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ABSTRACT
As one of the most well known graph computation problems, Per-
sonalized PageRank is an effective approach for computing the
similarity score between two nodes, and it has been widely used in
various applications, such as link prediction and recommendation.
Due to the high computational cost and space cost of computing the
exact Personalized PageRank Vector (PPV), most existing studies
compute PPV approximately. In this paper, we propose novel and
efficient distributed algorithms that compute PPV exactly based
on graph partitioning on a general coordinator-based share-nothing
distributed computing platform. Our algorithms takes three aspects
into account: the load balance, the communication cost, and the
computation cost of each machine. The proposed algorithms only
require one time of communication between each machine and the
coordinator at query time. The communication cost is bounded, and
the work load on each machine is balanced. Comprehensive exper-
iments conducted on five real datasets demonstrate the efficiency
and the scalability of our proposed methods.

CCS Concepts
•Mathematics of computing → Graph algorithms; •Theory of
computation → Parallel computing models;
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1. INTRODUCTION
Measuring the similarities between nodes is a fundamental graph

computation problem. Many random surfer model based meas-
ures have been proposed to capture the node-to-node proximities
[2, 9, 23, 24, 29]. The Personalized PageRank (PPR) [24] is one of
the most widely used measures and has gained extensive attention
because of its effectiveness and theoretical properties. It has been
utilized in various fields of applications, such as web search [8,11],
community detection [3, 21], link prediction [4], anomaly detec-
tion [42], and recommendation [26, 48].
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Different from the PageRank model [37], PPR allows users to
specify a set of preference nodes P . The result of PPR w.r.t. P is
called the Personalized PageRank Vector (PPV), which is denoted
by rP . Note that different preference vectors will yield different
PPVs, and thus PPV needs to be computed in an online manner,
which is different from PageRank. The PPR model can be sim-
ulated by numerous “random surfers.” Initially, these surfers are
distributed to the nodes in P equally. Next, in each step, a random
surfer either jumps to a random outgoing neighbor with a probab-
ility of 1 − α, or teleports back to a node u in P according to the
specified preference of u with a probability of α (α is called the
teleport probability). The procedure is performed repeatedly until
it converges to a steady state, i.e, the number of surfers on each
node does not change after each iteration. The final distribution of
the random surfers on the nodes represents the PPV of P .

The PPR model can also be interpreted as a linear system. We
denote uP as the preference vector w.r.t. P and A as the normal-
ized adjacency matrix of the graph. PPV rP can be computed as:

rP = (1− α)AT rP + αuP . (1)

Hence, rP can be computed using the power iteration method, i.e.,
rk+1
P = (1 − α)AT rkP + αuP , where rkP represents the vector

computed in the kth iteration, and r0P is set to a uniform distribu-
tion vector. Finally, rP converges to the PPV of P .

A. Challenges. Although computing PPVs has been extensively
studied since the problem is first proposed in the work [24], it is
still a very challenging task to compute exact PPVs efficiently for
different online applications. One straightforward method is to ad-
opt the power iteration approach by following Equation 1, which is
however computationally expensive, and it is not practical for the
online applications of PPR.

In the work [24], the linearity property of PPV is studied for
computing PPVs exactly. If we pre-compute the PPV for each
node, at query time, given a node set P , according to the property,
the PPV of P can be constructed using the pre-computed PPVs
of the nodes in P . Unfortunately, this method is impractical be-
cause of both the expensive pre-computation time and the offline
storage requirements (where O(|V |2) space is needed). In order to
reduce the complexity and space cost, the work [24] selects some
important nodes as the “hub nodes”, and the user preference nodes
can only be from the hub set, thus losing the generality. Due to
the hardness of computing the exact PPVs, most of existing studies
(e.g., [5,14,43,49]) focus on computing approximate PPVs. These
methods sacrifice the accuracy to accelerate PPV computation.

Facing the challenges of computing the exact PPV for any ar-
bitrary user preference node set, a natural question raised is how
to perform the computation in parallel on multiple machines to
gain efficiency. However, it is known that graph algorithms often



exhibit poor locality and incur expensive network communication
cost [33]. Therefore, it is a challenging task to design an efficient
and scalable distributed algorithm for computing PPVs that has low
communication cost and is able to achieve load balance.

The power iteration method can be implemented on the gen-
eral distributed graph processing platforms to compute PPVs in a
distributed way. However, this would not be suitable because of
the unavoidable high communication cost. In the power iteration
method, computing the vector in the current iteration requires the
vector of the previous iteration. Thus, no matter how we distrib-
ute the computation, one machine always has to ask for some data
from the other machines in each iteration before convergence, thus
incurring expensive network communication cost. For example,
the graph processing engine Pregel [35] is based on the general
bulk synchronous parallel (BSP) model [44]. In each iteration of
the BSP execution, Pregel applies a user-defined function on each
vertex in parallel. The communications between vertexes are per-
formed with message passing interfaces. The block-centric system
Blogel [46] distributes subgraphs to machines as blocks, and mes-
sages between blocks are transmitted over the network. Both Pre-
gel and Blogel need many rounds of communications to compute
PPVs, which incurs expensive communication cost, thus suffering
from low efficiency.

B. Our Proposal. In this work, we design novel distributed al-
gorithms utilizing the graph partitioning for computing exact PPVs,
which can be implemented on a general coordinator-based share-
nothing distributed computing platform. We take into account three
aspects in designing our algorithms: the load balance, the commu-
nication cost, and the computation cost on each machine. A sali-
ent feature of the proposed algorithms is that each machine only
needs to communicate with the coordinator machine once at query
time, and we prove that the communication cost of our method is
bounded. The main idea of our algorithms is outlined as below.
Observation 1: We can separate the graph into disjoint subgraphs
of similar sizes to distribute the PPV computation.

Based on this observation, we propose the graph partition based
algorithm, denoted by GPA. We prove that the benefit from the bal-
anced disjoint graph partitioning is two-fold: first, this guarantees a
total space cost of O((|V |−|H|)2/m+2|V ||H|+|H|2)), where V
represents the nodes of the graph, m is the number of subraphs, and
H represents the set of hub nodes separating the subgraphs. Note
that |H| is much smaller than |V | (see more analysis in Appendix
E), and thus this space cost is significantly smaller than applying
the method [24] directly. Second, this enables us to compute PPVs
in parallel on separate machines without incurring communication
cost between machines. At query time, based on the pre-computed
values, each machine constructs part of the PPV, and only commu-
nicates with the coordinator once (i.e., sending part of the PPV to
the coordinator). If we use n machines, the communication cost of
GPA is O(n|V |).
Observation 2: We notice that if we treat each subgraph as an indi-
vidual graph, we can use GPA to compute the “local” PPV of each
node w.r.t. the subgraph itself, and these local PPVs can be used to
construct the final “global” PPV. This motivates us to further parti-
tion each subgraph and we get a tree-like graph hierarchy. Then, we
can recursively apply GPA along the hierarchy of subgraphs. We
prove that the pre-computation space cost can be further reduced
and bounded by utilizing the graph hierarchy.
Observation 3: Since the sizes of subgraphs in different levels of
the hierarchy are different, simply distributing the subgraphs to ma-
chines cannot achieve load balance. We design a method to distrib-
ute the PPV computation evenly based on hub nodes partitioning to
solve this problem.

Based on the aforementioned observations, we propose the hier-
archical graph partition based algorithm, denoted by HGPA, which
greatly reduces the space cost, and we prove that the communica-
tion cost of HGPA is O(n|V |) as well.

C. Contributions. To the best of our knowledge, this is the first
work that is able to compute exact PPVs efficiently in a distributed
manner with reasonable space cost. In this paper, we propose novel
distributed algorithms based on graph partitioning, and the salient
features of new algorithms can be summarized as follows:

• Efficiency: Our proposed algorithm HGPA is 10 ∼ 100
times faster than the power iteration approach running on
general distributed graph processing platforms Pregel+ [47]
and Blogel [46], and can meet the efficiency need of online
applications. The experimental study also shows that HGPA
is faster than the power iteration and one state-of-the-art ap-
proximate PPV computation algorithm [49] even under the
centralized setting.

• Accuracy: Our proposed algorithms, namely GPA and HGPA,
are able to obtain the same result as that of the work [24], and
thus have guaranteed exactness (Theorems 1 and 3).

• Load Balance: Our distributed algorithms GPA and HGPA
are load balanced and HGPA scales very well with both the
size of datasets and the number of machines. As shown in
the experiments, the runtime can be reduced nearly by half if
we double the number of machines.

• Low Communication Cost: Our algorithms only require
one time of communication between each machine and the
coordinator, and no communication between any two ma-
chines is needed for pre-computation and query processing.
As shown in the experiments, our method only costs about
1.5 MB network communication to compute a PPV on a
graph containing 3M nodes using 10 machines.

