
 1

Fusion OLAP: Fusing the Pros of MOLAP and
ROLAP Together for In-memory OLAP

Yansong Zhang, Yu Zhang, Shan Wang and Jiaheng Lu

Abstract— OLAP models can be categorized with two types: MOLAP (multidimensional OLAP) and ROLAP (relational OLAP).

In particular, MOLAP is efficient in multidimensional computing at the cost of cube maintenance, while ROLAP reduces the data

storage size at the cost of expensive multidimensional join operations. In this paper, we propose a novel Fusion OLAP model to

fuse the multidimensional computing model and relational storage model together to make the best aspects of both MOLAP and

ROLAP worlds. This is achieved by mapping the relation tables into virtual multidimensional model and binding the

multidimensional operations into a set of vector indexes to enable multidimensional computing on relation tables. The Fusion

OLAP model can be integrated into the state-of-the-art in-memory databases with additional surrogate key indexes and vector

indexes. We compared the Fusion OLAP implementations with three leading analytical in-memory databases. Our comprehensive

experimental results show that Fusion OLAP implementation can achieve up to 35%, 365% and 169% performance improvements

based on the Hyper, Vectorwise and MonetDB databases respectively, for the Star Schema Benchmark (SSB) with scale factor

100.

Index Terms—MOLAP, ROLAP, vector index, surrogate key index, vector referencing

————————————————————

1 INTRODUCTION

N recent years, the real-time OLAP has changed the re-
quirements of traditional data warehouses. The sophisti-

cated techniques in traditional OLAP domain such as in-
dexed view, aggregation table, and cube materialization
are not adaptive for the “Velocity” requirement of Big Data.
Therefore, the low latency analytical data processing on
raw data turns to be the mainstream technique.

The emerging approach for the real-time OLAP is to em-
ploy in-memory databases as real-time OLAP engines. For
example, MonetDB [2], Vectorwise [3], SAP HANA [4],
Hyper [5], MemSQL [6] are the most representative in-
memory databases, and the traditional database vendors
also push forward the new in-memory database products
including Oracle Database In-Memory [7], IBM DB2 BLU
Acceleration [8], SQL Server in-memory Columnstore [9].
The SQL Server 2016 Analysis Service adds InMemory as
new storage model to the traditional OLAP models. For In-
memory OLAP, the performance is the most critical issue
because OLAP queries are on-the-fly executed with bil-
lions of tuples within seconds. Therefore, the in-memory
OLAP should keep improving performance for the increas-
ing data volume and real-time analysis requirements. On

the other hand, the in-memory OLAP should upgrade
from in-memory computing to hybrid coprocessor compu-
ting to achieve the massive parallel computing power from
the emerging hardware accelerators like GPU, Phi, FPGA
etc. The algorithms of in-memory databases employ CPU
architecture centric designs, and the hardware-conscious
algorithms deeply optimize the cache and pipeline mecha-
nisms, but the same optimizations are not adaptive to co-
processors comprised of many computing cores and sim-
ple control circuits with different programming models.
Moreover, the main stream coprocessors such as GPU, Phi,
FPGA etc. have different hardware features. Therefore, the
OLAP model and algorithm designs should be simple
enough to be adaptive for different types of coprocessors.

Since OLAP queries join big fact tables with multiple di-
mension tables for aggregation, the join performance dom-
inates the whole OLAP performance. In the academic com-
munity, there are a plethora of works on high performance
and efficient joins, such as radix partitioned hash join [10],
vectorized processing [11], JIT (just-in-time) compilation
[12], hardware-conscious and hardware-oblivious hash
join [13], etc. Furthermore, the developments of coproces-
sors such as GPGPU, Xeon Phi, and FPGA encourage the
hardware acceleration techniques [14-17]. Note that join
optimizations involve complex techniques [22][24], which
make implementations on coprocessors difficult to be op-
timized, and the algorithm complexity and platform heter-
ogeneity prevent in-memory databases from smoothly up-
grading to the emerging heterogeneous computing plat-
forms. The complexity of equi-join operation lies in that
one tuple is unware of the exact position of the matched
tuple, and thus the complex data structure and algorithms
have to be invented to boost the efficiency of key probing.
Nevertheless, such complexity could be significantly re-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

I

————————————————

 Yansong Zhang is with the DEKE Lab, Renmin University of China,
School of Information in Renmin University, and the National Survey Re-
search Centre at Renmin University of China, Beijing 100872, China. E-
mail: zhangys_ruc@ hotmail.com.

 Yu Zhang is with the National Satellite Meteorological Centre, Beijing
100081, China. E-mail: yuzhang@cma.gov.cn.

 Shan Wang is with the DEKE Lab, Renmin University of China, Beijing
100872, China. E-mail: swang@ruc.edu.cn.

 Jiaheng Lu is with Department of Computer Science, University of Hel-
sinki, Finland. E-mail: jiahenglu@gmail.com

Please note that all acknowledgments should be placed at the end of the paper, be-
fore the bibliography(note that corresponding authorship is not noted in affil-
iation box, but in acknowledgment section).

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

duced with the multidimensional model perspective, be-
cause the multidimensional model maps each fact data to
the exact position on each dimension. Therefore, the sim-
ple vector (acting as dimension) and positional addressing
can take the place of hash table and hash probing for equi-
join in OLAP, and the simple data structure may speedup
the processing on coprocessors platforms.

In this paper, we present the Fusion OLAP model, in
which we combine the relational storage model and multi-
dimensional computing model together to enable multidi-
mensional cube operation on relational storage without
materialized cube or costly relational joins. In a nutshell,
the salient feature of the Fusion OLAP model is to seam-
lessly integrate the multidimensional computation feature
of MOLAP with the relational storage of ROLAP as a Mul-
tidimension-Relational OLAP model (MROLAP), by run-
ning multidimensional access operations (e.g. dicing, slic-
ing) (rather than the traditional relational queries) on rela-
tional data. This feature not only enables Fusion OLAP to
outperform state-of-the-art representative analytical in-
memory databases but also to be adaptive for many core
coprocessors.

