXTENDS E
CREATE CLASS knows EXTENDS E
CREATE VERTEX order CONTENT ({ CREATE VERTEX order CONTENT ({
"order_no":"0c6df508", "order_no":"Oceédf511",
"orderlines": [ "orderlines": [
{ "Qtype":"d", { "@type":"d",
"@class":"orderline", "@class":"orderline",
"product_no":"2724f", "product_no":"2454f",
"product name":"Toy", "product_name":"Computer",
"price":66 }, "price":34 }]
{ "@type":"d", }
"@Qclass":"orderline",
"product no":"3424g", CREATE VERTEX customer CONTENT {
"product name":"Book", "id" : 1,
"price":40}] "name" : "Mary",
} "address" : "Prague"
}
CREATE EDGE orders FROM CREATE VERTEX customer CONTENT ({
(SELECT FROM customer WHERE name = "Mary") "id" : 2,
TO "name" : "John",
(SELECT FROM order WHERE order no = "0c6df508") "address" : "Helsinki"

}
CREATE EDGE orders FROM

(SELECT FROM customer WHERE name = "John")
TO
(SELECT FROM order WHERE order no = "Oc6df511")

CREATE EDGE knows FROM

(SELECT FROM customer WHERE name = "Mary")
TO
(SELECT FROM customer WHERE name = "John")

Fig. 13. An example of storing multi-model data in OrientDB

OrientDB supports querying the data with graph-traversal language Gremlin or
SQL extended for graph traversal [OrientDB 2017b]. The main difference in SQL
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commands is in class relationships represented by links. Classical joins are not sup-
ported and the links are simply navigated using dot notation. Otherwise the main SQL
clauses as well as nested queries are supported.

OrientDB uses several indexing mechanisms. SB-tree [O’Neil 1992] is based on
classical B-tree optimized for data insertions and range queries. It has variants
(dis)allowing duplicities and for full text indexing. Significantly faster extendible hash-
ing has the same variants but does not support range queries. Lucene full text and
spatial indexing plugins are also available.

4.6. Other Stores

In this section we focus briefly on other types multi-model systems. We mention a rep-
resentative of multi-model object stores and multi-use-case stores. And we also discuss
systems which will probably soon become multi-model, as well as systems which are
on the contrary no longer available.

4.6.1. Object Stores. With their emergence, object stores were expected to become the
key database technology, similarly to object-oriented programming. Even though rela-
tional databases have maintained their leadership, there exist highly successful object
DBMSs used in specific areas. Since object model enables to store any kind of data, a
multi-model extension is a relatively straightforward step.

InterSystems Caché. DBMS Caché?®® from InterSystems was first launched in 1997
and recently transformed to the IRIS Data Platform?®’. It is an object database®®
which stores data in sparse, multidimensional arrays capable of carrying hierarchi-
cally structured data. The data can be accessed using several APIs — via objects
based upon the ODMG standard (involving inheritance and polymorphism, embed-
ded objects, collections etc.), SQL (including DDL, transactions, referential integrity,
triggers, stored procedures etc. with various object enhancements), or direct (and
highest-performance) manipulation of its multidimensional data structures. Hence,
both schemaless and schema-based storage strategy is available. In addition, since
2016 it supports also documents in JSON or XML [InterSystems 2016].

Being an object database, Caché provides also an SQL API for data access enhanced
with object features [InterSystems 2017], e.g. following object references using the
operator -> instead of joins. In general, each instance of a persistent class has a “flat-
tened” representation as a row in a table accessible via SQL.

The key important index structure in DBMS Caché is a bitmap index [InterSystems
2015] — a series of highly compressed bitstrings to represent the set of object IDs that
correspond to a given indexed value. It is further extended with a bitslice index for a
numeric data field when that field is used for an aggregate calculation SUM, COUNT,
or AVG. It represents each numeric data value as a binary bit string and creates a
bitmap for each digit in the binary value to record which rows have 1 for that binary
digit. Finally, standard indices correspond to an array that associates the indexed val-
ues with the Rowlds of the rows that contain the values.

4.6.2. Multi-Use-Case Stores. A related group of DBMSs can be denoted as multi-use-
case. These systems do not aim at storing multiple data models and querying across
them, but rather at systems suitable for various types of database applications. Hence
the idea of one-size-fits-all is viewed from the viewpoint of use cases.

