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Abstract—As business and enterprises generate and exchange XML data more often, there is an increasing need for efficient

processing of queries on XML data. Searching for the occurrences of a tree pattern query in an XML database is a core operation in

XML query processing. Prior works demonstrate that holistic twig pattern matching algorithm is an efficient technique to answer an

XML tree pattern with parent-child (P-C) and ancestor-descendant (A-D) relationships, as it can effectively control the size of

intermediate results during query processing. However, XML query languages (e.g., XPath and XQuery) define more axes and

functions such as negation function, order-based axis, and wildcards. In this paper, we research a large set of XML tree pattern, called

extended XML tree pattern, which may include P-C, A-D relationships, negation functions, wildcards, and order restriction. We

establish a theoretical framework about “matching cross” which demonstrates the intrinsic reason in the proof of optimality on holistic

algorithms. Based on our theorems, we propose a set of novel algorithms to efficiently process three categories of extended XML tree

patterns. A set of experimental results on both real-life and synthetic data sets demonstrate the effectiveness and efficiency of our

proposed theories and algorithms.

Index Terms—Query processing, XML/XSL/RDF, algorithms, tree pattern.
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1 INTRODUCTION

AS business and enterprises generate and exchange XML
data more often, there is an increasing need for

efficient processing of queries on XML data. An XML query
pattern commonly can be represented as a rooted, labeled
tree (or called twig). For example, Fig. 1a shows an example
XPath query: A[B]=C and the corresponding XML tree
pattern. This query finds all node C that has the parent A
which has another child B. In Fig. 1b, the query answers are
nodes “C1” and “C2.”

Efficient matching of XML tree patterns has been widely
considered as a core operation in XML query processing. In
recent years, many methods [9], [13], [3], [11], [4], [25] have
been proposed to match XML tree queries efficiently. In
particular, Khalifa et al. [1] proposed a stack-based algorithm
to match binary structural relationship including parent-
child (P-C) and ancestor-descendant (A-D) relationships.
The limitation of their method is that the size of useless
intermediate results may become very large, even if the final
results are small. Bruno et al. [3] proposed a novel holistic
twig join algorithm named TwigStack, which processes the
tree pattern holistically without decomposing it into several
small binary relationships. TwigStack guarantees that there

are no “useless” intermediate results for queries with only
ancestor-descendant (A-D) relationships. In other words,
TwigStack is optimal for tree pattern queries with only A-D
edges [8]. Many other recent works then examine how to
enlarge the optimal query class of holistic algorithms [14], to
speed up performance using indexes [5], [11], to devise new
data streaming strategies [6], and to propose efficient and
dynamic labeling schemes [16]. These algorithms have
proven highly promising and make their way into XML
query processing applications, in both academic and
industrial settings [19]. But we still have the following
observations upon the above existing works.

Extended XML tree pattern. Previous algorithms focus on
XML tree pattern queries with only P-C and A-D relation-
ships. Little work has been done on XML tree queries which
may contain wildcards, negation function, and order restric-
tion, all of which are frequently used in XML query
languages such as XPath and XQuery. In this paper, we call
an XML tree pattern with negation function, wildcards, and/
or order restriction as extended XML tree pattern. Fig. 2, for
example, shows four extended XML tree patterns. Query
(a) includes a wildcard node “*”, which can match any single
node in an XML database. Query (b) includes a negative
edge, denoted by “:”. This query finds A that has a child B,
but has no child C. In XPath language [2], the semantic of
negative edge can be presented with “not” boolean function.
Query (c) has the order restriction, which is equivalent to an
XPath “//A/B[following-sibling::C].” The “< ” in a box
shows that all children underA are ordered. The semantics of
order-base tree pattern is captured by a mapping from the
pattern nodes to nodes in an XML database such that the
structural and ordered relationships are satisfied. Finally,
Query (d) is more complicated, which contains wildcards,
negation function, and order restriction.

Optimality of holistic algorithms. Previous XML tree
pattern matching algorithms do not fully exploit the “optim-
ality” of holistic algorithms. TwigStack [3] guarantees that
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there is no useless intermediate result for queries with only
A-D relationships. Therefore, TwigStack is optimal for queries
with only A-D edges. Another algorithm TwigStackList [14]
enlarges the optimal query class of TwigStack by including P-
C relationships in nonbranching edges. A natural question is
whether the optimal query class of TwigStackList can be
further improved. Hence, the current open problems include
1) how to identify a larger query class which can be processed
optimally and 2) how to efficiently answer a query which
cannot be guaranteed to process optimally. Note that earlier
works in [8], [21] already showed that no algorithm is optimal
for queries with any arbitrary combinations of A-D and P-C
relationships. This paper explores the challenges and shows
the promise of a novel theoretical framework called “matching
cross” to identify a large optimal query class for posing
extended XML tree queries.

Return nodes in twig pattern queries. In a practical
application, only part of query nodes belong to return nodes
(or called output nodes interchangeably). Take the XPath
“//A[B]//C” as an example, only C element and its
subtree are answers. The current “modus operandi” (e.g.,
[12], [3], [16]) is that they first find the query answer with
the combinations of all query nodes, and then do an
appropriate projection on those return nodes. Such a
postprocessing approach has an obvious disadvantage: it
outputs many matching elements of nonreturn nodes that
are unnecessary for the final results. In this paper, we
develop a new encoding method to record the mapping
relationships and avoid outputting nonreturn nodes.

1.1 Main Results

In general, given an extended XML tree pattern query which
may include P-C, A-D relationships, order restriction,

negation function, and wildcards, we consider the problem

efficiently matching the extended XML tree query. Our

algorithm aims at identifying a large queries class which

can be optimally processed. Like previous papers on XML

tree pattern matching (e.g., [3], [12], [16]), in this paper, we

call a holistic algorithm “optimal” for a kind of query class,

if it guarantees that any output intermediate results

contribute to final answers. For example, previous algo-

rithm TwigStack [3] is optimal for query class with only A-D

edges, and TwigStackList [14] is optimal for queries with

only A-D relationships in branching edges.
We investigate three categories of extended XML tree

patterns (See Fig. 3): 1) queries with P-C, A-D relationships

and wildcards, denoted as Q=;==;�; and 2) queries with P-C,

A-D relationships, wildcards, and order restriction, denoted

as Q=;==;�;<; and 3) queries with P-C, A-D relationships,

wildcards, order restriction, and negation function, denoted

as Q=;==;�;<;:. For each category, we identify the respective

optimal query class.
The technical contributions of this paper are summarized

as follows:

. We build a theoretical framework on optimal proces-
sing of XML tree pattern queries. We show that
“matching cross” is the key reason to result in the
suboptimality of holistic algorithms. Intuitively,
matching cross describes a dilemma where holistic
algorithms have to decide whether to output useless
intermediate result or to miss useful results. The fact
that TwigStack [3] is optimal for queries with only
A-D relationships can be explained that no matching
cross can be found for any XML document with
respect to queries with A-D edges. We classify
matching cross to bound and unboundedmatching cross
(BMC and UMC. See Fig. 4). We develop theorems to
show that only part of UMC (i.e., UMC with mediator)
can force holistic algorithms to potentially output
useless intermediate results.

. Based on the theoretical analysis, we develop a
series of holistic algorithms TreeMatch to achieve a
large optimal query class for three categories of
queries (i.e., Q=;==;�,Q=;==;�;< and Q=;==;�;<;:). Our
main technique is to use a concise encoding to
present matching results, which leads to the
reduction of useless intermediate results.