To implement Fusion OLAP model, we develop a set of
indexes to span multidimensional OLAP model and rela-
tional model. We use vector indexes as mappers between
the multidimensional model and the relational model. The
dimension tables are mapped to dimension vector indexes,
and the foreign key columns in fact table are mapped to
multidimensional index. We use a fact vector index to map
relational fact table to virtual multidimensional cube. With
these vector indexes, we can simplify OLAP operations
through efficient multidimensional computing and vector
index oriented aggregation.

To evaluate Fusion OLAP, we divide OLAP operations
into three independent phases: (1) The first phase is to gen-
erate dimension vector indexes to construct the virtual
cube; and (2) the second phase is to compute the fact vector
index to enable multidimensional retrieval, and (3) the last
phase is to retrieval fact data with vector index for aggre-
gation. The first and third phases can be implemented by
existing in-memory databases with SQL statements, and
the second phase is implemented with independent mod-
ule on multicore CPU, Xeon Phi and GPGPU platforms.
We use the state-of-the-art Hyper, Vectorwise, and
MonetDB databases as testbeds to evaluate how these high
performance in-memory databases improve performance
with a light-weighted vector index mechanism and an ex-
ternal multidimensional computing module. For the Star
Schema Benchmark (SSB) with scale factor 100, the Fusion
OLAP implementation can achieve up to 35%, 365% and
169% improvements upon Hyper, Vectorwise and
MonetDB databases, respectively.

Therefore, the main contributions of this paper are sum-
marized as follows:

1) We present the Fusion OLAP model for real-time
OLAP that simplifies the OLAP model with higher
performance. The Fusion OLAP model is adaptive
to the emerging heterogeneous architecture with
coprocessors like Xeon Phi and GPGPU.

2) We present the vector index as Fusion OLAP imple-
mentation mechanism for in-memory databases.
Vector index is a computation-oriented index and
shares fixed size columns for various queries. The
vector referencing and vector index oriented aggre-
gation achieve both better simplicity and efficiency
than traditional relational operations.

3) We implemented the simulated Fusion OLAP model
with three leading analytical in-memory databases.
By accelerating vector index computing with copro-
cessors, Fusion OLAP model can achieve the aver-
age 150% performance improvement. Moreover,
the experimental results show that the loose cou-
pling framework accelerates OLAP performance
with negligible side-effects on database systems.

Organization: The rest of paper is organized as follows.

We describe the Fusion OLAP model and the major char-
acteristics in Section 2. Section 3 discusses how to fuse mul-
tidimensional operation with relational database. Section 4
discusses the implementation of Fusion OLAP model on
relational databases. In Section 5, we evaluate the Fusion
OLAP with Hyper, Vectorwise and MonetDB databases.
Related work is discussed in Section 6. Finally, we con-
clude this paper in Section 7.

2 PRELIMINARIES

Multidimensional model is the fundamental data model of
data warehouse, where the data are organized by dimen-
sions which describe the diverse angles for comprehensive
analysis and exploration. Conceptually, OLAP performs
operations, e.g. rollup, drilldown, slicing, dicing and pivot,
on multidimensional dataset. In this section, we briefly dis-
cuss three OLAP models (i.e. MOLAP, ROLAP and HO-
LAP) and the virtual cube mechanism to efficiently answer
OLAP queries.

2.1 OLAP models

The major OLAP models include MOLAP (multidimen-
sional OLAP), ROLAP (relational OLAP) and HOLAP (hy-
brid OLAP).

(1) MOLAP model stores data with multidimensional
dataset organized as data cube, and the OLAP operation is
multidimensional retrieval in data cube. The major disad-
vantage of multidimensional model is the high overhead
of storage and precalculating. Multidimensional array
model is not efficient for the sparse data. Further, when the
dimensions are changed, the big data cube needs to be re-
constructed which is not adaptive for real-time OLAP.

(2) ROLAP model employs relational database as OLAP

Cube Virtual Cube

MDIndex Fact data

X

x1
Y

Z

x2

y1 y2

z1

z2

X

x1
Y

Z

x2

y1 y2

z1

z2

Fig. 1. Virtual cube.

YANSONG ZHANG, YU ZHANG, ET AL.: FUSION OLAP: FUSING THE PROS OF MOLAP AND ROLAP TOGETHER FOR IN-MEMORY OLAP 3

engine, and the multidimensional operation is trans-
formed as SQL queries. The data cube is materialized as
aggregation tables, and the multidimensional retrieval is
implemented as table scan. For ad-hoc OLAP queries, the
relational join performance dominates the ROLAP perfor-
mance. The essential difference between MOLAP and
ROLAP model is multidimensional addressing mecha-
nism. The MOLAP model is designed with double map-
ping between dimensions and fact data by organizing fact
data with the multidimensional array (even for NULL
cells), while ROLAP model simplifies the dimensional ad-
dressing mechanism with primary key and foreign key
constraints.

(3) Finally, HOLAP model is a tradeoff between MO-
LAP and ROLAP models, in which the detailed data are
stored as relational tables and frequently accessed aggre-
gate tables are stored in multidimensional arrays.

2.2 Virtual Cube mechanism

Virtual cubes are based on multidimensional data model,
where the dimensions are used as coordinate axises, and
the fact data are labelled with multidimensional coordi-
nate values instead of allocating real space in multidimen-
sional array.

Figure 1 gives an illustration of cube and virtual cube.
A multidimensional query mq defines the dataset of a sub-
cube inside the cube, and the query is executed as multidi-
mensional addressing in the cube according to coordinate
values of dimensions.

mq={A[x][y][z]|x ∈ [x1,x2] ∧ y ∈ [y1,y2] ∧ z ∈ [z1,z2]},
where A denotes a multidimensional array.