The rest of the paper is organized as follows. Section 2 provides
the preliminary of this work. Sections 3 and 4 present the distrib-
uted algorithms GPA and HGPA, respectively. Section 5 explains
our distributed pre-computation. We perform comprehensive ex-
periments to evaluate the efficiency and scalability of our methods
on 5 real datasets, and the results are reported in Section 6. Sec-
tion 7 summarizes the related work on computing PPVs. Finally,
Section 8 offers conclusions and future research directions.

2. PRELIMINARY
Table 1: Definition of main symbols.

Symbol Definition

P User preference nodes set

ru PPV of a single preference node u
α Teleport(Restart) probability, 0 < α < 1
H Hub node set

t : u � v A random tour from node u to v
P(t) Weight of tour t
L(t) Length of tour t

rHu PPV of tours from u passing at least one node in H

pH
u (PH

u ) (Adjusted) Partial vector w.r.t. node u and hub nodes H

sHu (SH
u ) (Adjusted) Hubs skeleton vector w.r.t. node u and hub

nodes H
xu Basic vector with zero filled except xu(u) = 1

Gi
m A hierarchical partitioned subgraph in the mth level

H(Gi
m) Hub nodes of subgraph Gi

m



2.1 PPV Decomposition
As proved by Jeh and Widom [24], the PPV score ru(v) is equal

to the corresponding Inverse P-distance from a query node u to v,
which is measured by all the weighted tours from u to v:

ru(v) =
∑

t:u�v

P(t), (2)

where each tour t : u � v represents a random surfer that consists
of a sequence of edges starting from u and ending at v. Note that it
is allowed to teleport back to u, and thus there may exist cycles in
the tour. The weight of a tour P(t) is the probability that this tour
walks from u to v along with t:

P(t) = α(1− α)L(t)

L(t)∏
i=1

1

|Out(wi)| ,

where nodes w1(i.e., u), w2, · · · , wL(t)(i.e., v) comprise the path
of length L(t), and |Out(wi)| is the outdegree of node wi. Al-
though the concept of inverse P-distance intuitively explains the
distribution of random walk, it is impossible to sum up all the tours
to obtain the PPV values. The reason is that there may exist loops
in the tours, and thus the number of tours could be infinite.

In order to compute ru, it is divided into two types of vectors
w.r.t. a set of hub nodes H , i.e., partial vectors and hubs skeleton
vectors.

Definition 1: Partial vector: Given a node u, its partial vector
pH
u is defined as a vector of random walk results computed using

tours passing through no hub nodes. That means, given a node v,

pH
u (v) =

∑
∀w∈t&w �=u,w/∈H

P(t)

Definition 2: Hubs skeleton vector: Given a node u, its hubs
skeleton vector sHu is defined as a vector of |H| dimensions com-
posed of all hub nodes’ PPV values w.r.t. u. Given a hub node h,
sHu (h) = ru(h).

u1

u2
u3

u4 u5

Figure 1: Random Surfer Example

If a tour passes no hub node, it contributes to the partial vector.
If a tour stops at a hub node, it contributes to the skeleton vector.
For ease of understanding, we explain the meaning of the two types
of vectors with the graph shown in Figure 1, where two nodes u2

and u3 are selected as hub nodes. We next illustrate the partial and
skeleton vectors with node u1 as an example.

The partial vector pH
u1

consists of two tours t1 and t2, where
t1 = u1 � u4 and t2 = u1 � u4 � u5. Note that all other
tours are blocked by either u2 or u3 (hub nodes), and thus any gray
node in this example is not reachable from u1. We have pH

u1
(u4) =

P(t1) and pH
u1
(u5) = P(t2).

For the skeleton vector sHu1
, we only consider the tours stopping

at a hub node. Different from the partial vector, the tour can contain
one or more hub nodes. From u1 to hub node u2, there exist two
tours t3 = u1 � u2 and t4 = u1 � u4 � u5 � u2. From u1 to
u3 there exist three tours t5 = u1 � u2 � u3, t6 = u1 � u4 �
u5 � u3, and t7 = u1 � u4 � u5 � u2 � u3. Therefore,
sHu1

(u2) = P(t3) + P(t4) and sHu1
(u3) = P(t5) + P(t6) + P(t7).

Note that because of cycles in the tours, it is not feasible to com-
pute all possible tours, which may be infinite. This simple example
is only used to illustrate the intuitive meaning of the two types of
vectors.

2.2 PPV Construction
The PPV of u (i.e., ru) can be constructed by the partial vectors

and hubs skeleton vectors. We use rHu to denote the vector of ran-
dom walk results computed using tours passing though at least one
hub node. That is, give a node v, rHu (v) =

∑
t:u�H�v P(t). We

can combine rHu and the partial vector of u to obtain the full PPV
of u: rHu + pH

u = ru. As proved by Jeh and Widom [24], rHu can
be computed according to the following equation:

rHu =
1

α

∑
h∈H

(sHu (h)− αfu(h)) · (pH
h − αxh), (3)

where fu(h) = 1 if u = h, and 0 otherwise. fu(h) is used to deal
with the special case when u is a hub node. xh is a vector that
has value 1 at h and 0 everywhere else. It is used to deal with the
special case when h is the target node.

In order to make the equation more clear, we define the adjusted
partial vector for each hub node h by:

PH
h = pH

h − αxu,

and the adjusted hubs skeleton vector SH
u for each node u by:

SH
u (h) = sHu (h)− αfu(h).

After the partial vectors and skeleton vectors have been pre-
computed, the exact PPV of a given query node u can be construc-
ted by:

ru =
1

α

∑
h∈H

SH
u (h) ·PH

h + pH
u (4)

In order to reduce the complexity, the work [24] only considers
the construction of PPV for hub nodes. According to Equation 4,
we need to pre-compute the partial vectors of all hub nodes, which
requires space cost O((|V | − |H|) · |H|) in the worst case, and the
skeleton vectors of all hub nodes, which requires O(|H|2) space.

2.3 A Brute-force Extension
It is too restricted to consider the hub set from only preference

nodes as done in work [24]. In fact, it can be extended to com-
pute the PPV for any given query node, as indicated by Equa-
tion 4. However, it incurs huge space cost as explained below:
first, pre-computing the partial vectors for non-hub nodes requires
worst case space cost O((|V |−|H|)2), which happens when every
node can reach every other node without passing any hub node;
second, pre-computing the partial vectors for hub nodes requires
O((|V | − |H|)|H|) space in the worst case; third, pre-computing
the skeleton vectors for all nodes requires space cost O(|V | · |H|).
Thus, the total pre-computation space cost is O(|V |2), which is
equivalent to pre-computing the PPVs of all nodes. In practice, the
vectors may be sparse and the space cost is usually not that large,
but it is still not applicable for large graphs. We denote this al-
gorithm by PPV-JW.

3. ALGORITHM GPA
Although it is usually difficult to efficiently parallelize graph al-

gorithms [33], we propose the graph partition based algorithm, de-
noted by GPA, to distribute the PPV computation. We present the
algorithm details in Section 3.1. We adopt a general coordinator-
based share-nothing distributed computing platform. For the con-
venience of presentation, we call each machine handling some sub-
graphs as “machine” and the machine aggregating the final result



as “coordinator.” In addition, in Section 3.2 we prove that GPA re-
duces the space cost significantly compared with the method PPV-
JW presented in Section 2.3.

3.1 Distributed PPV Construction
Graph partition is commonly used in parallel computing [22], but

it is always challenging to decouple the computation dependencies.
We aim to distribute the PPV computation to multiple machines
and each machine can independently compute part of the result.We
use a balanced graph partition algorithm (METIS [25]) to divide
the graph into m disjoint subgraphs. Figure 2 shows an example,
where the graph is partitioned into two disjoint subgraphs G1 and
G2. The bridging nodes between subgraphs form the hub nodes. In
the example, u1 and u2 are selected as the hub nodes.

After the graph is partitioned into m subgraphs, we distribute the
subgraphs to multiple machines evenly. The pre-computed partial
vector and skeleton vector of each node is stored in the machine
where the node resides.

u1 u3

u2

u4 u5G1

G2

Figure 2: Example of graph partition and hub nodes

Recall that the PPV construction of the method [24] is based on
Equation 4. Now the pre-computed vectors are stored on n ma-
chines M1, ..., Mn, and we can distribute the computation accord-
ing to the following equation:

ru =
1

α

n∑
i=1

∑
h∈H(Mi)

SH
u (h) ·PH

h + pH
u , (5)

where H(Mi) denotes the set of hub nodes assigned to Mi.
Assume that the partial and skeleton vectors have already been

pre-computed and stored. We introduce the details of this step
in Section 5. Equation 5 indicates that we can do the distributed
PPV construction at query time as follows: after a query node u
is given, the coordinator first detects the machine Mu that stores
the partial vector of u. Then, Mu computes the following vector:
vu = 1

α

∑
h∈H(Mu) S

H
u (h) ·PH

h + pH
u . Simultaneously, each of

the other machines Mj (1 ≤ j ≤ n, j �= u) computes a vector
vj = 1

α

∑
h∈H(Mj)

SH
u (h) · PH

h . The coordinator receives the

vectors computed from all machines, and computes the final PPV
as ru =

∑n
i=1 vi. Therefore, at query time, each machine com-

municates with the coordinator exactly once.