. We conducted an extensive set of experiment on
synthetic and real data set for performance compar-
ison. We compared TreeMatch with previous four
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Fig. 2. Example of extended XML tree pattern queries. “_” denotes the
return node in query (a) TQ1. (b) TQ2. (c) TQ3. (d) TQ4.

Fig. 3. Three categories of extended XML tree patterns and example

optimal queries.

Fig. 1. Example XML tree query and document. “_” denotes the return
node in query. The answers are C1 and C2. The digital labels will be
explained later. (a) Query. (b) Data.



holistic XML tree pattern matching algorithms. The
experimental results show that our algorithm can
correctly process extended XML tree patterns,
achieving performance speedup for tested queries
and data sets, even in their restricted focus. The
improvement mainly owes to the reduction of the
size of intermediate results.

1.2 Outline

The rest of the paper is organized as follows: Section 2 gives
the preliminaries about research problem and the proces-
sing model. Section 3 shows a set of theories about
matching cross and Section 4 presents an extended XML
tree pattern matching algorithm called TreeMatch. Section 5
presents thorough experimental studies between the novel
algorithms and the prior methods. Finally, Section 6
presents previous work related to the XML tree pattern
matching and Section 7 concludes this paper.

2 PRELIMINARIES

2.1 Modeling of XML Data and Extended Tree
Pattern Query

An XML database D is usually modeled as a rooted, node-
labeled tree (in this paper, we use D to represent the
database and the related tree model exchangeably without
specific declaration), element tags and attributes are
mapped to nodes in the trees and the edges are used to
represent the direct nesting relationships. Our primary
focus is on element nodes; and it is not difficult to extend
our methods to process the other types of nodes, including
attribute and character data. For convenience, we distin-
guish between query nodes and database nodes by using
the term “node” to refer to a query node and the term
“element” to refer to a data element in D.

An extended tree queryQdescribes a complex traversal of
the XML document and retrieves relevant tree-structured
portions of it. The nodes inQ include element tags, attributes,
and character data. We use “*” to denote the wildcard, which
can match any single tree element. There are four kinds of
query edges, which are the four combinations between
(positive and negative) and (parent-child and ancestor-descen-
dant). For example, in Fig. 2b, (A;B) is a positiveparent-child
edge and (A;C) is a negative parent-child edge. We use a
symbol “:” to denote a negative edge. There are two kinds of
query node: ordered and unordered node. We use “< ” in a box
to denote the ordered node, otherwise it is an unordered node.
For example, the nodeA, in Figs. 2c and 2d are ordered nodes.
In each extended tree query pattern, there is one or multiple
nodes which are assigned as the selected return nodes,
denoted with an underline. For example, in Fig. 2a, C is the
selected return node.

Given an extended tree query Q with n selected return
nodes and an XML database D, a match of Q in D is
identified by a mapping from nodes in Q to the elements in
D, such that:

1. query node types (i.e., tag name) are satisfied by the
corresponding database elements and wildcards “*”
can match any single database element;

2. the positive edge relationships (including positive
parent-child and positives ancestor-descendant
edges) between query nodes are satisfied by the
corresponding database elements;

3. the negative edge relationships (including negative
parent-child and negative ancestor-descendant
edges) are satisfied, that is, no corresponding
database element pairs exist; and

4. the order relationship of children of each ordered
node is satisfied by the corresponding database
elements.

The answers of a query can be represented as a set of
database elements, where each element identifies a distinct
match of the selected return nodes on D. For example, Fig. 5
shows an example mapping relationship between an
extended XML tree pattern and a document tree.

2.2 Labeling Schemes

Most XML query processing algorithms on XML documents
rely on certain labeling schemes, such as region encoding
scheme [27], prefix scheme [13], ORDPATH [19], and
extended Dewey scheme [16]. In this paper, we use the
extended Dewey labeling scheme, proposed in paper [16], to
assign each node in XML documents a sequence of integers
to capture the structure information of documents.

Extended Dewey labeling scheme is a variant scheme of
the prefix labeling scheme. In the prefix labeling scheme, the
root is labeled by an empty string and for a nonroot element
u, labelðuÞ ¼ labelðvÞ:n, where u is the nth child of v. In
Extended Dewey labeling scheme, each label provides
complete information about ancestors’ names and labels.
For example, given an element e with label “1.2.3,” prefix
labeling schemes can tell us parentðeÞ¼‘‘1:2’’ and
grandparentðeÞ¼‘‘1’’, but extended Dewey labeling scheme
can also tell us the tag name of elements, say, tagðeÞ¼‘‘A’’,
tagðparentðeÞÞ¼‘‘B’’, and tagðgrandparentðeÞÞ¼‘‘C’’. In or-
der to achieve this goal, paper [16] uses module function to
encode the element tag information to prefix labels, and use
finite state transducer (FST) to decode the the types
information for a single extended Dewey label. The details
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Fig. 4. Illustration to the relationship between BMC and UMC. The
shaded portions demonstrate the optimal query classes.

Fig. 5. Mapping relationship between an extended tree pattern and a
document tree.



of modular function and FST are out of scope of this paper.
But for the purpose of understanding this paper here,
readers only need to know that in the extended Dewey
labeling scheme, from the label of a single element, we can
derive all the elements names along the path from the root
to the element. And the complete path information in
extended Dewey labels enables holistic algorithms to scan
only leaf query nodes to answer an XML query.

2.3 Basic Properties of Algorithms

The algorithms for XML tree pattern matching proposed in
this paper have two basic yet important properties, as
follows:

2.3.1 Single-Direction Scan

We adopt a structure, named label list, associated with each
query node. The label list is a posting list (or inverted list)
containing the extended Dewey labels of XML elements
which have the same name, and all elements are ordered
according to the document order. We use TA to denote the
label list for query node A. There is a cursor for each list. It
moves in the single direction to scan all elements once in
increasing order. Each label in a list can be read only once.

2.3.2 Bounded Main Memory

For a large class of queries, the main memory requirement
of our algorithm is linear to the number of nodes in the
longest path of XML database, which is usually small.
Therefore, our solution would be scalable to a very large
document with a small main memory requirement.

Recall that the existing algorithms, such as TwigStack
[3], TwigStackList [14], TJFast [16], also have the first
property. That is, they keep the single-direction scan of the
document. But for the second property, those algorithms
guarantee the bounded main memory for a small class of
queries. This paper makes the contribution to propose
algorithms to achieve this property for a much larger class
of queries with negation predicates, wildcards, and order
restriction.

3 THEORETICAL ANALYSIS

In this section, we establish a theoretical framework about
“matching cross” which demonstrates the intrinsic reason for
the suboptimality of existing holistic algorithms. The
purposes of our study are 1) to provide insight into the
characteristics of the holistic algorithms, and thus promotes
our understanding about their behaviors; and 2) to lead to
novel algorithms that can guarantee a larger optimal query
class and realize better query performance.

3.1 Matching Cross

The existing holistic algorithms [11], [16] consist of two
phases: 1) in the first phase, a list of path solutions is output
as intermediate path solutions and each solution matches
the individual root-to-leaf path expression; and 2) in the
second phase, the path solutions are merged to produce the
final answers for the whole twig query. However, for
queries with parent-child (P-C) relationships, the state-of-
the-art algorithms cannot guarantee that each intermediate
solution output in the first phase is useful to merge in the

second phase. In other words, many useless intermediate
results (i.e., path solutions) maybe produced in the first
phase, which is called the suboptimality of algorithms, as
further illustrated in the following example:

Example 1. Consider the document and query in Fig. 1 again.
First, A1, B1, and C1 are scanned. Although B1 has the
parent A1, at this point, we do not know whether A1 has a
child C. Now holistic algorithms meet a dilemma, that is,
whether to output possibly “useless” intermediate path
ðA1; B1), or to miss the potential correct answer related to
A1. (This dilemma is formalized as “matching cross”
later.) In order to guarantee the completeness of query
answers, previous methods (e.g., TwigStack) directly
output the path ðA1; B1Þ, which may become “useless”
intermediate path solution if there were no C2 in data.