For virtual cube, the multidimensional query mq defines
a dimension addressing and relational operation.

mq={t[F]|t[X][x1,x2] ∧ t[Y][y1,y2] ∧ t[Z][z1,z2]},
where “” denotes dimensional addressing operation
from multidimensional index to the dimension.

The dimensions and fact data can be stored as rela-
tional tables for efficiency, and the virtual cube acts as a
multidimensional filter for multidimensional index in
ROLAP.

3 FUSION OLAP MODEL

In this section, we present Fusion OLAP model, which
combines high performance multidimensional computing
model in MOLAP and efficient relational storage model in
ROLAP.

3.1 Fusion OLAP framework

Fusion OLAP model inherits the virtual cube mechanism,

where the data are organized with logical multidimen-
sional storage and labelled with multidimensional index as
relational store, and the dimensions are used as coordinate
axises for the cube. With the column-store, the fact data are
divided into two parts, multidimensional index columns
and fact columns.

Figure 2 shows the Fusion OLAP framework. The di-
mensions and fact data are stored as relational tables, the
switcher between ROLAP and MOLAP is the vector index,
which is an extension of bitmap index with specified bits
to store more information. For dimension tables, each di-
mension table uses one vector index. The vector indexes
are used as dimensions to map data in virtual multidimen-
sional space, and the results of selection and projection op-
erations on dimension table are mapped to the vector in-
dex to enable the dimension vector index to be dimension
filters. All the the dimension vector indexes generated by
queries construct the multidimensional filter of a virtual
subcube space. Multidimensional index columns are
mapped to virtual cubes as multidimensional addressing
operation, and the query results are mapped to the fact
vector index to retrieve relational fact data for aggregation.
The fact vector index acts as a bitmap index on relational
fact data. Hence, the Fusion OLAP framework comprises
with two components, (i) the relational store for dimension
and fact data, and (ii) the multidimensional computing.

3.2 Fusion OLAP operations

We first define the basic Fusion OLAP operations and will
discuss the implementations in Section 4.

3.2.1 Dimension Mapping

A dimension mapping operation is to map each dimen-
sional tuple to distinct vector index cell. The vector index
plays the role of dimension like MOLAP, the vector offset
address represents dimension coordinate value.

The dimension mapping operation is defined as:
RVI={VI[x]|VI[x]=DimMap(π pδ key,st[R])}, where

operator denotes mapping dimension table R to vector in-
dex VI, DimMap function processes each dimensional tu-
ple t[R] as single value by select (s) and projection (p)
clauses on dimension table and then writes the value to
unique vector index cell according to dimension key (key).

Figure 3 gives the examples of dimension mapping. The
key column c_custkey is mapped to vector index offset ad-
dress. When query projects c_nation under the condition
c_region=’AMERICA’, the dimension is mapped to a vector
index with filtered c_nation values. When the query only
has predicate expressions, the vector index is a bitmap in-
dex.

3.2.2 Cube Aggregating

The multidimensional dataset is comprised of dimensions

Dimension Tables
Fact Table

RDB RDBVirtual cube

Base cube

Aggregation cube

Multidimensional Index

Vector Index

Fig. 2. Fusion OLAP framework.

[0]

[1]

[2]

[3]

C_custkey

1

2

3

4

1

1

C_nation

Egypt

Canada

Brazil

Thailand

C_region

AFRICA

AMERICA

AMERICA

ASIA

δc_region = 'AMERICA' πc_nation δc_region = 'AMERICA'

Canada

Brazil

Vector Index Bitmap Index

Customer

[0]

[1]

[2]

[3]

Fig. 3. Dimension Mapping.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

and fact data, and the dimension comprises with hierar-
chies of different analytical angles. With the definitions of
dimensions and hierarchies, the OLAP query can be nor-
malized as aggregation with specified dimensional or hier-
archical attributes, the aggregation can be modeled as sub-
cube which is also named as cuboid.

It is efficient to retrieve subcube for OLAP queries, but
the overhead of creating and maintaining the materialized
data cube is very high. For a real-time OLAP requirement,
we define the cube aggregating operation as creating ag-
gregate cube and mapping it to dimensions.

CVI={VI[x]|VI[x]=CubeMap(d[C])}, where CubeMap
function denotes mapping from aggregating cube(C) to
vector index for specified dimension (d).

When each vector index includes one aggregating cube
dimension, the vector indexes are directly refreshed with
aggregating cube index as shown in Figure 4(a). When one
vector index includes multiple aggregating cube dimen-
sions like Figure 4 (b), part dimension vector index has color
and size aggregating dimensions, the composite attributes
are normalized as linear address of the 2-dimension slice
(color and size).

3.2.3 Multidimensional filtering

Dimension mapping operation defines a virtual cube for
base data, the cube aggregating operation further defines a
virtual or physical cube for aggregation by mapping aggre-
gating cube to dimension vector indexes. Therefore, a fact
data F logically locates its position by multidimensional in-
dex (e.g., (x,y,z)), each index value is mapped to position in
dimension vector index to verify whether the current fact
data satisfies the query condition. If the fact data satisfies
all the conditions, the aggregating cube address can be
used as aggregating index for fact data.

We define this process as multidimensional filtering.
MDDim_VI=
{VI[x]=getAddress (MD1[x]VI1, MD2[x]VI2, …,

MDn[x]VIn) | MD1[x]VI1 ∧ MD2[x]VI2 ∧ … ∧
MDn[x]VIn}, where MD denotes multidimensional index

columns, Dim_VI denotes dimension vector indexes, get-
Address function translates the multidimensional address
of aggregating cube to single value address, “” denotes
the operation of multidimensional filtering from multidi-
mensional index to dimension vector indexes, and the re-
sult set is another vector index which is used as fact vector
index to identify which fact data should be accessed and
where the fact data should be aggregated in aggregating
cube.