Theorem 1: GPA can obtain the same results as computed by the
work proposed by Jeh and Widom [24].

PROOF.
∑n

i=1

∑
h∈H(Mi)

is equal to
∑

h∈H , and thus Equa-
tion 5 can compute the same vector as Equation 4.

Communication Cost. Each machine needs to compute a vector
of size |V |, and then sends it to the coordinator. Thus, if n ma-
chines are employed in GPA, the total communication cost of GPA
is O(n|V |).
Time Complexity. According to Equation 5, to compute a node
u’s PPV, we need to fetch the partial vector of each hub node h
reachable from node u (i.e., PH

h ), the skeleton vector of u (i.e.,
SH
u ), and the partial vector of u (i.e., PH

u ). The partial vector of
each hub node h gets its weight SH

u (h) from the skeleton vector of

u, and they are then aggregated together with PH
u . Therefore, we

need to read at most O(|H|) vectors of dimension |V | and O(|H|)
vectors.

Assume that we use n machines and the hub nodes are distrib-
uted evenly to these machines. In the worst case, on each machine
we only need to sum up O(|H|/n) vectors, and on the coordinator
we need to sum up n vectors. Thus, the time complexity of GPA is
O( 1

n
|H||V |+ n|V |).

3.2 Space Cost of GPA
We proceed to show that the space cost of GPA is reduced signi-

ficantly compared with PPV-JW, the extension of the method [24]
as presented in Section 2.3. We use an example as shown in Fig-
ure 2 to briefly explain the reason. In the work [24], nodes with
high PageRank values are chosen as hub nodes, since most random
walks have high probability to visit these nodes. As a result, nodes
u1 and u3 are selected to be the hub nodes. The support of vec-
tor pH

u4
(the partial vector of u4) can be as large as the size of the

graph, since there exists a tour from u4 to each other node in the
graph. If we select the nodes u1 and u2 as the hub nodes, they
are able to partition the graph into two disjoint subgraphs. In this
way, every tour from node u4 to a node in the other part has to pass
either u1 or u2, and thus the tours between different subgraphs are
blocked by the hub nodes. The support of pH

u4
is reduced to the

size of the subgraph containing u4.
As illustrated in the example, after the graph partition, we select

the bridging nodes between subgraphs as the hub nodes. The ran-
dom walks that represent partial vectors are restricted within each
individual subgraph by the hub nodes. Thus, the support of the
partial vector of non-hub node pH

u is reduced from |V | − |H| to
the size (the number of nodes) of the subgraph containing u. In
PPV-JW, the space cost of partial vectors of non-hub nodes, i.e.,
O((|V | − |H|)2), is the major cost. In GPA, if we assume that the
graph is partitioned into m subgraphs of equal size, the size of each
subgraph is O((|V | − |H|)/m), and the space cost is O((|V | −
|H|)2/m). In the worst case, the space cost of storing the partial
vectors of the hub nodes is O((|V |−|H|)|H|), and storing the skel-
eton vectors of non-hub nodes costs O(|V ||H|). In conclusion, the
total space cost of GPA is O((|V |− |H|)2/m+2|V ||H|− |H|2),
based on the balanced graph partition.

Note that for most graphs, the number of hub nodes that can
divide the graphs into different components is always much smaller
than the total number of nodes, i.e., |H| � |V |. Therefore, the
space cost of GPA is much smaller than O(|V |2), the cost of PPV-
JW to compute PPV for an arbitrary node in a centralized setting.

4. ALGORITHM HGPA
In GPA, the computation of partial vectors is restricted to each

individual subgraph, and the total space cost of all machines is con-
sequently reduced compared with that required by the centralized
extension of the method [24]. To further reduce the space cost and
achieve better load balance and efficiency, we propose a new ap-
proach based on a hierarchy of subgraphs. This algorithm is in-
spired by the observation that, the computation of a node u’s par-
tial vector is equivalent to the computation of the “local” PPV of u
w.r.t. the subgraph that contains u.

We first introduce how we can compute the partial vectors us-
ing the way of computing “local” PPVs in Section 4.1. Based on
this property, we partition the graph into a hierarchy of subgraphs
as presented in Section 4.2. Then, we introduce how to get PPV
utilizing the graph hierarchy in Section 4.3, and we design the dis-
tributed PPV computation method to achieve load balance in Sec-



tion 4.4. We prove that the space cost benefits from the hierarchical
graph partitioning in Section 4.5.

4.1 Partial Vector vs Local PPV

u1

u3

u2
u4

u5

u6

Figure 3: Full Graph G

u4

u5

u6

Figure 4: Subgraph SG

In GPA, we partition the graph into disjoint subgraphs. Recall
that as presented in Section 2 PPV can be computed by the random
surfers following all possible paths, and the partial vector of a node
is the result computed using random surfers passing no hub node.
Therefore, the computation of the partial vector of a node is only
related to the subgraph containing the node. This motivates us to
think whether it is possible to use the local PPV of a node w.r.t. a
subgraph to compute the partial vector of this node. Consider the
toy graph in Figure 3, which is separated by hub node u2. Figure 4
shows the isolated subgraph SG. Suppose the query node is u5, we
would like to know whether the partial vector pH

u5
in G is equal to

the local PPV of u5 in SG, i.e., ru5 [SG].
Recall that the computation of P(t) requires the out-degrees of

nodes in the tour t. The out-degree of u5 is 2 in G but it is 1
in subgraph SG, and obviously the probability of a random surfer
walking from u5 to u4 is different in the two graphs. Therefore,
pH
u5

�= ru5 [SG]. In order to solve this problem, we introduce the
following definition.

Definition 3: Virtual subgraph: After partitioning a graph into
smaller subgraphs, for each subgraph SG, we create a virtual node
VN , and for each edge that connects a hub node and a node u in
SG, we create an edge between u and VN . We call the graph
composed of subgraph SG and its virtual node as well as the edges

connecting them the virtual subgraph, which is denoted by S̃G.

u4

u5

u6

Figure 5: Virtual Subgraph S̃G

Figure 5 shows the corresponding virtual subgraph of SG as
shown in Figure 4. Using the concept of the virtual subgraph, we
have the following theorem.

Theorem 2: Given a graph G, a set of hub nodes H , and a node u
in a subgraph SG, the partial vector of u, i.e., pH

u is equivalent to

u’s PPV vector w.r.t. the virtual subgraph of SG, i.e., ru[S̃G].

PROOF. Given any node v in G, the value of pH
u (v) can be

computed using the tours from u to v without passing through any
hub node in H . If v /∈ SG, pH

u (v) = 0. Otherwise, pH
u (v) =∑

t:u�v P(t) where t : u � v represents a tour from u to v within
SG.

According to Equation 2, ru[S̃G](v) can also be computed by∑
t:u�v P(t). Note that all tours are within S̃G, the virtual node

in S̃G has no outgoing edge. Hence, for each tour t, the value of

P(t) is the same for computing both pH
u (v) and ru[S̃G](v), and

this means that pH
u (v) is equal to ru[S̃G](v).

Using virtual subgraph S̃G, we guarantee that the partial vec-
tor equals to the local PPV in the virtual subgraph, i.e., pH

u5
=

ru5 [S̃G]. For the simplification of presentation, we use “subgraph”
to indicate “virtual subgraph” in the rest of the paper.

4.2 Hierarchical Graph Partitioning
Based on Theorem 2, we can obtain the partial vector for a node

by computing the local PPV in the subgraph containing the node.
To compute the local PPV for a subgraph, we can recursively apply
GPA within the subgraph, i.e., we further partition the subgraph
into lower level subgraphs, and for each lower level subgraph we
apply Theorem 2, and the procedure can be repeated until we hit
a specified level. To realize the idea, we recursively partition the
whole graph from top to down into a hierarchy. For ease of present-
ation, we partition the graph into a hierarchy of two-way partitions.
As shown in Figure 6, the root of the hierarchy is G itself. Gen-
erally, in the mth (0 ≤ m ≤ l) level, G is partitioned into 2m

disjoint subgraphs, and we denote a subgraph in the mth level by
Gi

m, where 0 ≤ i < 2m. In this hierarchy, given a subgraph Gi
m,

its parent subgraph is G
� i
2
�

m−1, and its two child subgraphs are G2i
m+1

and G2i+1
m+1. We denote the hub nodes separating G2i

m+1 and G2i+1
m+1

by H(Gi
m).
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Figure 6: Hierarchy of the original graph

Figure 7 exemplifies the hierarchy and the hub nodes of each
level obtained using the multilevel 2-way partitioning method. First,
G is partitioned into G0

1 and G1
1. At this level, edges (u2, u4) and

(u2, u5) are hub edges, and we can get the hub node set H(G) =
{u2}. In the next level, G0

1 is partitioned into G0
2 and G1

2 with
no hub node; G1

1 is partitioned into G2
2 and G3

2 with hub node set
H(G1

1) = {u4}. Note that once a node is selected as a hub node,
this node and all the related edges will be omitted in the next level
and not appear in any of the subgraphs. For example, u2 is con-
tained in H(G) but in neither G0

2 nor G1
2.