We generalize the observation in Example 1 into a
concept, called matching cross. Before proceeding, we need
a preliminary definition called first match.

Definition 3.1 (First Match). Given an XML database D and a
query Q, assume that A, B are two query nodes in Q. Let Ai be
an element in the label list TA. We say that Bj in TB is the first
match ofAi, denoted asFMðAi;BÞ ¼ Bj, if and only if ðAi;BjÞ
appears in a match binding to query Q and there is no other
elementBk, k < j such that ðAi;BkÞ is also in a match binding.

Note that in the above definition, all elements’ labels in
TA and TB are sorted by document order; and thus Bk is a
preceding element of Bj as k < j. For example, in Fig. 1b,
FMðB1; CÞ ¼ C2 and FMðB2; CÞ ¼ C1. In addition, note that
FMðAi;BÞ ¼ Bj does not guarantee FMðBj;AÞ ¼ Ai.

Definition 3.2 (Matching Cross). Given an XML database D
and a query Q, assume that A, B are two query nodes in
Q. Let Ai, Ajði < jÞ) be two elements in label list TA; and
Bi0 , Bj0 (i0 < j0) be two elements in TB. We say that the
four-tuple <Ai;Aj; Bi0 ; Bj0> is a matching cross on D
with respect to Q if and only if FMðAi;BÞ ¼ Bj0 and
FMðBi0 ; AÞ ¼ Aj (See Fig. 6).

It is easy to prove that if <Ai;Aj; Bi0 ; Bj0> is matching
cross, then <Bi0 ; Bj0 ; Ai; Aj> is also a matching cross.

In Fig. 1b, <B1; B2; C1; C2> is a matching cross since the
first match ofB1 isC2, and that ofC1 isB2. Note thatB1 andC1

are not in the same match binding. The existence of matching
cross forces holistic algorithms to output uncertain intermedi-
ate path solutions and may cause their suboptimality.

The following lemma identifies a query class, with
respect to which we cannot find any document with
matching cross:

Lemma 1. Suppose Q is a tree pattern query with only ancestor-
descendant (A-D) relationships in all edges, given any
documentD, there is no matching cross onDwith respect toQ.
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Fig. 6. Illustration to matching cross.



Proof. We prove it by contradiction. Assume that a
matching cross <Ai;Aj; Bi0 ; Bj0> occurs when evaluating
Q on document D. Let “� ” denote preceding relation-
ship in document order. Then, Ai � Aj and Bi0 � Bj0 .
There are the following two cases:

1. A and B appear in the same path in the query Q.
Without loss of generality, assume A is ancestor
of B in Q. There are two subcases. Case 1.1: Ai is
an ancestor of Aj in document D. Since (Aj, Bi0 ) is
a match binding, Aj is an ancestor of Bi0 . Since all
edges in query are A-D relationships, (Ai,Bi0 ) is
also a match binding, which contradicts that Aj is
the first match of Bi0 . Case 1.2: Ai and Aj are in
different data paths. Since (Aj, Bi0 ) is a match
binding, Aj is an ancestor of Bi0 . So Ai � Bi0 and
Bi0 is not in the same data path with Ai. Since
Bi0 � Bj0 , Bj0 is also not in the same data path
with Ai, which contradicts that Bj0 is the first
match of Ai.

2. Assume that A and B are in the different root-
to-leaf paths in Q. Assume that node C is the
lowest common ancestor of A and B in Q. Then,
there are two matching bindings (Ai;Bj0 ; C1) and
(Aj;Bi0 ; C2). Consider two subcases. Case 2.1:
C1 ¼ C2, then it is easy to see that <Ai;Bi0> is
also a matching binding, which contradicts Bj0 is
the first match of Ai. Case 2.2: C1 6¼ C2. Without
the loss of generality, assume that C1 � C2, then
C1 is an ancestor of C2, otherwise there is no
overlap in C1, C2 subtrees, which contracts that
Bi0 � Bj0 . Then, (Ai, Bi0 , C2) is also a matching
binding, which contracts that Bj0 is the first
match of Ai. tu

According to Lemma 1, no matching cross can occur
during evaluating queries with only A-D relationships. This
lemma shows the intrinsic reason why the previous algo-
rithm TwigStack [3] can guarantee the optimality for queries
with only A-D relationships, as there is no matching cross in
such cases. But note that an existing algorithm TwigStackList
[14] can identify a larger query class to guarantee the
optimality than that of TwigStack. This fact implies that a
certain kind of matching cross does not necessarily cause the
suboptimality of holistic algorithms, as illustrated follows:

Definition 3.3 (Bounded Matching Cross). Given a query Q
and an XML database D, assume that <Ai;Aj; Bi0 ; Bj0> is a
matching cross forDwith respect toQ. If the number of distinct
elements Ak, where i � k � j and FMðAk;BÞ ¼ Bk0 i

0 < k0, is

no more than the height ofD, then, we say thatA has a bounded
matching cross (BMC) with B, otherwise it is unbounded
matching cross (UMC). (See Fig. 7.)

Since the number of distinct elements that have the first
match after Bi0 is no more than jHEIGHT(D)j, we can buffer
all such Aks in the main memory and read Aj to find the
matching element for Bi0 .

Example 2. Consider the query and document in Fig. 8.
<C1; Cn; B1; Bm0þn�1> is a BMC, because the number of
distinct elements Ckð1 � k � nÞ that has the first match
behind B1 is no more than n, which is bounded by the
height of the document, i.e., C has a bounded matching
cross with B. In contrast, <A1; Amþn�1; B1; Bm0þn�1> is a
UMC. This is because m or m0 is not bounded by the
height of the document and thus the number of distinct
elements Akð1 � k � mþ n� 1Þ (or similarly, Bk,
1 � k � m0 þ n� 1) that has the first match behind B1

(or A1) is possibly much greater than the height of
documents.

As shown in Definition 3.3 and Example 2, matching cross
can be separated to two categories according whether it can
be solved by buffering limited elements. In particular, BMC
can be solved by buffering bounded number of elements in
the main memory. On the other hand, we cannot guarantee
to optimally process UMC with limited size of main
memory, since it needs us to buffer unbounded number
of elements (we say it is unbounded in terms of the height
of the document tree).

The following lemma identifies a query class, with
respect to which no UMC occurs on any given XML
document. In other words, this query class is guaranteed to
be processed optimally by holistic algorithms. This lemma
coincides with the optimal query class in TwigStackList [14].

Lemma 2. Suppose Q is a tree pattern query with only ancestor-
descendant (A-D) relationships to connect branching nodes
and their children nodes, given any document D, there is no
UMC on D with respect to Q.

Proof. Details of proof are given in technical report [15]. tu

A natural question is whether all UMC definitely causes
the suboptimality of holistic processing algorithms. The
answer is “no.” Note that query answers of an XML tree
pattern usually include only part of query nodes; we can
use this observation to identify a larger optimal query class .
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Fig. 7. Illustration to bounded matching cross. The number of elements
in TA between Ai and Aj whose first match is after Bi0 is no more than
the height of the tree. Fig. 8. Example of Bounded Matching Cross and Unbounded Matching

Cross. < C1; Cn;B1; Bm0þn�1> is a BMC, while < A1; Amþn�1; B1;
Bm0þn�1 > is a UMC.