The multidimensional filtering operation is described in
Figure 2, which is an inverted multidimensional address-
ing operation. The aggregating cube and query clauses are
decomposed to dimension vector indexes, the multidimen-
sional index columns map the multidimensional address
to dimension vector indexes as an inverted multidimen-
sional addressing operation, and the vector index oriented
fact data retrieval acts as multidimensional accessing.

3.2.4 Slicing

In Fusion OLAP model, slicing is a reduction operation
on aggregating cube, which changes the vector index. Fig-
ure 5(a) illustrates the slicing operation on vector indexes.
For slicing condition “year=1996”, the date dimension vec-
tor index is transformed from vector index to bitmap to
identify dimensional tuple position for condition
“year=1996”, and the bitmap is only used for filtering mul-
tidimensional index. For vector index with composite at-
tribute like Figure 5(b), the slicing condition “size=12” fil-
ters the vector index and removes size attribute from the
original vector index.

Canada

Brazil

China

France

1998

1996

Brazil

Canada

C
h

in
a

F
ra

n
ce

1998
1996

AggCube

CubeMap

1996

C
h

in
a

F
ra

n
ce

Brazil

Canada

Canada

Brazil

China

France

0

0

0

1

(a) Slicing for vector indexes

White, 7

Blue, 12

Blue, 7

White, 12

1998

1996

Blue

White

7

1
2

1998
1996

AggCube

CubeMap

Blue

White

1
2

1998
1996

Blue

White

1998

1996

(b) Slicing for composite vector indexes

Fig. 5. Slicing on Aggregating cube.

Canada

Brazil

China

France

1998

1996 Brazil

Canada

C
h

in
a

F
ra

n
ce

1996

India

G
er

m
an

y

1997
1998 Brazil

Canada

C
h

in
a

F
ra

n
ce

1996

India

G
er

m
an

y

1997
1998

1997

India

Germany

Brazil

China

France

1998

1996

India

Year={1996,1998}

C_nation={ Brazil , India }

S_nation={ China , France } 0

0

1

1

0

1

Fig. 6. Dicing on Aggregating cube.

Canada

Brazil

China

France

1998

1996

Brazil

Canada

C
h

in
a

F
ra

n
ce

1998
1996

1

0

0

1

1

0

AggCube

CubeMap
CubeMap

(a) Mapping vector indexes to aggregating cube

White, 7

Blue, 12

Blue, 7

White, 12

1998

1996

Blue

White

7

1
2

1998
1996

1

0

AggCube

CubeMap
CubeMap

1

2

0

3

(b) Mapping composite vector indexes to aggregating cube

Fig. 4. Aggregating cube mapping.

YANSONG ZHANG, YU ZHANG, ET AL.: FUSION OLAP: FUSING THE PROS OF MOLAP AND ROLAP TOGETHER FOR IN-MEMORY OLAP 5

3.2.5 Dicing

A dicing operation produces a subcube by assigning spec-
ified values of multiple dimensions. In Fusion OLAP
model, dicing operation is reduction operation on multiple
dimension vector indexes. For example, in figure 6, dicing
operation specifies values on aggregating cube dimen-
sions, the subcube is reconstructed and the dimension vec-
tor indexes are updated by removing values not including
in dicing conditions. By cube mapping, the dimension vec-
tor indexes are updated with new aggregating cube ad-
dresses.

3.2.6 Rollup

A rollup operation summarizes the data along a dimension
of aggregating cube. In Fusion OLAP model, rollup opera-
tion updates the aggregating cube and vector indexes. Fig-
ure 7 illustrates how rollup operation works. In this exam-
ple, aggregating cube comprises with 3 dimensions, year,
c_nation and s_nation, 3 dimension vector indexes give the
dimension mapping from 3 dimension tables to 3 vector
indexes. By cube mapping, 3 dimension vector indexes up-
date with aggregating cube addresses. The multidimen-
sional filtering operation produces a fact vector index to
retrieve fact data.

3.2.7 Drilldown

A drilldown operation shrinks the data view from high hi-
erarchy level to lower hierarchy level to give user a de-
tailed view. Figure 8 illustrates the drilldown operation.
For a high-level aggregating hierarchy like Region, hierar-
chy member “EUROPE” has two lower level hierarchy
members “Italy” and “Spain”, the drilldown operation on
“EUROPE” produces a new cube with other dimensions
and new dimension with lower hierarchy members. For
Fusion OLAP model, the drilldown operation produces
updates on vector indexes. For example, drilldown opera-
tion on hierarchy member “EUROPE” produces filtering
and update operation on corresponding vector index, “EU-
ROPE” is used as additional filtering expression for vector
index, and the filtered vector index cells are updated with
corresponding nation hierarchy values. By cube mapping

operation, the vector indexes are refreshed with new ag-
gregating cube addresses. The current fact vector index
needs two steps to refresh the fact vector index, the first
step is to further filter the fact vector index by filtering the
non-NULL values with drilldown value address constraint
(e.g., (1,0,0) is removed because the 2nd coordinate value 0
is not the address of “EUROPE”(1)), the second step is to
update the fact vector index values with new aggregating
cube addresses(the 2nd coordinate value is set to new na-
tion dimension address of aggregating cube).

3.2.8 Pivot

A pivot operation gives various views of data by rotating
the cube on specified dimension. A pivot operation only
changes the multidimensional address in fact vector index,
which can be easily implemented by multidimensional ad-
dress transformation. Figure 9 illustrates the pivot opera-
tion. The original aggregating cube is defined by nation, re-
gion and year dimensions, and we mark the three dimen-
sions as X, Y and Z. The multidimensional address in fact
vector index can be presented as (x,y,z). For example, we
use (1,0,1):5 denote 3-D address and 1-D address in Figure
9. If we rotate the cube by X axis, the new cube changes Y
and X axis. Then non-NULL value in fact vector index rep-
resents which fact data satisfies the multidimensional fil-
tering and the address of aggregating cube for summariz-
ing.

4 FUSION OLAP IMPLEMENTATIONS

This section discusses how to implement Fusion OLAP
model with state-of-the-art analytical in-memory data-
bases to accelerate OLAP performance.