36http://www.intersystems.com/our-products/cache/
3Thttps:/www.intersystems.com/products/intersystems-iris/

38In fact, originally it was a key/value database — a long time before this term was introduced in the world
of NoSQL databases. Currently it is however usually denoted as an object database.
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For example SAP HANA DB is an in-memory, column-oriented, relational DBMS.
It exploits and combines the advantages of a row (OLTP) and columnar (OLAP) storage
strategy together with in-memory processing in order to provide a highly efficient and
universal data management tool.

Another example is OctopusDB*’ whose aim is to mimic OLTP, OLAP, streaming
and other types of database systems. For this purpose it does not have any fixed hard
coded (e.g., row or columnar) store, but it records all database operations to a sequen-
tial primary log by creating appropriate logical log records. It later creates arbitrary
physical representations of the log (called storage views), depending on the workload.

4.6.3. Not (Yet) Multi-Model. Currently there also exists a number of DBMSs which can-
not be denoted as multi-model. However, their current architecture enables this ex-
tension or such an extension is currently under development. Another set of DBMSs
mentioned in this section involves systems whose support for multiple data models
is highly limited. But in this case we can also assume that it will probably be (soon)
extended.

NuoDB. NuoDB*!, released under version 1.0 in 2013, is a relational, or more specif-
ically NewSQL DBMS which works in the cloud. As mentioned in [NuoDB 2013] “the
NuoDB SQL engine is a personality for the atom layer”, whereas the authors of NuoDB
“are actively working on personalities other than the default SQL personality”. Data
is stored and managed using self-coordinating objects (atoms) representing data, in-
dices, schemas, etc. Atomicity, consistency and isolation are ensured at the level of
atom interaction without the knowledge of their SQL structure. Hence, replacing the
SQL front-end would not influence the ACID semantics.

Redis. Redis*? was first released in 2009 as a NoSQL key/value store. However, in
the value part it supports not only strings, but also a list of strings, an (un)ordered
set of strings, a hash table etc., together with respective operations for storing and
retrieval of the data. Although the basic value types cannot be nested, the Redis Mod-
ules*3 are expected to turn Redis into multi-model database [Curtis 2016]. Redis Mod-
ules are add-ons to Redis which extend Redis to cover most of the popular use cases
for any industry.

Aerospike. DBMSs Aerospike**, first released in 2011, is a key/value store with
the support for maps and lists in the value part that can nest. In addition, in 2012
Aerospike acquired AlchemyDB, “the first NewSQL database to integrate relational
database management system, document store, and graph database capabilities on
top of the Redis open-source key/value store” [Aerospike, Inc. 2012].

4.6.4. No More Available. Even in the dynamically evolving world of multi-model
databases we can find also systems which are no longer maintained or available. The
reasons are different. For example DBMS FoundationDB, supporting key/value, doc-
ument, and object models, has been in 2015 acquired by Apple [Panzarino 2015] and
it is no longer offering downloads. Similarly, Akiban Server which has the ability to
treat groups of tables as objects and access them as JSON documents via SQL [The
451 Group 2013] was acquired by FoundationDB [Darrow 2013] in 2013.

3%9http://www.sap.com/product/technology-platform/hana.html
40https://infosys.uni-saarland.de/projects/octopusdb.php

4 http://www.nuodb.com/

42http://redis.io/

43http:/redismodules.com/

44http://www.aerospike.com/
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5. CHALLENGES AND OPEN PROBLEMS

In this section, we show a compiled list of research challenges and open problems.
We classify them into the following four categories: (1) multi-model query processing
and optimization, (2) multi-model schema design and optimization, (3) multi-model
evolution, and (4) multi-model extensibility.

—- Multi-model query processing and optimization. Despite ORDBMSs are ca-
pable of storing data with various formats (models), they do not provide a cross-model
data processing language, inter-model compilation or respective multi-model query op-
timization. In contrast, a multi-model database attempts to embrace this challenge by
developing a unified query language to accommodate all the supported data models.
As mentioned in the previous sections, there exist proposals of multi-model query lan-
guages. For example, AQL provided by ArangoDB enables one to access both graph
and document data. However, the existing query languages are immature, and it is
still an open challenge to develop a full-fledged query language for multi-model data.