In order to understand this, let us first consider an XML tree
in Fig. 9 and an XPath query “H½:==B�=A” (A is the selected
return query node). <B1; Bjþ1; A1; Aiþ1> is a UMC, since i
and j maybe greater than the height of XML tree. But, we
observe that this UMC still can be efficiently processed by
registering the information that H1 has appropriate children
B (e.g., B1) and then scanning Bjþ1 and H2. Then, we can
get an exact match (H2, Bjþ1, A1) without outputting any
possibly useless intermediate path. This example shows
that the existence of UMC does not necessarily result in the
suboptimality of algorithm. Some UMC still can be solved by
buffering limited information in the main memory. The
following definition and lemma show that if there is a
mediator node in the UMC, then such UMC can be still
processed optimally.

Definition 3.4 (Mediator in UMC). Given a query Q and an
XML database D, assume that <Ai;Aj; Bi0 ; Bj0> is a UMC
on D with respect to Q, and A is a return node in Q but B is a
nonreturn node. We call the node H 2 Q as a mediator node
(H maybe a return node or not) if the first matches of all
elements between Bi0 and Bj0 against node H are in the range
from Hm to Hn, and the first matches of all elements between
Hm and Hn are between Ai and Aj (see Fig. 10); and the
number of elements between Hm and Hn that are the first
matches of Bkði0 � k � j0Þ is no more than the height of D.

For example, consider Fig. 9 and the query “H½:==B�=A”
again. <B1; Bjþ1; A1; Aiþ1> is a UMC, and H is a mediator
in this UMC, as the first matches of all elements between B1

and Bjþ1 against node H is H1; and the first match of H1

and H2 are Aiþ1 and A1; and 2 � Height(D).
Because of the existence of mediator node in UMC, we still

can guarantee the optimality of algorithm by buffering
limited elements of mediator nodes in the main memory. In the
example of Fig. 9, we only need to buffer H1 and H2 to the
main memory and record that H1 and H2 have the matching
element with node B. Note that we do not need to buffer
B1; . . . ; Bj in the main memory as they are not return nodes.

The next definition and lemma identify a subclass of tree
pattern queries, with respect to which, given any XML
document, we can always find a mediator node in a UMC.

Definition 3.5 (Mediator Subclass). We say that a query Q
belongs to mediator subclass if and only if given any return
node N in Q and a branching node B in the path from N to the
root, there are only ancestor-descendant relationships between
B and its children that are not in the path from N to the root.

For example, Fig. 11 shows four example queries. Q1, Q2,
and Q3 belong to mediator subclass, but Q4 does not
because of (B;C) edge.

Lemma 3. Given a query Q that is in mediator subclass and a
document D, for each UMC in D against Q, there exists a
mediator node H2 Q in this UMC.

Proof. Details of proof are given in technical report [15]. tu

In the next section, we will develop a holistic algorithm
to process mediator subclass query optimally.

As a final remark of this section, it is important to note that
the properties shown in the above theorems is independent of
1) any concrete labeling schemes and 2) any special data
index structures, such as XB tree [3], XR tree [11], and R tree
[7]. This is because 1) the proof of the above theorems does not
rely on any specific labeling scheme, and 2) while special
index structure can skip elements to accelerate processing in
holistic XML query processing, these index structures cannot
achieve the larger optimal query class, as the main bottleneck
of optimality is the size of main memory.

4 HOLISTIC ALGORITHMS

In this section, we propose an algorithm to evaluate an
extended XML tree query. The challenge in the algorithm is
to achieve a large optimal query class according to
aforementioned theorems.

4.1 TreeMatch for Q=;==;�

4.1.1 Data Structures and Notations

There is an input list Tq associated with each query node q,
in which all the elements have the same tag name q. Thus,
we use eq to refer to these elements. curðTqÞ denotes the
current element pointed by the cursor of Tq. The cursor can
be advanced to the next element in Tq with the procedure
advanceðTqÞ.

There is a set Sq associated with each branching query
node q (not each query node). Each element eq in sets
consists of a three-tuple ðlabel; bitV ector; outputListÞ. label is
the extended Dewey label of eq. bitV ector is used to
demonstrate whether the current element has the proper
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Fig. 9. An example to illustrate unbounded matching cross.

Fig. 10. Illustration to mediator node in UMC. <Bi0 ; Bj0 ; Ai; Aj> is a
UMC. H is mediator node, as the first matches of all elements between
Bi0 and Bj0 are between Hm and Hn; and the first matches of that
between Hm and Hn are Ai and Aj.

Fig. 11. Example queries to illustrate mediator subclass. Q1, Q2, and Q3
is in mediator subclass, but Q4 not, because of (B,C) edge.



children or descendant elements in the document. Specifi-
cally, the length of bitV ectorðeqÞ equals to the number of
child nodes of q. Given a node qc2 childrenðqÞ, we use
bitV ectorðeqÞ½qc� to denote the bit for qc. Specifically,
bitV ectorðeqÞ½qc� ¼ ‘‘1’’ if and only if there is an element eqc
in the document such that the eq and eqc satisfy the query
relationship between q and qc. Finally, outputList contains
elements that potentially contribute to final query answers.
Next, we introduce two properties of elements in outputList
and bitVector in details.

At every point during the computing, for each element eq
in set Sq, 1) if all bits in bitV ectorðeqÞ are “1”, then eq is
guaranteed to match the subtree rooted with q. Therefore, if q
is the root, then eq is guaranteed to match the whole query,
and 2) element e 2 outputListðeqÞ is the query answer if and
only if eq matches the whole tree query. Therefore, using both
properties, we say that whether an element e 2 outputListðeqÞ
is a query answer can be accurately reflected by the
corresponding bitV ectorðeqÞ, illustrated as follows:

Example 3. Fig. 12 illustrates the set encoding SA to query

node A for an example document. There are two tuples

in set SA. Since A1 (“0”) has only one child B1 and no

child element to match C, bitV ectorðA1Þ ¼ ‘‘10’’. In

contrast, bitV ectorðA2Þ ¼ ‘‘11’’, since A2 (“0.1”) has two

children B2 and C1, which satisfy the P-C relationships in

the query. Since all bits in bitV ectorðA2Þ are “1”,

B2(“0.1.0”) is guaranteed to be a query answer.

In our algorithm, we will frequently use the following
two notations. 1) NABðqÞ denotes the Nearest Ancestor
Branching node of q in the query pattern Q. Formally, q0 ¼
NABðqÞ if and only if q0 is a branching node and q0 is an
ancestor of q and there is no other branching node q00 s.t. q00

is in the path from q0 to q. If there is no such ancestor of q,
then NAB(qÞ denotes the top branching node in query.
2) NDB(qÞ denotes the nearest descendants branching (or
leaf) nodes of q. Formally, q0 2 NDBðqÞ if and only if q0 is a
branching or leaf node and q0 is a descendant of q and there
is no other branching or leaf node q00 s.t. q00 is in the path
from q0 to q. For example, see the query Q3 in Fig. 11,
NABðEÞ ¼ fCg, NABðDÞ ¼ fBg, NDBðBÞ ¼ fC;Dg.

4.1.2 Intuitive Example

Before we formally introduce the algorithm TreeMatch, let

us first see an example to intuitively understand this

algorithm. Here, the key point is set encoding of elements.