We use the two-way partitioning to reduce the number of hub
nodes. We employ the 2-way partitioning algorithm [25] to recurs-
ively perform the partitioning from top to down, until we reach
a level such that no edges exist within the same subgraph. Us-
ing the two-way partitioning, minimizing the number of hub nodes
is identical to the minimum vertex cover problem in a bipartite
graph. This problem is proved to be solvable in polynomial time
by Kőnig’s theorem [32]. We use the algorithm [32] to select the
minimum hub nodes from the returned hub edges. Our proposed
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techniques are still applicable if we adopt multiple-way partition-
ing. We compare the effects of different partitioning strategies in
Section 6.

4.3 PPV Construction on Hierarchy
We proceed to explain the procedure of PPV computation based

on the hierarchy. Consider the hub nodes set H0 in the first level of
the hierarchy, which separates G into two subgraphs G0

1 and G1
1.

Given a query node u ∈ G1
1, according to Equation 4, to obtain ru

in GPA, we need the partial vector of node u, i.e., pH0
u , the partial

vectors of hub nodes, i.e., pH0
h (h ∈ H0), and the skeleton vectors

sH0
u .

Here, pH0
h and sH0

u can be computed similarly as in GPA. Ac-

cording to Theorem 2, the partial vector of u (pH0
u ) is identical to

u’s PPV vector w.r.t. the virtual subgraph of G1
1. Thus, we can

compute the local PPV of u w.r.t. G̃1
1 as pH0

u . That is, we construct
pH0
u by using the local skeleton vector of lower level hub nodes in

G̃1
1 and the local partial vector of u in G̃1

1, which can be further
computed based on lower level subgraphs, and thus the procedure
can be repeated until we reach the leaf-level subgraphs.

Assume that all partial and skeleton vectors have been processed
and stored (see more details in Section 5). Formally, the construc-
tion at query time can be described by the following equation:

ru =

l−1∑

m=0

1

α

∑

h∈H(G
(u)
m )

SH
u [G

(u)
m ](h) ·PH

h [G
(u)
m ] + ru[G

(u)
l ], (6)

where G
(u)
m denote the subgraph in the mth level that contains u,

SH
u [G

(u)
m ] is the adjusted skeleton vector of u w.r.t. the subgraph

G
(u)
m , and PH

h [G
(u)
m ] is the adjusted partial vector of a hub node

w.r.t G
(u)
m . Note that the subgraphs we visit are G

(u)
l ,G

(u)
l−1,G

(u)
l−2,

· · · , G0
0, and thus the number of graphs visited during this proced-

ure is exactly l.

Theorem 3: The vector computed by Equation 6 is exactly the
same as that computed by GPA.

PROOF. u’s local partial vector at level m can be computed as:

ru[G
(u)
m ] =

1

α

∑

h∈H(G
(u)
m )

SH
u [G

(u)
m ](h) ·PH

h [G
(u)
m ] + ru[G

(u)
m−1].

Therefore, Equation 6 can be written as:

ru =

l−2∑

m=0

1

α

∑

h∈H(G
(u)
m )

SH
u [G

(u)
m ](h) ·PH

h [G
(u)
m ]

+
1

α

∑

h∈H(G
(u)
l−1

)

SH
u [G

(u)
l−1](h) ·PH

h [G
(u)
l−1] + ru[G

(u)
l ]

=

l−2∑

m=0

1

α

∑

h∈H(G
(u)
m )

SH
u [G

(u)
m ](h) ·PH

h [G
(u)
m ] + ru[G

(u)
l−1]

= · · ·

=
1

α

∑

h∈H(G
(u)
0 )

SH
u [G

(u)
0 ](h) ·PH

h [G
(u)
0 ] + ru[G

(u)
1 ]

Note that G
(u)
0 is the whole graph, and G

(u)
1 can be viewed as a

subgraph in GPA, and thus the result of Equation 6 is exactly the
same as Equation 5.

4.4 Distributed PPV Computation
Based on the graph hierarchy, we can compute the PPV of a

graph from the pre-computation results w.r.t. its hub nodes and the
PPV of its child graphs. However it is still challenging to design
a distributed algorithm, especially when the graph is large and the
pre-computation vectors are too large to be saved in memory.

To address these challenges, we propose HGPA, the hub-distributed
hierarchical graph partition based algorithm, which is load bal-
anced and scalable because the computation in each level can be
evenly distributed. We use one coordinator machine to collect the
results from other machines for HGPA. We note that the computa-
tion of ru relies on all hub nodes in all levels as shown in Equa-
tion 6. This inspires us to divide the hub node set of each subgraph
in each level into disjoint components to distribute the computa-
tion. Specifically, given a subgraph SG, we divide H(SG) into s
disjoint subsets equally H1(SG), H2(SG), · · · , Hs(SG), where
H(SG) = ∪s

i=1H
i(SG). We do this on each subgraph in each

level. As a result, the computation of ru can be interpreted as Equa-
tion 7 based on the balanced hub nodes partition.

ru =

l−1∑

m=0

1

α

s∑

i=1

∑

h∈Hi(G
(u)
m )

S
H
u [G

(u)
m ](h) · PH

h [G
(u)
m ] + ru[G

(u)
l ] (7)

It is obvious that the first component of Equation 7 can compute
the same results as the first component in Equation 6.

Based on Equation 7, for each subgraph in each level, we divide
its hub node set evenly into s disjoint subsets and store them in s
machines. We also distribute the leaf level subgraphs evenly to s
machines. Each machine only maintains the partial and skeleton
vectors of nodes stored on it. Given a query node u, the ith ma-
chine computes a vector using the pre-computation results stored

on it, i.e.,
∑

h∈Hi(G
(u)
m )

SH
u [G

(u)
m ](h) · PH

h [G
(u)
m ], and then sends

the vector to the coordinator. The partial vectors of all non-hub

nodes w.r.t. their leaf level subgraphs (e.g., ru[G
(u)
l ]) are also dis-

tributed to s machines evenly. The coordinator sums up all the
vectors received from the machines to construct the PPV. Figure 8
illustrates the idea of HGPA.

It is obvious that algorithm HGPA is load balanced. The compu-
tation on each machine is presented by Algorithm 1.

Theorem 4: If the hub node set of each subgraph is divided into n
disjoint subsets, the communication cost can be bounded by O(n|V |).
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Algorithm 1: HGPA processor(q, i, α)

1 �ppv ← �0;
2 foreach subgraph Gs do
3 foreach hubnode h in Hi(Gs) do
4 foreach non-zero entry pH

h [Gs](k) do
5 �ppv(k) ← �ppv(k) + SH

q [Gs](h) ·PH
h [Gs](k)/α;

6 if q is not a hub node and PH
q [Gq

l ] on machine i then
7 foreach non-zero entry PH

q (k) do
8 �ppv(k) ← �ppv(k) +PH

q [Gq
l ](k);

9 send �ppv to coordinator;

PROOF. In HGPA, each machine computes a vector of size at
most |V |, and sends it to the coordinator. Hence, the total commu-
nication cost is O(n|V |).

4.5 Space Cost of HGPA
We assume that the graph is partitioned in balance in each level.

Let l denotes the level of the graph hierarchy, and there are 2l leaf
level subgraphs. We have the following theorem that shows the
space complexity of HGPA.

Theorem 5: The space cost of HGPA is O((|V | − |H|)2/2l +∑l
i=0 |Hi|(|V |−|H|)/2i+(|V |−|H|)∑l

i=0 |Hmax
i |), where Hi

is the set of hub nodes in the ith level, and Hmax
i is the maximum

number of hub nodes in a subgraph in the ith level.

PROOF. In the leaf level, we compute and store the PPV of non-
hub nodes w.r.t. each subgraph, and the size of the local PPV is
(|V | − |H|)/2l. Therefore, the total space cost of storing PPVs for
leaf level subgraphs is O((|V | − |H|)2/2l)).