A closely related problem is a proposal of an approach for identification of the opti-
mal query plan for efficient evaluation of a given cross-model query [Lu 2017; Zhang
et al. 2018]. Wavelets and histograms enable one to exploit the knowledge of distri-
bution of data and thus optimize query evaluation strategies. However, the current
techniques (e.g. [Alway and Nica 2016]) are developed for RDBMSs having a fixed rela-
tional schema, whereas multi-model DBMSs support both flexible and diverse schema.
Thus, new dynamic techniques should be developed capable of adaptation to schema
changes.

Currently the single-model DBMSs usually build a separate domain-specific index
for different domains. Cross-domain queries are then evaluated by (1) separating index
searches specifically for the individual domain, and (2) integrating the partial results
to find all solutions. In the multi-model world we can use this approach too. For each of
the models there exist verified types of indices, such as B-tree and B+-tree for relational
data, TreePi [Zhang et al. 2007] and gIndex [Yan et al. 2004] for graph data, or XB-
tree [Bruno et al. 2002] for hierarchical XML data. However, the efficiency of such
approach is questionable. A natural hypothesis is that a universal index comprising
various data models should quite probably be a better solution.

In addition, the cloud-based distributed technologies are going forward. Cloud data
can be very diverse, including text, streaming data, unstructured and semi-structured
data. And cloud users and developers may be in high numbers, but not DBMS experts.
Therefore, one challenge is to extend the technology of distributed database manage-
ment and parallel database programming to fulfill the requirement of the scalability,
simplicity and flexibility of the cloud-based multi-model data management.

—- Multi-model schema design and optimization. A good design of the database
schema is a critical part influencing many aspects, such as efficiency of query process-
ing, application extensibility etc. There are critical decisions about both the physical
and logical schema of the data. For example, as shown in [Scherzinger et al. 2013] for
the case of key/value stores, a naive schema design will result in 20-35% of database
transactions failing for a certain workload, whereas this problem can be alleviated
through the design of an appropriate schema. A similar paper [Mior 2014] provides a
cost-based approach to schema optimization in column stores. Contrary to relational
databases, NoSQL databases usually use significantly denormalized physical schema
which requires additional space. Hence, in the world of multi-model systems we en-
counter contradictory requirements for the distinct models and thus it calls for a new
solution for multi-model schema design to balance and trade-off the diverse require-
ment of multi-model data.
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Even the question of existence of a schema differs significantly — traditional re-
lational databases are based on existence of a pre-defined schema, whereas NoSQL
databases are based on the assumption of schemalessness. A possible solution may
find an inspiration, e.g., in the proposal of the NoSQL AbstractModel (NoAM) [Bugiotti
et al. 2014], an abstract data model for NoSQL databases that specifies a system-
independent data representation. However, the proposal covers only aggregate-
oriented NoSQL databases (i.e., key/value, column, and document).

A closely related problem of schema inference from a sample set of data instances is
another open issue in the multi-model context. There exists a number of approaches
dealing with inference of, e.g., JSON [Baazizi et al. 2017] or XML [Mlynkova and
Necasky 2013] schemas. Recently there have appeared approaches inferring a schema
for NoSQL document stores [Gallinucci et al. 2018a], or in general for aggregate-
oriented databases [Sevilla Ruiz et al. 2015; Chillén et al. 2017]. There are even meth-
ods which identify aggregation hierarchies in RDF data [Gallinucci et al. 2018b]. How-
ever, in the world of multi-model data we need to infer also references between the
distinct models. In addition, the inference approaches may benefit from information
extracted from related data with distinct models.

—- Multi-model evolution. In general, it is a difficult task to efficiently manage
data schema evolution and the propagation of the changes to the relevant portions in
a database system, such as data instances, queries, indices, or even storage strategies.
In some smaller applications a company can rely on a skilled database administrator to
manage the data evolution and to propagate the modification to other impacted parts
manually. But in most cases, it is a complicated and error-prone job.

In the context of multi-model databases, this task is more subtle and difficult. We
can distinguish intra-model and inter-model changes. In the former case we can re-
use the existing approaches for single models. In the latter case, however, they cannot
be straightforwardly applied. The state-of-the-art solutions [Polak et al. 2015], using
the classical Model-Driven Architecture, deal with multiple data models which repre-
sent distinct and overlapping views of a common model of the considered reality via
which a change can be propagated to all affected parts. Then the change propagation
can be solved within particular data models separately. In the case of multi-model
databases the distinct models cover separate parts of the reality which are intercon-
nected using references, foreign keys, or similar entities. Hence the evolution manage-
ment has to be solved across all the supported data models. In addition, the challenge
of query rewrite [Curino et al. 2008; Manousis et al. 2013], i.e. propagation of changes
to queries, also becomes more complex in case of inter-model changes which require
changes in data access constructs.