Example 4. Consider the data and query in Fig. 12 again.
Note that B is the single-return node. First, B1 and C1 are
read. Since A1 now has only one child B1 and one
descendant C1 (not child), we insert A1 to set SA and
bitV ectorðA1Þ ¼ ‘‘10’’ (see Table 1). Next, when B2 and
C1 are read, since A2 has two children B2 and C1, we add
A2 to set and bitV ectorðA2Þ ¼ ‘‘11’’. Finally, we empty set
SA and output one element B2 in the outputlist. Note that
unlike previous algorithms such as TwigStack [3] and
TJFast [16], bitVector is used to accurately record
matching results, thus leading to avoiding the output
of B1, as bitV ectorðA1Þ is “10”. But TwigStack and TJFast
would output two “useless” elements A1 and B1 in that
case, and therefore, entail more I/O cost.

4.1.3 TreeMatch

Now we go through Algorithm 1. Line 1 locates the first
elements whose pathes match the individual root-leaf path
pattern. In each iteration, a leaf node fact is selected by
getNext function (line 3). The purpose of lines 4 and 5 is to
insert the potential matching elements to outputlist. Line 6
advances the list Tfact and line 7 updates the set encoding.
Line 8 locates the next matching element to the individual
path. Finally, when all data have been processed, we need
to empty all sets in Procedure EmptyAllSets (line 9) to
guarantee the completeness of output solutions.

Algorithm 1. Algorithm TreeMatch for class Q=;==;�

1: locateMatchLabel(Q);

2: while (:endðrootÞ) do

3: fact ¼ getNextðtopBranchingNodeÞ;
4: if (fact is a return node)

5: addToOutputListðNABðfactÞ; curðTfactÞÞ;
6: advanceðTfactÞ; // read the next element in Tfact
7: updateSetðfactÞ; // update set encoding

8: locateMatchLabelðQÞ; // locate next element with

matching path

9: emptyAllSetsðrootÞ;
In Procedure addToOutputListðq; eqiÞ, we add the

potential query answer eqi to the set of Seq , where q is the
nearest ancestor branching node of qi (i.e., NABðqiÞ ¼ q).
Procedure updateSet accomplishes three tasks. First, clean
the sets according to the current scanned elements. Second,
add e into set and calculate the proper bitVector. Finally,
we need recursively update the ancestor set of e. Because
of the insertion of e, the bitVector values of ancestors of q
need update.

Algorithm getNext (see Algorithm 2) is the core function
called in TreeMatch, in which we accomplish two tasks. For
the first task to identify the next processed node, Algorithm
getNext(n) returns a query leaf node f according to the
following recursive criteria: 1) ifn is a leaf node, f ¼ n (line 2);
else 2)n is a branching node, then suppose element ei matches
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Fig. 12. Illustration to set encoding. (a) an XML tree, and (b) a query with
running-time set encoding.

TABLE 1
Set Encoding for the Example in Fig. 12



node n in the corresponding path solution (if more than one
element that matches n, ei is the deepest one by level) (lines 7
and 8), we return fmin such that the current element emin in
Tfmin has the minimal label in all ei by lexicographical order
(lines 13 and 20).

Algorithm 2. Procedures and Functions in TreeMatch

1 Procedure locateMatchLabel(Q)

1: for each leaf q 2 Q, locate the extended Dewey

label eq in list Tq such that eq matches the individual
root-leaf path

Procedure addToOutputList(q; eqi )

1: for each eq 2 Sq do

2: if ( satisfyTreePattern(eqi ,eq))

3: outputListðeqÞ:addðeqiÞ;

Function satisfyTreePattern(eqi ,eq)
1: if (bitV ectorðeq; qiÞ ¼ ‘‘1’’) return true;

2: else return false;

Procedure updateSet(q; e)

1: cleanSetðq; eÞ;
2: add e to set Sq; //set the proper bitV ector(e)

3: if (:isRootðqÞ ^ (bitV ectorðeÞ ¼ ‘‘1 . . . 1’’))

updateAncestorSetðqÞ;

Procedure cleanSet(q; e)

1: for each element eq 2 Sq do

2: if (satisfyTreePattern(eq,e))

3: if (q is a return node)

4: addToOutputListðNABðqÞ; eÞ;
5: if (isTopBranchingðqÞÞ
6: if (there is only one element in Sq)
7: output all elements in outputListðeqÞ;
8: else merge all elements in

outputListðeqÞ to outputListðeaÞ, where ea ¼ NABðeqÞ;
9: delete eq from set Sq;

Procedure updateAncestorSet(q)

1: =� assume that q0 ¼ NAB(q)�=
2: for each e 2 Sq0 do

3: if (bitV ectorðe; qÞ ¼ 0)

4: bitV ectorðe; qÞ ¼ 1;

5: if (:isRootðqÞ ^ (bitV ectorðeÞ ¼ ‘‘1 . . . 1’’))

6: updateAncestorSetðq0Þ;

Procedure emptyAllSets(q)

1: if (q is not a leaf node)

2: for each child c of q do EmptyAllSets(c);

3: for each element e 2 Sq do cleanSet(q; e);

Algorithm 3. getNext(n)

1: if (isLeaf(n)) then

2: return n

3: else

4: for each ni 2 NDB(n) do

5: fi ¼ getNextðniÞ
6: if ( isBranching(ni) ^:emptyðSniÞ)
7: return fi
8: else ei ¼ maxfpjp 2MBðni; nÞg
9: end for

10: max ¼ maxargifeig
11: for each ni 2 NDB(n) do

12: if (8e 2MBðni; nÞ : e 62 ancestors(emax))

13: return fi;

14: endif

15: end for

16: min ¼ minargiffijfi is not a return nodeg
17: for each e 2 MB(nmin; n)
18: if (e 2 ancestorsðemaxÞ ) updateSet(Sn; e)

19: end for

20: return fmin
21: end if

Function MBðn; bÞ
1: if (isBranching(n))then

2: Let e be the maximal element in set Sn
3: else

4: Let e ¼ curðTnÞ
5: end if

6: Return a set of element a that is an ancestor of e such

that a can match node b in the path solution of e to path

pattern pn

For the second task of getNext, before an element eb is
inserted to the set Sb, we ensure that eb is an ancestor (or
parent) of each other element ebi to match node b in the
corresponding path solutions (line 13). If there are more than
one element to match the branching node b, ebi is defined as
their deepest (i.e., maximal) element (line 8).

Example 5. We use the query and document in Fig. 13 to
illustrate TreeMatch algorithm. Table 2 demonstrates the
current access elements, the sets encoding and the
corresponding output elements. There are two branching
nodes in the query. First, B1, D1, and E1 are scanned. C1
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Fig. 13. Illustration to Algorithm TreeMatch for class Q=;==;� (a) Query.
(b) Data.

TABLE 2
Set Encoding for the Example in Fig. 13



and C2 are added into the set SC , but their bitVectors is
“10” and “01”, which indicate that C1 and C2 have only
one child, respectively. In this scenario, recall that TJFast
may output path solutions A1=A2=C1=D1 and A1=A2=C1=
C2=E1, which might be useless to final results. Thus, our
algorithm TreeMatch diminishes the unnecessary I/O
cost. Next, E2 is scanned and the bitVector(C1) becomes
“11” as C1 has two children now. Similarly, the
bitVector(A1) is “11” too. In this moment, we guarantee
that A1 matches the whole pattern tree, as all bits in
bitVector(A1) is 1 (Lemma 4.1 generalizes this observa-
tion.) Finally, when B2 is scanned, A2 is added to set SA.
Therefore, Treematch outputs two final results B1 and
B2. Note that there are no useless nodes output here.