4.1 Relational storage implementation

To make MOLAP model efficient in storage model, Fusion
OLAP model normalizes the multidimensional dataset as
relational data. The dimensions are stored as dimension ta-
bles, and the fact data are mapping to fact tables with mul-
tidimensional addresses as additional fact attributes, and
the storage model only contains relational dimensions and
fact data as base cube.

ROLAP model also uses relational database as OLAP
engine, and the dimensions are stored as dimension tables
with primary key constraints, and the fact data are stored
as fact table with foreign key constraints to guarantee each
fact data can uniquely locate one dimensional tuple in di-
mension table. The primary key constraint relaxes the con-
straint of multidimensional space, and it no longer strictly

Cuba

Brazil

Italy

China

France

1998

1996

Brazil

Cuba

C
h

in
a

F
ra

n
ce

1998

1996

CubeMap

Spain

Italy

Spain

AMERICA

AMERICA

EUROPE

EUROPE

Rollup

Nation Region

AMERICA

EUROPE

C
h

in
a

F
ra

n
ce

1996

1998

Rollup

(1,0,0)

(0,2,0)

(0,1,0)

(1,2,1)

1

0

2

0

1

1

0

3

0

0

1

1

Rollup

(0,0,1)

(1,3,0)

(1,0,0)

(0,1,0)

(0,0,0)

(1,1,1)

(0,0,1)

(1,1,0)

EUROPE

AMERICA

Fig. 7. Rollup operation.

Italy

China

France

1998

1996

C
h

in
a

F
ra

n
ce

1996

CubeMap

Spain

Italy

SpainAMERICA

AMERICA

EUROPE

EUROPE

Drilldown
Region Nation

AMERICA

EUROPE

C
h

in
a

F
ra

n
ce

1996 1998

(0,x,0)

(1,x,1)

0

0

1

0

1

1

0

1

0

1

Drilldown

(1,x,0)

(1,0,0)

(0,1,0)

(0,0,0)

(1,1,1)

(0,0,1)

(1,1,0)

Drilldown

1998

Drilldown

Fig. 8. Drilldown operation.

C
h

in
a

F
ra

n
ce

1996
1998AMERICA

EUROPE

(1,1,0):6

(1,0,0):4

(0,1,1):3

(0,0,1):1

(0,0,0):0

(1,1,1):7

(0,1,0):2

(1,0,1):5

(1,0,1):5

(1,0,0):4

(0,1,1):3

(0,1,0):2

(0,0,0):0

(1,1,1):7

(0,0,1):1

(1,1,0):6

X

Y Z

AMERICA
EUROPE 1996

1998

X

Y Z

C
h

in
a

F
ra

n
ce

(x, y, z)

Fig.9. Pivot operation.

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

represents multidimensional address, so that fact tuple re-
lies on relational join operations to explore the dimensional
tuple with the same key as fact tuple’s foreign key value.
The ROLAP performance is dominated by relational data-
base engine’s performance, and aggregate tables are com-
monly used to precalculating data cube to reduce rela-
tional operation overhead.

As a major difference, Fusion OLAP model maintains
the address mapping from MOLAP model, where the di-
mensions are strictly stored as relational tables with di-
mension coordinate system, and the original dimension co-
ordinate is used as primary key of dimensional table. This
dimension coordinate constraint guarantees directly map-
ping to vector index as dimension of virtual cube. Note that
the foreign key in fact tuple can directly map to virtual
cube instead of key probing oriented relational join opera-
tion.

4.2 Update mechanism

To store dimensions in relational database, we should em-
ploy additional mechanism to guarantee dimension coor-
dinate for updates.

Most databases support auto-increment constraint in
defining table statement, the “AUTO_INCREMENT” con-
straint defines a sequence for column with default step 1,
and the key is automatically set for new tuple. The follow-
ing SQL statement is an example of defining supplier di-
mension table, the column S_Key is primary key with auto-
increment constraint which is used as supplier dimension.

CREATE TABLE Supplier (

S_Key int NOT NULL AUTO_INCREMENT,

Name varchar(50) NOT NULL,

Nation varchar(50) NOT NULL,

Region varchar(50) NOT NULL,

PRIMARY KEY (S_Key));

When creating clustered index for S_Key column, the tu-
ples in dimension table have the same order with supplier
dimension in MOLAP model.

Data warehouses usually employ surrogate key as pri-
mary key with consecutive sequence like 0,1,2,…, which is
adaptive to be used as dimension coordinate for Fusion
OLAP.

MOLAP uses pre-calculated cube for OLAP operation,
where the updates on dimensions and fact data produce
re-constructing data cube overhead. ROLAP has no con-
straints to maintain multidimensional space or cube, and
the OLAP operation is transformed to SQL statements to
be executed by database engine, where the updates only
influence the base tables. Fusion OLAP model is a trade-
off between MOLAP model and ROLAP model. For insert
operation, Fusion OLAP model performs like ROLAP for
dimension and fact tables’ tuple appending. The extra con-
straint is auto-increment mechanism automatically assigns
new primary key for inserted dimensional tuple. For delete
operation, Fusion OLAP model follows the similar way as
ROLAP model, the difference is that Fusion OLAP maps
dimensional tuples to dimension so that the deleted di-
mensional tuples leave “holes” in dimension coordinate
axis. The deleted dimensional tuples can be managed with

three strategies: 1) deleting tuples for small and slowly in-
creasing dimension table, mapping dimension primary
key to dimension vector index, mapping the deleted tuples
to corresponding NULL cells; 2) reusing the primary key of
deleted tuple for new inserted tuple to change the map-
ping from dimension table to dimension vector index; and
3) reorganizing dimension table by assigning new auto-in-
crement column as new primary key and updates the for-
eign key column in fact table when deleted tuples exceed
threshold (by user configuration or by vector size relative
to cache size). Figure 10 illustrates reorganizing dimension
table by reusing deleted keys for existing tuples, identify-
ing the changes in vector index and updating the relative
multidimensional index column by vector index. For up-
date operation, because the primary key of dimension ta-
ble has no semantic information, we can add an extra con-
straint of not allowing change the value of existing primary
key.