In the ith level, there are 2i subgraphs. For each subgraph Gj
i ,

we need to compute the partial vectors of the hub nodes in it.
Hence, the space cost of storing the partial vectors of hub nodes
for the level is O(|Hi|(|V | − |H|)/2i). For all levels, the total

space cost of this part is O(
∑l

i=0 |Hi|(|V | − |H|)/2i).
We also need to compute the skeleton vectors of the non-hub

nodes in Gj
i , and the space cost for Gj

i is O((|V |−|H|)/2i|Hi(G
j
i )|),

where Hi(G
j
i ) is the set of hub nodes in Gj

i . In the ith level, the

total space cost is O((|V |−|H|)/2i ∑2i

j=0 |Hi(G
j
i )|)<O((|V |−

|H|)/2i ∑2i

j=0 |Hmax
i |) = O((|V | − |H|)|Hmax

i |). Thus, for all

levels, the total cost of this part is O((|V |−|H|)∑l
i=0 |Hmax

i |).
To compare the space cost of GPA with HGPA in an intuitive

way, we consider that in GPA the graph is partitioned as the leaf

level of the graph hierarchy in HGPA, i.e., the leaf level subgraphs
in HGPA are the subgraphs in GPA. We can conclude that HGPA
has smaller space cost than GPA. The two algorithms have the same
space cost of storing the partial vectors of non-hub nodes. How-
ever, HGPA has smaller space cost of storing the partial vectors of
hub nodes and the skeleton vectors of non-hub nodes than that in
GPA, because O(|V ||H|) > O(

∑l
i=0 |Hi|(|V | − |H|)/2i) and

O((|V | − |H|)|H|) > O((|V | − |H|)∑l
i=0 |Hmax

i |).

5. DISTRIBUTED PRE-COMPUTATION
We proceed to present how to pre-compute the partial and the

skeleton vectors in a distributed manner for our algorithms.

5.1 Distributed Partial Vectors Computation
We adopt the selective expansion algorithm [24] as introduced

in Appendix F.1 to compute the partial vectors for all nodes. As
shown in Equation 9, the iteration requires the information of the
graph structure. We keep a copy of the graph structure on each
machine. As a result, no communication is required in the pre-
computation of partial vectors. The computation can be done for
each node separately, and each machine only needs to handle the
nodes assigned to it.

In GPA, each machine only computes the partial vector pH
u if

node u is assigned to it. When computing the partial vectors for
a non-hub node, only the structure of the subgraph containing the
node is required, because the computation can be restricted by the
subgraph.

In HGPA, the partial vectors of nodes are computed by doing
iterations w.r.t. the subgraphs, rather than w.r.t. the whole graph
as in GPA, thus reducing the space and time complexity required
during the iteration for a node. Given a node u assigned to machine
M , if u is a non-hub node, M computes its partial vector w.r.t. the
leaf-level subgraph containing u. Otherwise, if u is a hub node at
level m, M computes its partial vector w.r.t. the subgraph at level
m containing u.

5.2 Distributed Skeleton Vectors Computation
We improve the dynamic programming algorithm [24] as intro-

duced in Appendix F.2 in order to distribute the skeleton vectors
computation. As shown in Equation 10, for a given node u, two
vectors Dk[u] and Ek[u] are used to do the iteration, and finally
Dk[u] would converges to sHu , the skeleton vector of u. However,
this algorithm incurs huge space cost, and the intermediate vectors
could likely be larger than available main memory, and it is sugges-
ted to be implemented as a disk-based version [24]. The problem
of the original method is that, in each step, the update of Dk+1[u]
relies on Dk[v], if there exists an edge (u, v). Thus, the skeleton
vectors of u cannot be computed without computing the skeleton
vectors of other nodes. In addition, the computation of a skeleton
vector of a node needs to consider all hub nodes, and we have to
maintain the value of sHu (h) for each node u in memory. As a res-
ult, the original algorithm cannot work in parallel and consumes
huge memory.

To distribute the computation and reduce memory cost, we con-
sider computing the skeleton vector score w.r.t. a single hub node
each time, i.e., Dk[u](h) for each node u. Our algorithm can be
explained by Equation 8. Initially, F0 = 0. It is easy to show that
after convergence, Fk(u) is equal to Dk[u](h), which is sHu (h).

Fk+1(u) = (1− α)
∑

v∈Out(u)

Fk(v)

|Out(u)| + αxh(u) (8)

Theorem 6: Fk(u) is equal to sHu (h) when the iteration converges.



PROOF. We prove the correctness of Equation 8 by demonstrat-
ing that Fk(u) is equal to Dk[u](h) of Equation 10 in every steps.
In the first round, F1(u) = αxh(u) and D1[u](h) = αxu(h),
which are identical. In step k+1, Fk+1(u) = (1−α)

∑
v∈Out(u)

Fk(v)
|Out(u)| + αxh(u), meanwhile we have Dk+1[u](h) = (1 −
α)

∑
v∈Out(u)

Dk[v](h)
|Out(u)| + αxu(h), and we can conclude that they

are identical in each step.

The space complexity of the improved skeleton computation method
is only O(|V |). To obtain the full vector skeleton vector for a node
u, we need to run this algorithm for each h ∈ H (|H| times in
total).

In GPA, given a hub node h, we compute sHu (h) w.r.t. the whole
graph for each node u according to Equation 8. In HGPA, given
a hub node h at level m, we first identify the subgraph at level m

where h resides (G
(h)
m ), and we compute sHu [G

(h)
m ](h) w.r.t. the

subgraph G
(h)
m for each node u in G

(h)
m . Note that based on Equa-

tion 8 there is no dependency among machines, and each machine
can do the computation independently for the nodes assigned to it,
and thus there is no network communication required.

6. EXPERIMENTS

6.1 Experimental Setup
Datasets We conduct experiments on five public real-life network
datasets:
Email1. This dataset is generated using email data from a large
European research institution. This graph comprises 265,214 nodes
and 420,045 edges.
Web2. This dataset is generated using web pages from the Google
programming contest in 2002. This graph comprises 875,713 nodes
and 5,105,039 edges.
Youtube.3 This graph is generated from the video and user inform-
ation from the video sharing website Youtube, and it comprises
1,134,890 nodes and 2,987,624 edges.
PLD.4 This dataset is extracted using hyperlink pages from the Web
corpus released by the Common Crawl Foundation in 2014. As the
whole dataset is very large, we extract a sample graph comprising
3,000,000 nodes and 18,185,350 edges. We also report the results
on the full graph in Appendix C, which contains 101M nodes and
1.94B edges and is denoted by PLD_full.
Meetup. This dataset is a social graph crawled from Meetup5.We
collect various sizes of events to build the graphs of different sizes
for studying scalability of our algorithm. The detail of this dataset
is shown in Section 6.2.7.
Algorithms. We evaluate the performance of the distributed al-
gorithm HGPA (Section 4.4). We also compare with the algorithm
GPA (Section 3) and the distributed PPV computation using power
iteration based on Pregel+ [47] and Blogel [46]. Note that there
is no better baseline for distributed PPV computation. We evaluate
the performance of these algorithms from the following aspects: the
space cost, the efficiency of computing the PPV for a query node,
and the communication cost during the online PPV computing. We
also compare HGPA with power iteration and a state-of-the-art ap-
proximate PPV computing method [49] in a centralized setting.
Accuracy Metric. To show the accuracy of our proposed algorithms,
we compare with the power iteration method using average L1-

1http://snap.stanford.edu/data/email-EuAll.html
2http://snap.stanford.edu/data/web-Google.html
3http://snap.stanford.edu/data/com-Youtube.html
4http://webdatacommons.org/hyperlinkgraph
5http://www.meetup.com

norm and L∞-norm metrics, which are also used to evaluate PageR-
ank algorithm performance [7]. Given the PPV vectors ru and r̄u
computed by different algorithms, the average L1-norm is defined
as Lavg

1 (ru, r̄u) = Σv∈V |ru(v) − r̄u(v)|/|V | and the L∞-norm
is defined as L∞(ru, r̄u) = maxv∈V |ru(v)− r̄u(v)|.
Query Generation. We randomly choose 1000 nodes as query
nodes for each graph, and report the average performance over all
queries. In all experiments, we only focus on single node queries.
Parameters. By default, we set the number of machines as 6. We
use the two-way hierarchical partition method [25] for HGPA. We
set ε = 10−4 by default, following the previous work [24]. We set
teleport probability α = 0.15 for all experiments, as it is widely
used in previous work.
Setup. All algorithms are implemented in C++ complied with GCC
4.8.2 and run on Linux. The experiments are conducted in a cluster
consisting of 10 machines, each machine with a 2.70GHz CPU and
64GB of main memory. The machines are interconnected by a
100MB TP-LINK switch. All the pre-computations are performed
using 4 threads on each machine. For each experiment, we run our
algorithm 100 times and report the average.

6.2 Experimental Results

6.2.1 Number of Hub nodes in HGPA
For HGPA, we perform the hierarchical partitioning until no

edges exist within each subgraph. This is because further parti-
tioning cannot gain more improvement. We show the effect of par-
titioning levels in Section 6.2.4. We partition Email into 5 levels
(yielding 25 = 32 leaf-level subgraphs), Web into 12 levels (4,096
leaf-level subgraphs), and both Youtube and PLD are partitioned
into 15 levels (32,768 leaf-level subgraphs).