Through this example, we illustrates two differences
between TJFast and TreeMatch. 1) TJFast outputs one
useless intermediate path A1=A2=C1=C2=E1, but TreeMatch
uses the bitVector encoding to solve this problem. 2) TJFast

outputs the path solution for all nodes in query, but
TreeMatch only outputs nodes for return nodes (i.e., node B
in the query) to reduce I/O cost.

When there are multiple return nodes in a query,
TreeMatch produces the corresponding outputList for each
of them, and then outputs the individual solution for each
return node, and merges all these solutions to get the final
result bindings. It is important to note the differences
between TreeMatch and TJFast [16]. Even if the available
amount of main memory is large, TJFast possibly outputs
many path solutions that do not contribute to any final
answers. However, TreeMatch can efficiently use these
available main memory (by buffering potential useful
elements in outputlist) to guarantee that each output element
contributes to final answers. Therefore, TreeMatch not only
identifies a larger optimal query class than TJFast, but also
has the ability to fully utilize the available amount of the
main memory (which will be verified in our experiments).

4.2 Extension for Order-Based Queries Q=;==;�;<

In this section, we extend TreeMatch algorithm to support
ordered-based queries Q=;==;�;<. In order to record the
position information of elements, we add minChild and
maxChild attributes for each tuple in sets. That is, each tuple in
sets now is a five-tuple: <label; bitV ector; outputList;

minChild;maxChild> . The length of minChild(eq) and
maxChild(eq) is equal to the number of children of q. Assume

that q1; . . . ; qn are the children node of q (in order) in the
query. Given an element eminqi

in minChildðeqÞ and emaxqi
in

maxChildðeqÞ, eminqi
is the minimal element that is greater than

the element eminqi�1
(if any) and emaxqi

is the maximal element that
is smaller than emaxqiþ1

(if any). In particular, eminq1
is the leftmost

children of eq, and emaxqn
is the rightmost children.

Example 6. See the query and document in Fig. 14. Table 3
shows the values of minChild and maxChild attributes in
set. (Note that the full presentation of each element in SA
is a five-tuple. Here, we only show minChild and maxChild
for the purpose of this example.) When B1 and C1 are
read, since C1 is before B1, we do not insert C1 as a
minChild, as it is not greater thanB1. Only after C2 is read,
we insert C2 to minChild. When B2 and C3 are scanned,
they become the respective maxChild for node B and C.

Algorithm 4 describes the extended TreeMatch algorithm
for answering ordered tree queries. The purpose of the
extension is to maintain and check the order relationship
among the matching elements of query sibling nodes. In
line 2 of Procedure updateSet, we need to set the proper
minChild and maxChild according to the current elements. In
Function satisfyTreePattern, we also need to check the
order restriction according to minChild and maxChild.

Algorithm 4. Algorithm TreeMatch for class Q=;==;�;<

1 Procedure updateSet(q; e)

. . .

2: add e to set Sq; //set the proper bitV ector, minChild

and maxChild

. . .

Function satisfyTreePattern(qi,eq)

1: assume that child nodes of q in Q are q1; . . . ; qn
(in order)

2: if (eqi < minChildðeq; qi�1Þ) return false;

3: else if (eqi > maxChildðeq; qiþ1Þ) return false;

4: else if (bitV ectorðeq; qi ¼ ) “1”) return true;

5: else return false;

Although the frequent updates of minChild and MaxChild
values in sets may incur CPU cost, compared to the reduction
of useless intermediate results, as we will see in the
experimental evaluation, those extra CPU cost is worthwhile.

4.3 Extension for Queries with Negative Edges
Q=;==;�;<;:

In this section, we further extend TreeMatch to support
negative edges (see Algorithm 5). We add negBitVector to
record the matching information about negative child edge.
Given a node

qc 2 negativeChildrenðqÞ; negBitV ectorðeqÞ½qc� ¼ ‘‘0’’
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Fig. 14. An example of ordered XML tree pattern query. When we scan
B1 and C1, we do not insert C1 to minChild, as it is before B1 and does
not satisfy the order condition of query. (a) Order-based query.
(b) Document.

TABLE 3
Partial Set Encoding for the Example in Fig. 14



if and only if there is no element eqc in the document such
that the eq and eqc satisfy the query relationship in between q
and qc. In this way, in order to know whether all negative
children of q are satisfied, we only check whether all
children’s negBitVectors are “0”. In line 2 of Procedure
updateSet, we need to set the proper negBitVector according
to the current elements. In Function satisfyTreePattern, eq is
a valid element only if the negBitVector is “0”.

Algorithm 5. Algorithm TreeMatch for class Q=;==;�;<;:

1 Procedure updateSet(q; e)

. . .

2: add e to set Sq; //set the proper bitV ector,

negBitV ector, minChild and maxChild

. . .

Function satisfyTreePattern(qi; eq)

1: if (eqi < minChildðeq; qi�1Þ) return false;
2: else if (eqi > maxChildðeq; qiþ1Þ) return false;

3: else if (ðbitV ectorðeqÞ½qi�Þ ¼ ‘‘1’’) and

(negBitV ectorðeqÞ½qi�Þ ¼ ‘‘0’’))

4: return true;

5: else return false;

4.4 Analysis of Algorithms

In this section, we discuss the correctness of TreeMatch, and
then analyze its complexity.

Lemma 4. In AlgorithmTreeMatch, suppose any element eq is
popped from set Sq, where q is the top branching node in
Procedure CleanSet(q), then eq matches the whole query if and
only if all bits in bitV ectorðeqÞ are “1” and all children of eq
satisfy order condition (if any), and all bits innegBitV ectorðeqÞ
are “0” (if any).

Lemma 5. In AlgorithmTreeMatch, suppose any element eq is
popped from set Sq, where q is the top branching node in
Procedure CleanSet(q), then eq matches the whole query if
and only if all elements in outputList(eq) belong to final
query answers.

Using Lemmas 4 and 5, we can see that whether or not an
element is a query answer is exactly reflected by the values of
the corresponding bitVector, negBitV ector and minChild,
maxChild. Further, by lines 5-7 in Procedure CleanSet, all
correct solutions are output. In addition, each matching
element is guaranteed to be inserted to the related sets in
Procedure addToOutputList. Thus, the output solutions are
also complete. Therefore, we have the following result.

Theorem 6. Given an extended tree pattern query Q and an
XML database D, AlgorithmTreeMatch correctly returns all
the answers for Q on D.

While the correctness holds for any given query, the I/O
optimality holds only for a subset of extended query class.
In these cases, TreeMatch guarantees that each output
element in Procedure CleanSet belongs to final query
solutions. Next, we show the corresponding optimality
query subclass for three categories of queries, i.e., Q=;==;�,
Q=;==;�;<, and Q=;==;�;<;:.

Theorem 7. Consider an XML database D and an extended tree
pattern query Q=;==;� in mediator subclass (defined in
Definition 3.5), the worst-case I/O complexity of TreeMatch

is linear to the sum of the sizes of input and results. The worst-
case memory space complexity is O(d2�bþ d�f), where f is

the number of leaves in Q, d is the length of the longest label in
the input lists, and b is the number of branching nodes.