Since the dimension table may use other semantic at-
tribute as clustered index column and the deleted dimen-
sional tuple may make primary key of dimension table in-
consecutive, we can relax the primary key of dimension ta-
ble as virtual dimension coordinate by using auto-incre-
ment constraint and allowing deleting tuples or out-of-
place update. In Figure 11, the dimension is strictly stored
by dimension coordinate order, the deleted item leaves a
NULL slice in the cube. The dimension table stores tuples
by logical dimension coordinate i.e. auto-increment col-
umn, so that the clustered index, out-of-place update, de-
lete mechanism may make dimension table out of order.
The dimension vector index is an intermediator between
dimension and dimension table, the vector size equals to
the maximum of auto-increment primary key of dimension
table, and the primary key is used as dimension vector in-
dex address for mapping dimension tuple. The deleted tu-
ple maps to corresponding NULL cell in dimension vector.

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

1

2

3

4

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#06 German EUROPE

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#05 China ASIA[3]

C_custkey

1

2

3

4

Cust#05 China ASIA[4]

Cust#06 German EUROPE[5]

5

6

NULL

NULL

NULL

NULL

4

2

[0]

[1]

[2]

[3]

[4]

[5]

l_CK

5

4

2

6

1

3

5

4

6

3

6

l_CK

4

4

2

2

1

3

4

4

2

3

2

Fig.10. Batched consolidation of dimension table

C_custkey

1

2

3

4

C_nation

Egypt

Canada

Brazil

Thailand

C_region

AFRICA

AMERICA

AMERICA

ASIA

Customer

5

6

Mexico

Spain

AMERICA

EUROPE

C_custkey

3

2

4

1

C_nation

Brazil

Canada

Thailand

Egypt

C_region

AMERICA

AMERICA

ASIA

AFRICA

6 Spain EUROPE

Customer

AFRICA

AMERICA

AMERICA

ASIA

EUROPE

[0]

[1]

[2]

[3]

[4]

[5]

Dimension Dimension table Dimension vector index

Fig.11. Logical dimension coordinate.

YANSONG ZHANG, YU ZHANG, ET AL.: FUSION OLAP: FUSING THE PROS OF MOLAP AND ROLAP TOGETHER FOR IN-MEMORY OLAP 7

4.3 Vector index for Fusion OLAP

Vector index is the intermediator between MOLAP and
ROLAP. From MOLAP perspective, dimension vector in-
dex is a materialized dimension coordinate, the results of
slicing and dicing operations project multidimensional ad-
dresses to corresponding dimension vector indexes and
the aggregating cube further projects aggregating cube ad-
dresses to corresponding dimension vector indexes. From
ROLAP perspective, dimension vector index is a bitmap
index to filter foreign key columns and keys for grouping
clause. The dimension vector index seems like a wide bit-
map index, but the major differences are described as:
 Vector length. The length of bitmap index equals to

the rows of relative table, while dimension vector index
length may exceed the rows of relative dimension table for
keeping deleted tuple positions.
 Vector map. Bitmap index maps bit to physical tuple

position, while vector index maps each cell to logical di-
mension coordinate (auto-increment primary key), the key
oriented mapping is adaptive to the update mechanism of
relational database.
 Vector dependency. Bitmap index is used for filtering

the corresponding table, while vector index is used for fil-
tering the referencing table, the foreign key maps to the
primary key position in vector index.
 Vector value. The value in bitmap denotes whether

the corresponding tuple satisfies the selection condition.
The value in vector index denotes the key for grouping.

Algorithm 1, the implementations for OLAP operations,
describes the algorithm of creating dimension vector index.
A hash table can be used to assign a unique sequential ID
for each unique grouping attributes set, and mark the ID
in dimension vector index according to primary key.

In relational database, Algorithm 1 can be simulated by
a set of SQL statements. For example, part table has predi-
cate p_category = 'MFGR#12' and outputs p_brand1 as
grouping attribute, the dimension vector index of part table
can be implemented by:

Table vect represents aggregating cube dimension for
each distinct grouping attribute with auto-increment ID,
Table dimvec represents the compressed dimension vector

index with sequence of primary key and aggregating cube
dimension ID.

If Fusion OLAP model is integrated into in-memory da-
tabase, a customized creating dimension vector index API
should be implemented to make this process more efficient
than using SQL statements with scan and join cost.

4.4 Multidimensional filtering

Multidimensional filtering acts as an inverted multidimen-
sional addressing of MOLAP, the multidimensional index
value is mapped to corresponding dimension vector index
position for non-NULL filtering, and the filtered multidi-
mensional index calculates the aggregating cube address
by dimension vector index values. The multidimensional
filtering can be described as Algorithm 2.

In Algorithm 2, dimension vector index (DimVec[]) is
used as dimension filter for multidimensional index
(MI[][]), fact vector index (FVec[]) is used as both multidi-
mensional bitmap index and aggregate cube index for fact
data. The mapping from multidimensional index to di-
mension vector index inherits the inverted multidimen-
sional addressing feature of MOLAP, it is similar to the pri-
mary key – foreign key reference in relational database
with the essential difference that multidimensional index
references the dimension vector index by addressing in-
stead of key probing. This inverted multidimensional ad-
dressing mechanism is named as Vector Referencing oppo-
site to foreign key referencing in relational databases, and
the vector referencing process plays the same role as foreign
key join in relational databases.