The pre-computation space and time cost of HGPA depends on
the ratio of hub nodes(hub nodes number / |V |) in each level. We
list the number of hub nodes in each level obtained by multi-way
hierarchical partitioning of the four datasets in Tables 2–5, where
the original graph is at level 0 and the leaf subgraphs are in the
maximum level. It can be observed that the number of hub nodes
is much smaller than the total number of nodes in all datasets.

Table 2: Ratio of Hub Nodes in Each Level on Email

Level 0 1 2 3 4

Hub Percentage(%) 0.45 <0.1 <0.1 <0.1 <0.1

Table 3: Ratio of Hub Nodes in Each Level on Web

Level 0 1 2 3 4 5

Hub Percentage(%) 0.77 0.24 0.13 <0.1 <0.1 0.42

Level 6 7 8 9 10 11

Hub Percentage(%) 0.79 0.79 1.43 0.78 0.67 1.7

Table 4: Ratio of Hub Nodes in Each Level on Youtube

Level 0 1 2 3 4

Hub Percentage(%) 2.72 0.79 0.79 0.47 0.35

Level 5 6 7 8 9

Hub Percentage(%) 0.21 0.15 0.10 <0.1 <0.1

Level 10 11 12 13 14

Hub Percentage(%) <0.1 <0.1 0.14 0.22 0.36

Table 5: Ratio of Hub Nodes in Each Level on PLD

Level 0 1 2 3 4

Hub Percentage(%) 1.4 0.79 0.67 0.39 0.36

Level 5 6 7 8 9

Hub Percentage(%) 0.55 0.43 0.31 0.20 0.17

Level 10 11 12 13 14

Hub Percentage(%) 0.37 0.54 0.23 0.30 0.26



6.2.2 Comparison of GPA and HGPA
This experiment is to compare the performances of GPA and

HGPA using default parameters. We report the maximum runtime
across all machines as the overall query processing time. For the
space cost, we report the maximum space used among all machines.
The pre-computation time is evaluated as the maximum time across
all machines. The communication cost is reported as the size of all
the data received by the coordinator during the query processing.
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Figure 9: Algorithms Comparison on Web

Figure 9 shows the results of the comparison between GPA and
HGPA on Web. We observe from the results that GPA runs a bit
slower than HGPA, because HGPA is more load balanced. The
maximum space cost and offline pre-computation time of HGPA
are better than that of GPA, and this is consistent with the theoret-
ical analysis in Section 4.5. The theoretical communication cost of
HGPA and GPA is the same, while HGPA takes less network cost
than GPA as shown in Figure 9. Similar results are observed on the
other datasets, and are thus not reported.

Since HGPA outperforms GPA in terms of all the aspects con-
cerned, we omit the results of GPA in the subsequent experiments.

6.2.3 Effects of Number of Machines
This experiment is to study the effect of machine number on

HGPA.
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Figure 10: HGPA Runtime

Figures 10(a)–10(c) show the runtime of HGPA on Web, You-
tube, and PLD when we vary the number of machines, respect-
ively. We observe that the query processing time drops significantly
as the number of machines increases. When we double the number
of machines the runtime is nearly reduced by half. The reason is
that the computation is evenly distributed to multiple machines in
HGPA, and thus the algorithm is highly load-balanced.
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Figure 11: HGPA Space Cost

Figures 11(a)–11(c) show the space cost of HGPA. Note that
each machine only stores the pre-computed vectors of nodes as-
signed to it. We report the maximum space cost over all machines.
As expected, the maximum space cost is reduced when the number
of machines increases. There is no redundant information shared
between different machines.
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Figure 12: HGPA Pre-Computation Time

The pre-computation time is shown in Figures 12(a)–12(c). Each
machine only needs to do the pre-computation for the nodes stored
on it. HGPA is load balanced, and thus the space cost of pre-
computation is nearly linear to the number of machines used.

Figures 13(a)–13(c) show the communication cost of HGPA.
We notice even for the largest dataset HGPA only has less than
2MB network cost using on 10 machines. It can be observed that
the communication cost increases as more machines are employed,
which is consistent with our analysis in Theorem 4.
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Figure 13: HGPA Communication Cost

6.2.4 Effect of Partitioning Levels
This set of experiments is to study the effect of the level of the

hierarchy of subgraphs on the performance of HGPA. Figures 14(a)–
14(c) show the runtime for computing PPVs for query nodes on
Email, Web, and Youtube, respectively. Figures 15 and 16 show
the space and time cost of pre-computation on the three datasets.

The space and time of pre-computation drop significantly as we
increase the number of levels of the graph hierarchy. As the num-
ber of levels increases, the number of subgraphs in the hierarchy
increases exponentially, and thus the size of the subgraphs in leaf-
level decreases greatly. However, at a certain level there exists few
or no edges within each subgraph, further partitioning is unneces-
sary because it cannot reduce space cost any more. According to
Equation 7, using more levels needs more computation to construct
the PPV, and thus causes slightly longer query processing time, as
observed in Figure 14. The communication cost is almost not af-
fected by the number of partitioning levels, and thus is not reported.
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6.2.5 Effect of Multi-way Partitioning
This experiment is to study the effect of the partitioning strategy.

We report results on Web, and we observe quantitatively similar
results on the other datasets. We partition Web into 2,4,8,16 and
64 subgraphs in each level and we study the time and space cost for
both pre-computation and query processing.
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Figure 17: Web (HGPA)

Figure 17(a) shows that the query runtime slightly decreases when
the number of partitions in each level increases. Figures 17(b)
and 17(c) show the space and time cost of the pre-computation.
We can see that with more partitions in each level, the cost of
pre-computation increases greatly, while the query processing time
does not reduce much. Therefore, we choose the 2-way partitioning
strategy as the default partitioning strategy. Note that the partition
strategy almost does not affect the communication cost, and thus
the we do not report it.

6.2.6 Effect of Tolerance ε

This experiment is to study the effect of tolerance ε on the per-
formance of HGPA. For the offline pre-computation, the tolerance
decides when the iteration terminates. Again, we report results on
Web, and we observe similar results on the other datasets. Fig-
ures 18(a)–18(d) show the query processing time, the space and
time of pre-computation, and the communication cost of HGPA on
Web. We observe that all the four measures increase as we take
a smaller tolerance. With a high accuracy, more results of small
values are generated, and thus it costs more time for pre-computing
the vectors and more space for storing them. At query time, with a
high accuracy the pre-computed vectors have larger size, and thus
both PPV construction time and the communication cost increase.

We also study the accuracy of HGPA when we vary the tolerance
ε. We take the power iteration method as a baseline, treating its
PPV result as exact. For each query, we compare the PPVs com-
puted by HGPA and the power iteration method under the same
tolerance. We report the average L1 and L∞ of the difference of
two vectors. The results on datasets Email and Web are shown in
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Figures 19(a) and 19(b). It can be observed that, as ε decreases
both measures on the differences of two vectors become smaller,
which is as expected. The �-norms are nearly in the same order of
magnitude with the tolerance. This means we can always obtain a
more accurate PPV result by setting a smaller tolerance.
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6.2.7 Scalability

Table 6: Graph sizes for scalability study (Meetup)

Graph ID # Nodes # Edges

M1 997,304 82,966,338

M2 1,197,009 107,393,088

M3 1,396,054 129,774,158

M4 1,596,455 163,320,390

M5 1,796,226 194,083,414

100

200

300

400

500

M1 M2 M3 M4 M5

R
u
n
ti

m
e
 (

m
s)

Graph ID

(a) Runtime

 4
 6
 8

 10
 12
 14
 16
 18
 20

M1 M2 M3 M4 M5

S
p
ac

e 
(G

B
)

Graph ID

(b) Space Cost

20

40

60

80

100

M1 M2 M3 M4 M5

O
ff

li
n
e 

T
im

e 
(h

)

Graph ID

(c) Offline Time

Figure 20: Scalability (Meetup)

This experiment is to study the scalability of HGPA with the
size of graphs. The difficulty is that there does not exist a group
of graphs of different sizes but with similar properties. To this end,
we build graphs of different sizes by taking different number of
meetup events. The sizes of these graphs are listed in Table 6. In
this experiment, we fix the number of employed machines to be 10.

Figure 20(a) shows the runtime of computing PPVs for query
nodes. We observe that the query processing time increases almost
linearly with the size of graphs. Figures 20(b) and 20(c) report



the space cost and time of pre-computation of HGPA for graphs
of different sizes. We can see that both the space cost and time
increase almost linearly as we increase the size of graphs.