Proof (Sketch). Given any return node q in Q, let
b ¼ NBAðqÞ, according to Definition 3.5, all edges except
(b; q) between b and its children are ancestor-descendant
relationships. b is a mediator node for any UMC
involving in q. In Procedure addToOutputList, when
each element eq is inserted to outputList, it is guaran-
teed to satisfy the subtree rooted with q (line 2). In
Procedure UpdateAncestorSet, the elements in output-
List is moved to its ancestor set only if the current
subtree is satisfied. We recursively guarantee that each
eq in outputList satisfies the whole tree pattern. There-
fore, each element eq is inserted to outputList of eb only
if eb satisfies the whole tree pattern. We can safely write
each element in outputList to disk in Procedure
CleanSet and thus the worst-case I/O complexity of
TreeMatch is linear to the sum of the sizes of input and
results. Finally, as for space complexity, the number of
elements in each set S is at most d, where d is the length
of the longest label in the input lists and thus the total
space complexity of d labels is O(d2). Note that each
element in outputList guarantees to contribute to the
final results, and it maybe written to the secondary
storage and thus their size is not calculated here. tu

For queries with ordered node (i.e., Q=;==;�;<), we can
identify a larger optimal class. If node q is an order node in
Q, the parent-child relationship between q and its first child
does not affect the optimality of TreeMatch. Intuitively, this
is because the order restriction stops some unbounded
matching cross from happening.

Definition 4.1 (Optimal Subclass for Q=;==;�;<). We say that a
query Q belongs to the optimal subclass for Q=;==;�;< if and

only if the parent-child relationship of Q occurs only in the
following edges E, 1) given any return node q in Q, E is in the

path from q to root; or 2) let E ¼ ða; bÞ, then a should be an
ordered node and b is the first child of a.

Theorem 8. Consider an XML database D and an extended tree

pattern queryQ=;==;�;< in the subclass defined in Definition 4.1,
the worst-case I/O complexity of TreeMatch is linear to the

sum of the sizes of input and results. The worst-case memory
space complexity is Oð2d2�bþ d�fÞ, where f is the number of
leaves in Q, d is the length of the longest label in the input lists,

and b is the number of branching nodes.

Proof (Sketch). We need to show that the parent-child (P-C)
relationship in the first branching edge of an ordered
node does not affect the optimality of TreeMatch. Details
of proof are given in technical report [15]. tu

For queries with ordered nodes and negative edges (i.e.,
Q=;==;�;<;:), the following results show that the existence of
parent-child (or ancestor-descendant) edges in any negative
edges does not affect the optimality of TreeMatch. Intuitively,
this is because parent-child relationships in negative edges do
not cause the matching cross.
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Definition 4.2 (Optimal Subclass for Q=;==;�;<;:). We say that
a query Q belongs to the optimal subclass for Q=;==;�;<;: if and
only if the parent-child relationship of Q occurs only in the
following edges E, 1) given any return node q in Q, E is in the
path from q to root; or 2) letE ¼ ða; bÞ, then all child nodes of a
are ordered and b is the first child of a; or 3)E is a negative edge.

Theorem 9. Consider an XML database D and an extended
optimal tree query Q=;==;�;<;: defined in Definition 4.2, the
worst-case I/O complexity of TreeMatch is linear to the sum
of the sizes of input and results. The worst-case memory space
complexity is O(2d2 � bþ d � f), where f is the number of
leaves in Q, d is the length of the longest label in the input
lists, and b is the number of branching nodes.

Proof (Sketch). We need to show the existence of negative
P-C and A-D relationship does not affect the optimality
of TreeMatch. Details of proof are given in technical
report [15]. tu

5 EXPERIMENTS

In this section, we present an extensive experimental study
of TreeMatch on real-life and synthetic data sets. Our
results verify the effectiveness, in terms of accuracy and
optimality, of the TreeMatch as holistic twig join algorithms
for large XML data sets. These benefits become apparent in
a comparison to previously four proposed algorithms
TwigStack [3], TJFast [16], OrderedTJ [17], and TwigStack-
ListNot [26]. The reason that we choose these algorithms for
comparison is that 1) similar to TreeMatch, both TJFast and
TwigStack are two holistic twig pattern matching algo-
rithms. But they cannot process queries with order
restriction or negative edges; and 2) OrderedTJ is a holistic
twig algorithm which can handle order-based XML tree
pattern, but is not appropriate for queries with negative
edges; and finally 3) TwigStacklistNot is proposed for
queries with negative edges, but it cannot work for ordered
queries. Only TreeMatch algorithm can process queries
with order restriction, negative edge, and wildcards.

5.1 Experiment Settings and Data Set

We implemented all tested algorithms in JDK 1.4 using the
file system as a simple storage engine. We conducted all the
experiments on a computer with Intel Pentium IV 1.7 GHz
CPU and 2 G of RAM. To offer a comprehensive evaluation
of our new algorithms, we conducted experiments on both

synthetic and real XML data. The synthetic data set is
generated randomly. There are totally seven tags A,
B; . . . ; F , G in the data set and tags are assigned uniformly
from them. The real data are DBLP (highly regular) and
Treebank (highly irregular), which are included to test the
two extremes of the spectrum in terms of the structural
complexity. The recursive structure in TreeBank is deep
(average depth: 7.8 and maximal depth: 36). We can easily
find queries on this data set to demonstrate the suboptim-
ality for our tested algorithms.

5.2 Query Class Q=;==;�

In this section, we show the experimental results for query
class Q=;==;�. All queries tested in our evaluation are shown
in Figs. 15 and 16.

5.2.1 Small Size of Main Memory

In the first experiment, we did not allow the outputlist in
TreeMatch to buffer any elements in the main memory,
meaning that any element added to outputlist should be
output to the secondary storage. Then, the requirement for
main memory size is quite small. The purpose of this
experiment is to simulate the application where the
document is extremely large but the available main memory
is relatively small. Table 4 shows the number of total output
elements (including intermediate and final results) and the
corresponding percentage of useful elements. We made the
experiments by using three different sizes of random
documents. In particular, D1 has 100K nodes and D2 has
500K nodes, and D3 has 1M nodes. From Table 4, we
observe that for most of queries, TreeMatch achieves the
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Fig. 15. Queries for random data. (a) Q1 (optimal). (b) Q2 (optimal).
(c) Q3 (suboptimal). (d) Q4 (optimal). (e) Q5 (optimal). (f) Q6
(suboptimal).

Fig. 16. Queries for DBLP (Q7-Q9) and TreeBank (Q10-Q13) data.
(a) Q7 (optimal). (b) Q8 (suboptimal). (c) Q9 (optimal). (d) Q10 (optimal).
(e) Q11 (suboptimal). (f) Q12 (optimal). (g) Q13 (optimal).

TABLE 4
Number of Output Elements (O) and the Percentage (P) of

Useful Elements for TreeMatch on Random Data



optimality in the sense that each of the output elements
does belong to final results. The only exception is in Q3 and
Q6, where according to Theorem 7, we cannot guarantee the
optimality. Interestingly, Q6 is optimal for D1 and D2, but
only slightly suboptimal for D3. This can be explained that
D3 is a larger document than D1 and D2 so that D3
manifests the suboptimality which is hidden in D1 and D2.
Fig. 17a compares the performance of TreeMatch with other
three existing algorithms. Clearly, TreeMatch is the best for
all queries. This advantage is due to the fact that TreeMatch
guarantees that (almost) all of output elements belong to
final results, which, in general, avoids the I/O cost for
outputting useless intermediate results.