—- Multi-model extensibility. The last but not least open problem is the challenge
of model extensibility, which can be considered in several scopes. First, we may con-
sider intra-model extensibility which means extending one of the models with new
constructs, e.g., extending the XML model with the support for the query on IDs and
IDREF(S). Second, we may consider inter-model extensibility which adds new con-
structs expressing relations between the models, e.g. the ability to express a CHECK
constraint from the relational model across both relational and XML data. And third,
we can provide extra-model extensibility which involves adding a whole new model,
together with respective data and query, e.g. adding time series data with the support
of time series analysis.

6. CONCLUSION

The specific V-characteristics of Big Data bring many challenging tasks to be solved
to provide efficient and effective management of the data. In this survey we focus on
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the variety challenge of Big Data which requires concurrent storage and management
of distinct data types and formats. Multi-model DBMSs analyzed in this survey cor-
respond to the “one size fits a bunch” viewpoint [Alsubaiee et al. 2014]. Considering
the Gartner survey [Feinberg et al. 2015] which shows the high near-future repre-
sentation and the existing large amount of multi-model systems, this approach has
demonstrated its meaningfulness and practical applicability. On the other hand, this
survey also shows that there still remains a long journey towards a mature and robust
multi-model DBMS comparable with verified solutions from the world of relational
databases. One intention of this survey is to promote research and industrial efforts
to catch the opportunities and address challenges in developing a full-fledged multi-
model database system.
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APPENDIX A. The Top 5 DBMSs in the Particular Classes
To provide a broader context, in this appendix we overview the top 5 DBMSs*® in the
particular classes defined in Table I. As we can see in Table IX, where the multi-model

45https://db-engines.com/en/ranking [14.2. 2019]
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DBMSs are in bold, most relational databases can support multiple models. On the
other hand, two popular column stores, HBase*® and MS Azure Table Storage?’, are
not multi-model. The main features of HBase are based on ideas proposed in the Google
BigTable [Chang et al. 2008], whereas it is a part of Apache Hadoop and based on the
usage of HDFS. The data can be processed using MapReduce or an SQL extension
provided by separate Apache projects. Contrary to (multi-model) MS Cosmos DB, MS
Azure Table Storage is a pure column store with an emphasis on high throughput. The
tables are schemaless and can be queried using MS LINQ [Microsoft 2016].

Table IX. The top 5 DBMSs in the particular classes according to DB-Engines Ranking

| Class Top 5 DBMSs |

Relational | Oracle DB, MySQL, MS SQL Server, PostgreSQL, IBM DB2

Column Cassandra, HBase, Cosmos DB, Datastax Enterprise, MS Azure Table Storage
Key/value | Redis, DynamoDB, Memcached, Cosmos DB, Hazelcast

Document | MongoDB, DynamoDB, Couchbase, Cosmos DB, CouchDB

Graph Neo4j, CosmosDB, Datastax Enterprise, OrientDB, ArangoDB

Two key/value DBMSs are single model databases*®. Memcached® is an in-memory
store which was originally intended and is currently often used by other systems for
caching data in RAM to speed up their processing. It can be described as a large hash
table where the least-recetly used data are purged when necessary. The other repre-
sentative, Hazelcast®®, is also an in-memory system where the elastically scalable data
grid provides similar functionality and advantages. A popular single-model document
store is Apache CouchDB?!. It stores data in a JSON format, whereas a document can
also have a set of binary attachments files. Querying of data is implemented using
views which are generated on-demand to process data using MapReduce.

Finally, in the world of graph databases there is surprisingly one exception repre-
sented by the most popular DBMS of this kind — Neo4j%2. Its logical model involves
labeled nodes and edges which can have an arbitrary number of attributes. The graph
data can be queried using the standard graph traversal language Gremlin, Java graph
traversal interface, or own SQL-like graph query language Cypher [Francis et al.
2018]. Internally the data are stored in the form of adjacency lists, where adjoining
nodes and edges point to each other. Neo4j High Availability enables a horizontally
scaling read-mostly architecture.