The performance of vector referencing is dominated by
the latency of accessing the vector. The vector access la-
tency can be improved by two roadmaps, by cache locality
or by simultaneous multi-threading. State-of-the-art multi-
core processors equip with large LLC (Last Level Cache,
e.g., 60M Cache in Intel® Xeon® Processor E7-8891 v4 pro-
cessor), the LLC size is large enough for most of dimen-
sions in data warehouses. For big vectors that exceed the
LLC size, the vector referencing mechanism enables directly
accessing the vector cell with at most one cache line miss.
The cache locality feature is adaptive to multicore proces-
sor architecture and the emerging MIC (Many Integrated
Core) Phi coprocessor architecture with hierarchical cache.
The simultaneous multi-threading technique also helps to
improve vector referencing performance by overlapping
memory access latency. The multicore processor supports
two threads for each core, the many-core Phi coprocessor
supports four threads for each core which can further im-
prove memory access latency. The multidimensional filter-
ing algorithm uses shared dimension vector indexes, the

Algorithm 1 Algorithm for Creating Dimension Vector Index

1: Vector Vec; //defining vector data structure

2: HashTable HT; //defining hash table

3: AttributeSet GP; //defining grouping attribute set
4: Sequence ID; //defining auto-increment various value

5: InitVec(Vec,max(R[PK])); //initiate vector by maximum PK value

6: InitHT(HT(key,ID)); //initiate hash table with key and sequence

7: GP=extractGP(Q,R); //get grouping attributes for R and query Q

8: for each R[PK] do

9: ID=HashProbing(R[GP]); //probe grouping attributes for ID

10: Map(ID,R[PK],Vec); //store ID value to vector position R[PK]

11: end for

Algorithm 2 Algorithm for Multidimensional Filtering

1: InitVec(FVec,RowNumber(F); //initiate fact vector by fact data rows

2: for i=0 to DimNum do //loop for multidimensional index columns

3: for j=0 to RowNumber(F) do //loop for fact data rows

4: if (i>0 && FVec[j] is not NULL) //fact vector index as filter

5: if (DimVec[i][MI[i][j]] is NULL) //block by dimension filter

6: FVec[j]=NULL //label fact vector index cell as NULL

7: else

8:
 FVec[j]+=DimVec[i][MI[i][j]]*Card[i];
//incrementally calculate aggregate cube address for fact vector index

9: end if
10: end if
11: end for
12: end for

CREATE TABLE vect(groups CHAR(30),id INTEGER AUTO_INCRE-

MENT);

CREATE TABLE dimvec(vecid INTEGER, id INTEGER);

INSERT INTO vect(groups) SELECT DISTINCT p_brand1 FROM part

WHERE p_category = 'MFGR#12';

INSERT INTO dimvec SELECT p_partkey,id FROM vect,part WHERE p_cate-

gory = 'MFGR#12' AND groups=p_brand1;

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

equal length multidimensional index columns and fact
vector index column, the thread for multidimensional in-
dex row reads the shared dimension vector indexes and
writes the result to the same position in fact vector index
column with no writing conflicts. This design is also adap-
tive to GPU architecture with thousands of cores and SIMT
(Single Instruction Multiple Threads) technique. In section
5, we will show how to improve multidimensional filtering
performance with MIC Phi coprocessor and NVIDIA K80
GPU.

4.5 Vector index oriented aggregating

From MOLAP perspective, fact vector index acts as linear
multidimensional addresses for compact fact data store.
From ROLAP perspective, fact vector index acts as combi-
nation of bitmap index and aggregating index, the non-
NULL cell can be used as either aggregating cube address
or compressed hash key for grouping. With fact vector in-
dex, relational database can efficiently execute aggrega-
tions on fact data just as MOLAP engine does.

Algorithm 3 describes the vector index oriented aggre-
gating. For an OLAP query, the grouping expression is in-
tegrated into fact vector index as single integer value, the
aggregation can be performed with aggregating expres-
sion extracted from query Q and grouping value from fact
vector index for each non-NULL position in fact vector in-
dex. The aggregating AggPro can be performed with either
multidimensional array (as aggregating cube) or hash ta-
ble. The result tuple is labeled by integer key, by mapping
from key to aggregating cube, the result key is refreshed
by group expression, and the result set is output as OLAP
query results.

The fact vector index can be further optimized as binary
table with row ID and value for highly selective queries,
the relational database needs additional modification to
support vector index oriented table scan. In Section 5, we
simulate the fact vector index mechanism by using an ad-
ditional column as fact vector index, the multidimensional
filtering results are refreshed to the column, and the aggre-
gation can be normalized as:

5 EXPERIMENTS

In this section, we evaluate the performance of Fusion
OLAP model with benchmarks to simulate how Fusion
OLAP model can accelerate state-of-the-art in-memory an-
alytical database engines.

5.1 Experiment design and configuration

Fusion OLAP model targets at accelerating the perfor-
mance of ROLAP model by integrating virtual multidi-
mensional addressing features into relational database en-
gine. Therefore, the experiment design majorly focuses on
the updating maintenance cost, the core operator of Fusion
OLAP model on different computing platforms and simu-
lated benchmark performance.

The core operators of Fusion OLAP model are vector ref-
erencing and multidimensional filtering operators, which
define the mapping from fact data address to dimension
and multidimensional addressing from fact data to query
concerned dimensions. These two operators are majorly
implemented as hash join and star join in relational data-
base engines. The previous research provides an open-
source hash join algorithms in [13], and we adopt these
open-source codes as testbed for evaluating Fusion OLAP
operator performance. We add modules for vector referenc-
ing and multidimensional filtering operators inside the
open-source codes to obtain the code efficiency and perfor-
mance measurements. The compiled join performance is
close to the JIT-compilation Hyper’s join performance.