6.2.8 Exact vs Approximate
This experiment extends the study of Section 6.2.10 to show the

advantage of exact PPVs compared to approximate PPVs. We use
two accuracy metrics, i.e., Precision and Kendall’s τ (by following
the work [11, 49]), to compare the top-100 nodes obtained from
each algorithm with the result of the power iteration method. In
a nutshell, Precision is based on the value of top-k PPV results,
and Kendall is based on the percentage of node pairs with correct
ordering [11]. Figure 21 shows the results on Email and Web.
We observe that with both metrics HGPA performs much better
than FastPPV [49], and even the approximate algorithm HGPA_ad
achieves nearly full score. This indicates that about 30% of the top-
100 nodes returned by FastPPV are wrong, and about 10% node
pairs are ordered incorrectly.
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6.2.9 Comparison with General Distributed Graph
Processing Systems

Baseline. To the best of our knowledge, there exists no work for
distributed exact PPV computation. Many distributed graph com-
putation platforms [46, 47] take the PageRank (PR) problem as a
basic graph computing application. In these platforms, the PR
problem is usually solved by the power iteration method. Since
the personalized PageRank is derived from the PR problem [37],
we can compute PPV by implementing the power iteration method
on these platforms, which are used as baselines.

We compare HGPA with the power iteration method implemen-
ted on Pregel+ [47] and Blogel [46], which are well-known open-
source distributed graph computation platforms (we denote the two
algorithms by Pregel+ and Blogel, respectively). It is shown [47]
that Pregel+ outperforms other Pregel systems such as Giraph [19]
and GPS [40]. Blogel [46] breaks the bottlenecks of vertex-centric
models such as Pregel. We compare HGPA with Pregel+ and Blo-
gel in terms of the runtime and communication cost under the same
tolerance, and the result is shown in Figures 22(a)– 23(b).

It can be seen that our algorithm is faster than Pregel+ and Blo-
gel by orders of magnitude on Web and Youtube, and HGPA out-
performs Pregel+ by at least two orders of magnitude in terms of
communication cost. We observe that the runtime and communic-
ation cost of Pregel+ and Blogel increase when the number of
machines increases. The reason is as follows: Pregel+ is designed
based on the general bulk synchronous parallel (BSP) model. It
sends messages from vertex to vertex in each iteration of the BSP
step, and when the vertices are on different machines it needs a
lot of communications between machines. As the number of ma-
chines increases, the number of messages increases which costs
more communication time. We observe the same phenomenon on
Blogel. However it always outperforms Pregel+ in terms of the
runtime and communication cost. This is because Blogel is based

on the block-centric model, and it sends messages from block to
block. Our proposed algorithm HGPA significantly outperforms
the algorithms implemented on Pregel+ and Blogel. We observe
that the runtime of HGPA decreases significantly as the number of
machines increases. This is achieved by avoiding the huge com-
munication costs, and thus HGPA is more suitable for online PPV
applications.
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6.2.10 Performance under Centralized Setting
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HGPA can also be implemented on a single machine. We com-
pare the runtime of HGPA in a centralized setting with the power
iteration method, under the same error tolerance, and the result is
shown in Figure 24. It can be seen that our algorithm is at least 3.5
times faster than the power iteration method. On Email and Web
the speedup is much more significant. It demonstrates that HGPA
can achieve comparable performance in terms of runtime as the al-
gorithm proposed in the work [34] on a single machine.

We also compare our work with the state-of-the-art approxim-
ate PPV computation method FastPPV [49]. In FastPPV, the PPV
scores less than 10−4 are discarded. It is shown that removing the
small values only sacrifices little accuracy [11, 12]. To compare
with the approximate method, we also discard the offline scores
that are less than 10−4, and this adapted method is denoted by
HGPA_ad. Since in FastPPV the number of hub nodes is a para-
meter that affects the trade-off between accuracy and runtime, we
compare with FastPPV using different numbers of hub nodes.

Figure 25 shows the runtime on Email and Web datasets. We
use Fast_h to denote the method of FastPPV using h hub nodes.
We notice that our exact method HGPA is faster than FastPPV on
small dataset and slower than FastPPV on the large one. We notice
that the adapted approximate method HGPA_ad runs faster than
FastPPV by orders of magnitude on both datasets. Note that in
this set of experiments our algorithm is implemented on a single
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machine. On the distributed computing platforms, our algorithm
will be much faster.

We next evaluate the accuracy of the four algorithms, and where
use the result computed by power iteration as exact. We still use
average L1 and L∞ as we used (in Section 6.2.6). Figure 26 show
the accuracy comparison on Email and Web datasets. On all meas-
ures, we observe that HGPA is much better than FastPPV since
the computing model of HGPA is exact. We notice that HGPA_ad
also consistently outperforms FastPPV in terms of accuracy.
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In summary, our proposed distributed algorithms GPA and HGPA

have low communication cost and are load-balanced with accept-
able pre-computation and space cost. HGPA consistently outper-
forms GPA, and it outperforms the power iteration method imple-
mented on general graph processing platforms such as Pregel+ and
Blogel by orders of magnitude. In the centralized setting, HGPA
can achieve comparable query time with the exact method [34] and
the approximate method [49]. Its adapted version HGPA_ad is
able to outperform the approximate method [49] in terms of both
efficiency and accuracy.

7. RELATED WORK
Exact PPV computation. The personalized PageRank was first
proposed by Jeh and Widom [24]. It usually needs to be computed
in an online manner, and thus has a high requirement for efficiency.
A straightforward way of computing the Personalized PageRank
Vector for a given set of nodes is the power iteration method, which
is prohibitively expensive in time and is not suitable even for offline
scenarios.

Due to the hardness of computing the exact PPV, Jeh and Widom
propose to limit the preference nodes in a subset of a specified hub
node set [24]. Therefore, this approach cannot be used to compute
the exact PPV for arbitrary preference node set.

Maehara et al. [34] propose an iteration-based method that com-
putes exact PPVs by exploiting graph structures. They decompose
a graph into a core and a small tree-width graph. The two com-
ponents are processed differently, and the PPV is constructed using
the processed results. Unfortunately, this approach is not able to
compute exact PPVs in a distributed manner. According to the ex-
perimental study, this method is about five times faster than the
power iteration method. As shown in the experimental study, our
distributed algorithm HGPA can achieve similar runtime compared
with [34] under centralized settings.
Approximate methods for PPV. Most of existing studies com-
pute PPVs approximately to trade for efficiency. Some proposals

(e.g., [6, 14]) utilize the Monte Carlo simulation methods, while
some other studies (e.g., [43]) utilize the matrix factorization. Zhu
et al. [49] propose an approximate method based on the concept
of the inverse P-distance [24]. They first partition the tours into
different tour sets according to their importance. Then, they design
an algorithm to aggregate the contribution of tours from the most
important ones to less important ones. Our experimental results
show that our exact algorithm HGPA has similar query time as the
approximate algorithm [49] while obtaining much better accuracy,
and an adapted version of HGPA outperforms the approximate al-
gorithm [49] in terms of both efficiency and accuracy.
Top-k and node-to-node search for PPV. Some approaches [16–
18,45] aim to find a small part of the PPV. That is, for a query node,
they only identify its top-k relevant nodes and omit the other nodes.
Lofgren et al. [30,31] study how to estimate the node-to-node PPV
score. Given a query node u, a target node v and threshold δ, they
estimate whether ru(v) > δ is true. All these methods cannot be
used for computing the whole PPV w.r.t. a given query node set.
However, finding top-k or estimating node-to-node PPV value is
insufficient for many applications (e.g., [4,8,11]) which require the
PPV scores of all nodes.
Distributed PPV computation. There also exist studies on dis-
tributed computation of approximate PPVs. In particular, Bahmani
et al. [5] proposes a distributed algorithm based on MapReduce
utilizing Monte Carlo simulation, which has no guaranteed error
bound. The general graph processing engines, such as Pregel [35],
Pregel+ [47] and Blogel [46], can be used for various distributed
graph processing. As shown in the work [35], the power iteration
method can be implemented on Pregel to compute PageRank, and
thus PPVs. However, using these engines always induces multiple
rounds of communications between machines; therefore, the com-
munication cost is large and the query processing is slow, which
make them impractical for applications of PPVs that have a high re-
quirement on efficiency. In contrast, our proposed algorithms only
require the communication between the machines and the coordin-
ator once at query time.