APPENDIX B. Query Languages for Popular Data Formats

In this appendix, we overview query languages currently usually used for querying of
the most popular data formats. These languages can be viewed as prospective candi-
dates for extensions towards multiple models.

The simplest data model, i.e., key/value pairs, are usually accessed simply using
methods get, put, and delete. In the world of relational data there is probably no other
popular alternative to query the data than the SQL [ISO 2008]. In addition, as we have
shown in Table VII, the usage of an SQL extension or an SQL-like query language is
a common strategy across all types of multi-model DBMSs for various combinations of
data models.

46https://hbase.apache.org/

4Thttps://azure.microsoft.com/cs-cz/services/storage/tables/

48 As we have discussed in Section 4.6.3, Redis will probably become a multi-model database soon.
49https:/memcached.org/

50https://hazelcast.com/

5lhttp://couchdb.apache.org/

52https:/neo4j.com/

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2019.



0:38

In the case of semi-structured formats we can identify two distinct situations. For
XML data two W3C standards for querying, i.e., XPath [W3C 2015a] and XQuery [W3C
2015b], are currently used widely. For the JSON format there are currently several ex-
isting and quite distinct representatives (compared in detail in [Bourhis et al. 2017]),
such as the JSON-based query language in MongoDB, XPath-based JSONPath [Goess-
ner 2007], XQuery-based JSONiq [jsoniq.org 2013], or various proprietary SQL exten-
sions. But, unfortunately, so far there is no generally acknowledged standard like in
the case of XML.

Last but not least, in the world of graph data the main representatives (compared
extensively in [Angles et al. 2017]) involve SPARQL [W3C 2013] primarily intended for
Linked Data, Neo4j’s graph query language Cypher [Francis et al. 2018], and Apache
TinkerPop Gremlin [Rodriguez 2015].

APPENDIX C. Alternative Ways for Multi-Model Data Management

In this article, we have primarily surveyed single-store DBMSs to handle the challenge
of multi-model data management. However, there is an alternative direction that sup-
ports different data models with multiple database engines. In this appendix, we give
a brief introduction on these solutions and refer interested readers to other surveys
and tutorials (e.g. [Tan et al. 2017; Lu et al. 2018a]) for the details.

The main ideas of these alternative solutions are to package together multiple query
engines and combine different specialized stores, each with distinct (native) data model
and different language and capabilities. Then the users rely on the middle-ware layer
to process queries and data from different sources. [Tan et al. 2017] classify the existing
solutions with four different types of systems as defined below:

— Federated system: multiple homogeneous data stores and one query interface.

— Polyglot system: multiple homogeneous data stores and multiple query interfaces.
— Multistore system: multiple heterogeneous data stores and one query interface.

— Polystore system: multiple heterogeneous data stores and multiple query interfaces.

First, federated systems were thoroughly researched during the periods of 1980s and
1990s. Their main strategy is to leverage different databases to store various models
of data and then develop a middleware (called mediator) to integrate them together to
answer queries. For example, one well-known system Multibase [Huang 1994] lever-
ages a global schema and a single query interface. In order to process queries, the
system decomposes the query to multiple local sub-queries based on the global schema
and local schemata.

Second, polyglot systems address the need to handle complex data flows in cloud en-
vironment and distributed file systems, where the users’ requests can be formulated
with both complicated algorithms and declarative queries. For example, a representa-
tive system Spark SQL [Armbrust et al. 2015] provides APIs to allow users to process
data with both DataFrames and SQL to access a number of data sources, such as
JSON, JDBC, Hive, ORC and Parquet.

Third, multistore systems provide integrated accesses to a number of data stores
including HDFS, RDBMS and NoSQL databases. They have an integrated query in-
terface to process the data. The representative systems include HadoopDB [Abouzeid
et al. 2009], Estocada [Bugiotti et al. 2015; Alotaibi et al. 2019] and Polybase [DeWitt
et al. 2013].

Finally, polystore systems are built on top of multiple heterogeneous data storage
engines. Users can choose from a number of queries to process data which are stored
in a variety of data stores. The representative systems include BigDAWG [Duggan
et al. 2015], RHEEM [Agrawal et al. 2018] and Myria [Wang et al. 2017].
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