5.2.2 Large Size of Main Memory

In the second experiment, we allow the outputlist to buffer
all elements in the main memory. The purpose of this
experiment is to simulate the application where the
available main memory is large so that a big portion of
documents can fit in the main memory. Table 5 shows the
maximal number of elements buffered in order to avoid
outputting any useless intermediate results. An obvious
observation is that Q3 and Q6 need to buffer many
elements, but all other queries only need to buffer very
small number of elements. This also can be explained that
all queries except Q3 and Q6 belong to the optimal query
class. We compared the performance of three algorithms in
Figs. 17b and 18a. Obviously, TreeMatch is superior to
TwigStack and TJFast, reaching 20 to 95 percent improve-
ment in execution time for all queries.

5.2.3 Medium Size of Main Memory

In most real applications, the main memory size is not so
large that the whole document can fit in memory, neither so
limited that only the elements in a single path can load in
memory. In order to test whether TreeMatch has the ability
to fully exploit the available medium size of main memory,
we show the performance of algorithms in terms of the

number of output elements with varying the size of main
memory in Fig. 19. In this experiment, we chooseQ1 andQ6,
since Q1 is an optimal query for TreeMatch, but Q6 is
suboptimal. The experimental results show that the number
of output elements in TreeMatch is always much less than
that in TwigStack and TJFast for all sizes of main memory.
In particular, for Q1, with the increasing of the size of the
available main memory, the number of output elements in
TwigStack and TJFast decreases linearly. The reason is that
TwigStackand TJFast buffer the intermediate results in the
main memory and reduce the output of intermediate results.
But the numbers of output elements in TreeMatch remain
the same, which always equals the final result size. For query
Q6, all algorithms are not optimal. But TreeMatch still
outputs much less elements than TwigStack and TJFast.

5.3 Query Class Q=;==;�;<;:

In this section, we show the experimental results for query
class Q=;==;�<;:, which may contain order restriction,
negative edge, and wildcards. The tested queries are shown
in Figs. 20 and 21. Table 6 shows the number of output
elements and the number of final query answers in the case
of small main memory against synthetic data sets. For all
optimal queries (i.e., Q15-Q19), the number of output
elements is the same as that of final results. This result
verifies the correctness of theorems about the optimality of
TreeMatch algorithm.

Finally, we made experiments on the DBLP and TreeBank
with queries in Fig. 21. Since Q17, Q18, Q23, and Q24 have
negative edges, we compare TreeMatch with TwigStackList-
Not [26] in Fig. 18b. In addition, as Q14-Q16 and Q20-Q22 are
order-based queries, we compare TreeMatch with Order-
edTJ [17] in Fig. 22. From all tested queries, TreeMatch has
better performance than the previous algorithms. We
contribute this improvement to the larger optimal query
class TreeMatch algorithm achieves. Finally, as for queries
Q19 and Q25, since two queries contain wildcards, negative
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Fig. 19. Output data size with varying memory (medium memory).
(a) Q1. (b) Q6.

Fig. 17. Execution time of Q=;==;� on random data. (a) Small memory.
(b) Large memory.

TABLE 5
Number of Required Buffered Elements (Random Data)

Fig. 18. Execution time on DBLP, TreeBank data (large memory).
(a) Q=;==;�. (b) Q=;==;�;<;:.



edge, and order restriction, only our TreeMatch can answer

such complicated queries. The execution times of Q19 and

Q25 are 16 and 12 seconds, respectively. Note that the above

execution performance is achieved by using a relatively very

small buffer size (see Table 7), we expect that our system can

scale well for even gigabytes of XML data based on the

current machine.

6 RELATED WORK

In the context of semistructured and XML databases, tree-

based query pattern is a very practical and important class

of queries. Lore DBMS [9] and Timber [10] systems have
considered various aspects of query processing on such data
and queries. XML data and various issues in their storage as
well as query processing using relational database systems
have recently been considered in [18], [27], [22], [19]. Our
holistic algorithm TreeMatch for extended tree patterns can
leverage these previous techniques.

From the aspect of theoretical research about the optim-
ality of XML tree pattern matching, Choi et al. [8] developed
theorems to prove that it is impossible to devise a holistic
algorithm to guarantee the optimality for queries with any
combination of P-C and A-D relationships. Shalem and Bar-
Yossef [21] researched the space complexity of processing
XML twig queries. Their paper showed that the upper bound
of full-fledge queries with parent-child and ancestor-descen-
dant edges are OðDÞ, where D is the document size. In other
words, their results also theoretically prove that there exists
no algorithm to optimally process an arbitrary query Q=;==;�.
Our research, in this paper, moves the frontier forward by
identifying a large subclass of Q=;==;�, which can be
guaranteed to process optimally.

The recent papers (e.g., [17], [26], [6], [5]) are also closely
related to ours. In paper [17], a new holistic algorithm,
called OrderedTJ, is proposed to process order-based XML
tree query. In paper [26], an algorithm called TwigStack-
ListNot is proposed to handle queries with negation
function. Note that the optimal query classes identified in
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Fig. 20. Queries for class Q=;==;�;<;:. (a) Q14 (suboptimal). (b) Q15
(optimal). (c) Q16 (optimal). (d) Q17 (optimal). (e) Q18 (optimal). (f) Q19
(optimal).

Fig. 21. Query for DBLP and TreeBank data. (a) Q20 (optimal). (b) Q21
(suboptimal). (c) Q22 (optimal). (d) Q23 (optimal). (e) Q24 (suboptimal).
(f) Q25 (optimal).

Fig. 22. Execution time of Q=;==;�;< on random data. (a) Small memory.
(b) Large memory.

TABLE 6
Number of Output Elements and the Percentage of Useful

Elements for TreeMatch on Random Data

TABLE 7
Number of Required Buffered Elements (Random Data)



those papers are smaller than that in this paper. Chen et al.
[6] proposed different data streaming schemes to boost the
holism of XML tree pattern processing. They showed that
larger optimal class can be achieved by refined data
streaming schemes. We believe that our work is orthogonal
and complementary to their work. This is because based on
the theorems on “matching cross” in this paper, their
algorithm iTwigJoin [6] can be further enhanced to identify
a larger optimal query class with different streaming
schemes. In addition, Twig2Stack [5] is proposed for
answering generalized XML tree pattern queries. Note the
difference between generalized XML tree pattern and
extended XML tree pattern here. Generalized XML tree
pattern is defined to include optional axis which models the
expression in LET and RETURN clauses of XQuery state-
ments. But extended XML tree pattern is defined to include
some complicated conditions like negative function, wild-
card, and order restriction.

Besides the holistic algorithms, there are other ap-
proaches to match an XML tree pattern, such as ViST
([23], [24]) and PRIX ([20]), which transform an XML tree
pattern match to sequence match. Their algorithms mainly
focus on ordered queries, and it is nontrivial to extend those
methods to handle unordered queries and extended queries
studied in this paper. Note that the paper [18] made
comprehensive experiments to compare different XML tree
query processing algorithms (including sequence match
and holistic match) and concluded that the family of holistic
processing methods, which provides performance guaran-
tees, is the most robust approach. In this paper, we follow
the line of holistic XML tree pattern processing and give a
complete solution to efficiently process extended XML tree
queries with wildcards, negative predicates, and ordered/
unordered restriction.

7 CONCLUSIONS

We have introduced a notion of matching cross to address the
problem of the suboptimality in holistic XML tree patten
matching algorithms. We have identified a large optimal
query classes for three kinds of queries, that is Q=;==;�,
Q=;==;�;<, and Q=;==;�;<;:, respectively. Based on these results,
we have proposed a new holistic algorithm called TreeMatch
to achieve such theoretical optimal query classes. Finally,
extensive experiments demonstrate the advantage of our
algorithms and verify the correctness of theoretical results.
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