8. CONCLUSION
In this paper, we propose novel and efficient distributed algorithms

to compute the exact PPV for all nodes. The proposed algorithms
can be implemented on a general coordinator-based share-nothing
distributed computing platform. The processors only need to com-
municate with the coordinator once at query time in our algorithms.
We first develop the algorithm GPA that works based on subgraphs.
To further improve the performance, we propose HGPA based on
a hierarchy of subgraphs, which has smaller space cost and bet-
ter load balance and efficiency than GPA. The experimental study
shows that HGPA has excellent performance in terms of efficiency,
space cost, communication cost, and scalability. HGPA outper-
forms the power iteration method implemented on two distributed
graph processing systems by orders of magnitude. Moreover, an
approximate version of HGPA outperforms FastPPV [49] in terms
of both efficiency and accuracy.
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APPENDIX
A. SCALABILITY STUDY ON GENERAL

GRAPH PROCESSING SYSTEMS
This experiment is to study the scalability of the power itera-

tion method on Pregel+ and Blogel. We use the same datasets
used in Section 6.2.7 for studying the scalability of HGPA. Fig-
ure 27(a) shows the runtime of computing PPV on the two plat-
forms compared to our HGPA method. We observe that the runtime
of Pregel+ and Blogel increases linearly with the size of graphs,
and HGPA is orders of magnitude faster than them. Figure 27(b)
reports the communication cost during the query processing. Sim-
ilarly, we can observe that the communication cost of Pregel+ and
Blogel grows linearly with the graph size. It is because the com-
munication of Pregel+ and Blogel is based on edges, and thus it is
linear to the number of edges.
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Figure 27: Scalability (Meetup)

B. VARYING QUERY LOAD
This experiment is to study how the query load affects the per-

formance of PPV computing. We vary the number of queries from

1k to 1m. Figures 28 and 29 show the average performance on
Web and Youtube. We observe that on both datasets the average
runtime and communication cost is stable when varying the query
load. We can see that choosing 1, 000 random nodes is sufficient
for the study.
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Figure 28: Queryload on Web
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Figure 29: Queryload on Youtube

C. EXPERIMENTS ON LARGE GRAPH
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Figure 30: HGPA Performance on PLD_full

This experiment is to study the performance of HGPA on the
large graph data set PLD_full, which contains 101 millions of nodes
and 1.94 billions of edges. To conduct this experiment, we deploy
our algorithm on Amazon EC26 using up to 24 instances, each of
which has 64 processors (1500 processors in total). We set ε as
10−2 to save the cost of resources, and other settings are same with
our other experiments.

The result is shown in Figure 30 as the number of processors is
varied from 500 to 1500. We observe that: although the dataset
PLD_full is over 100 times larger than the sampled PLD dataset,
our algorithm HGPA is still able to perform well in terms of query
time, pre-processing cost, and communication cost. We also ob-
serve that although the network communication cost is high, the

6http://aws.amazon.com/ec2/



runtime is still in the magnitude of seconds. This indicates that
even for large graphs the network communication does not affect
the runtime very much, because our algorithm only requires one
time of communication between the coordinator and each machine.

D. POWER ITERATION IMPLEMENTATION
In this section, we introduce how the power iteration algorithm

is implemented. We present the centralized version, and it can be
easily modified to work in parallel on Pregel+ and Blogel. We util-
ize the adjacency list to implement the power iteration algorithm,
and this method is also used in the work [49]. The pseudo code is
shown in Algorithm 2.

Algorithm 2: Power Iteration

input : Graph G(V,E), query node q, error tolerance ε
output: Personalized PageRank Vector �ppv

1 �ppv ← �0;
2 initialize Queue valuedNodes;
3 initialize Array inQueue of size |V | with False;
/* First round iteration */

4 ppv[q] ← 1;
5 push q into valuedNodes;
6 inQueue[q] ← True;
7 converged ← False;
8 while not converged do
9 tmpV ec ← �0;

10 tmpQueue ← valuedNodes;
11 foreach u in valuedNodes do

/* teleport to origin with
probability α */

12 tmpV ec[q] ← tmpV ec[q] + ppv[u] ∗ α;
13 nbs ← number of out neighbors of v;
14 if nbs = 0 then
15 tmpV ec[q] ← tmpV ec[q] + ppv[u] ∗ (1− α);
16 Continue;

17 foreach out-neighbor v of u do
18 tmpV ec[q] ← tmpV ec[q]+ppv[u]∗(1−α)/nbs;
19 if not inQueue[v] then
20 inQueue[v] ← True;
21 push v into tmpQueue;

22 foreach u in tmpQueue do
23 push u into valuedNodes;

/* Check convergence */
24 converged ← True;
25 foreach u in valuedNodes do
26 if |ppv[u]− tmpV ec[u]| > ε then
27 converged ← False;
28 ppv[u] ← tmpV ec[u];

29 return �ppv;

To improve the efficiency, we use a queue valuedNodes to track
the nodes with non-zero value, and only the nodes in valuedNodes
and their neighbors are visited. In each iteration, the nodes in the
queue either teleport to the query node(line 12) or randomly surf to
their out-neighbors(lines 17–21). Note that in lines 14–16, we deal
with the dangling nodes (nodes without out-neighbors) by adding
an arc to query node q. At last, we check whether the stop condition
is fulfilled(lines 25–28).

E. HUB NODE SELECTION
The graph partitioning problem aims to remove minimum num-

ber of edges/nodes from a given graph such that the graph be-
comes disconnected. It is shown that finding such edge separat-
ors or vertex separators is NP-hard [10]. The best approximate
algorithm of finding the vertex separators has an approximation ra-
tio of O(log2|V |) [1, 13] with high computational complexity. For

planar graphs, there exists O(
√

(|V |)) theoretical bound [28] for
the number of vertex separators. For general real-world networks,
the number of hub nodes is usually small, e.g., social graphs are
often organized into communities with large internal density of
edges and sparse edges between communities [15, 27]. The as-
sumption that the number of hub nodes is small is also exploited by
the matrix-based methods for PPV computation [16, 41], in which
the matrix is reordered by partitioning the graph into m subgraphs
(each of them is a small matrix) and leaving the hub nodes in a
matrix.

Due to the hardness of this problem, most graph partitioning al-
gorithms aim to minimize the number of hub edges approximately.
It is shown [25] that the METIS method performs well on minim-
izing the number of hub edges and balancing the size of subgraphs.
We first adopt this partition algorithm to minimize the number of
hub edges, and we then try to find the minimum number of hub
nodes from these hub edges. The problem of finding the minimum
number of hub nodes from hub edges is equivalent to the well-
known Vertex Cover problem, which is also NP-hard. Specifically,
given the hub edges, we choose some endpoints of the hub edges
to be hub nodes, such that each edge is covered by at least one
hub node. In this way, if we remove all the hub nodes, every hub
edge will also be removed and the graph is partitioned into k parts.
We use the approximate vertex cover algorithm proposed in the
work [38] to approximately find the minimum set of nodes that can
cover these hub edges.

It is worth mentioning that though we use approximate algorithm
to find hub nodes, our algorithm for PPV computation is still exact
only if these nodes can separate the graph. A better way of selecting
the hub nodes is an area of future work.

F. PARTIAL & SKELETON VECTORS COM-
PUTATION

Both the partial and hubs skeleton vectors are computed in iter-
ative ways. Note that these vectors could be rounded to any given
error, known as tolerance, which is also used in the power iteration
algorithm. The precision can be guaranteed, and such algorithms
are regarded as exact in the literatures [24, 49]. In this paper, ex-
act PPV means that we achieve the same results as the algorithms
proposed by Jeh and Widom [24]. Details about our distributed
pre-computation of partial vectors and skeleton vectors are referred
to Section 5.

F.1 Partial Vector computation
We introduce the selective expansion algorithm [24] to compute

pH
u w.r.t. node u. Two intermediate vectors Dk[u] and Ek[u] are

maintained, where k represents the kth iteration. Initially, D0[u] =
0 and E0[u] = xu, where xu is a basic vector with zero filled ex-
cept xu(u) = 1. Then, Equation 9 illustrates the iteration method,
where Out(v) denotes the set of out-going neighbors of v.



Dk+1[u] = Dk[u] +
∑

v∈V −H

αEk[u](v)xv

Ek+1[u] = Ek[u]−
∑

v∈V −H

Ek[u](v)xv

+
∑

v∈V −H

1− α

|Out(v)|
|Out(v)|∑

i=1

Ek[u](v)xOuti(v)

(9)

During the iterations, Dk[u] would converge to pH
u , and Ek[u]

would approach 0, which represents the difference between Dk[u]
and pH

u . Dk[u] is a lower-approximation of pH
u . The computa-

tion is terminated when the value of Ek[u] approaches 0, which
means we can obtain pH

u to any arbitrary precision. More pre-
cisely, we set an error tolerance bound ε and terminate the iteration
when Ek[u](v) ≤ ε, ∀u, v ∈ V .

F.2 Skeleton Vector computation
We introduce the basic dynamic programming algorithm [24]

that computes sHu w.r.t. node u. We also maintain two interme-
diate vectors Dk[u] and Ek[u], where initially D0[u] = 0 and
E0[u] = xu. Then, the iteration is done as follows:

Dk+1[u] =
1− α

|Out(u)|
|Out(u)|∑

i=1

Dk[Outi(u)] + αxu

Ek+1[u] =
1− α

|Out(u)|
|Out(u)|∑

i=1

Ek[Outi(u)]

(10)

During the iterations, Dk[u] would converge to sHu , and Ek[u]
would approach 0, which represents the difference between Dk[u]
and sHu . We terminate the computation when the value of Ek[u]
approaches 0. That is, we set an error tolerance ε, and it is treated
as converged when each value in Ek is less than ε.