For a fair comparison, we install the most representative
in-memory analytical databases of Hyper, Vectorwise and
MonetDB with SSB (star schema benchmark) at Scale Fac-
tor of 100 with 600,000,000 fact rows and 4 dimension ta-
bles. SSB is normalized star schema benchmark opposite
to 3NF oriented TPC-H benchmark, the 13 testing queries
are divided into 4 groups with 1, 3 and 4 dimension tables
joining with fact table, and each query group represents a
drill-down operation in which there are 3 or 4 queries with
selectivities from high to low for fine-grained analysis. SSB
queries can be used as standard OLAP operations while
most TPC-H queries are difficult to be used as OLAP oper-
ations with sub-query or cross dimension clauses. Fusion
OLAP is designed as OLAP accelerator rather than general
purpose query processing accelerator, so we limit our re-
search scope in OLAP performance evaluation with SSB.
Hyper is downloaded from [5], the Vectorwise version is
4.2.0 which is download from the action website
(http://esd.actian.com/), and MonetDB is downloaded from
MonetDB website (https://www.monetdb.org/downloads/) of
the latest version MonetDB-11.21.19.

The experiments were performed on a DELL Power
Edge R730 server with 2 Intel Xeon E5-2650 v3 @ 2.30GHz
CPUs and 512 GB DDR3 main memory. Each CPU has 10
cores and 20 physical threads. The OS is CentOS, and the
Linux kernel version is 2.6.32-431.el6.x86_64. The gcc com-
piler version is 4.4.7. The server equips with two Intel Xeon
Phi 5110P coprocessors, each coprocessor has 60 cores and
240 threads. Moreover, the server also equips with a
NVIDIA K80 GPU with two GK210 GPUs.

5.2 Maintenance cost evaluation

We evaluated Fusion OLAP maintenance cost by two per-
spectives, i.e. the storage efficiency and update overhead.

Algorithm 3 Algorithm for Vector Index oriented Aggregating

1: for i=0 to RowNumber(F) do //loop for fact table

2: if (FVec[i] is not NULL) //filter fact table

3:
Res=AggPro(extractAggExpression(Q), FVec[i]);

//aggregate by query defined expression and group address

4: end if
5: end for
6: for each t in Res do

7:
Gexpr=addToCube(t.key,AggCube);

//get grouping attributes by mapping key to Aggregating Cube

8: updateRes(t.key, Gexpr);

9: end for

SELECT VecIdx,< AggExp > FROM F WHERE VecIdx IS NOT NULL GROUP

BY VecIdx;

YANSONG ZHANG, YU ZHANG, ET AL.: FUSION OLAP: FUSING THE PROS OF MOLAP AND ROLAP TOGETHER FOR IN-MEMORY OLAP 9

The updates for dimension can be labelled in dimension
vector, as shown in Figure 10, where the NULL cell repre-
sents non-update key, and the non-NULL cell represents
the new assigned dimension key for original dimension
key. The refreshing on multidimensional index produces a
vector referencing for multidimensional index column and
dimension column. Figure 12 gives the update perfor-
mance for 4 dimensions in SSB, the fact table has
600,000,000 rows, the dimension row numbers of date, sup-
plier, part and customer are 2,555, 200,000, 1,528,771, and
3,000,000. The x-axis represents update ratios, 0% repre-
sents a baseline vector referencing join performance. The
overhead of update increases as the update rate rises, and
the maximal update overhead are 90.42%, 91.09%, 64.81%,
and 61.74% higher than original vector referencing operator.

In TPC-H, the updates on customer table involves multi-
dimensional index column with 150,000,000 rows in orders
table, other vector referencing operations all involve multi-
dimensional index columns with 600,000,000 rows in linei-
tem table, the supplier and part dimensions have 1,000,000
and 20,000,000 rows, the PARTSUPP (80,000,000 rows) and
order (150,000,000 rows) tables can also use vector referenc-
ing operation to accelerate traditional joins. Figure 13 gives
the update overhead for TPC-H, for small dimension vec-
tors (smaller than LLC size) from supplier, part and customer
tables, the update overhead increases slowly as update rate
rises, while large vectors for PARTSUPP and order tables,
the middle update rates produce higher update overhead,
the lower and higher update rates produces lower update
overhead for auto branch prediction optimization improv-
ing the memory access for big vectors. The maximal update
overhead are 52.95%, 66.73%, 46.43%, 20.42% and 15.37%
higher than original vector referencing operator, the bigger
the vector size is, the smaller the update overhead in-
creases.

Logical surrogate key index mechanism is described in
Section 4.2 Figure 11. We implemented this method by
writing payload to vector cell mapped by key. Table 1 gives

the increment rate of logical surrogate key index oriented
vector referencing algorithm on TPC-DS(SF=100).

For small dimension table that the corresponding vector
size is smaller than LLC, logical surrogate key index
method random writes to vector in cache, the increased
build vector overhead is low. For big dimension tables
with large vector, logical surrogate key index method in-
volves more cache misses for random writing to vector, the
increased build vector overhead is 2-3 times of physical
surrogate key index method. But the proportion of build
vector phase in total phases is very low, so that logical sur-
rogate key index oriented vector referencing operation only
pays limited overhead for vector mapping.

5.3 Core operator performance evaluation

For ROLAP, the core operator is foreign key join from fact
table to dimension table, and the core operator of Fusion
OLAP is vector referencing from multidimensional index to
dimensions. The performance of foreign key join is domi-
nated by how fast the referenced tuple is probed by key,
while vector referencing is dominated by the speed of the
vector cell read.

We first evaluate the performance of NPO and PRO al-
gorithm in our platform to verify whether the performance
status is consistence with conclusions of [13]. We configure
NUM_PASSES 2 and NUM_RADIX_BITS 14 parameters
for PRO which yield the best cache residency for our CPU
through experiments. We use the open source code for Phi
platform from [15] as Phi version NPO and PRO algo-
rithms. Our vector referencing algorithm is compiled with
icc compiler for Phi version. As we can not get available
open source GPU hash join algorithm, we develop the
cuda version vector referencing algorithm. In addition, we
verify different configurations for block number and
thread number to set the optimal parameters to compare
the performance in multicore CPU, many-core MIC Phi
and GPU platforms.

For SSB, the dimension vector indexes are smaller than
LLC size (2.5KB for date dimension, 200KB for supplier di-

Fig. 12. Multidimensional index update performance for SSB.

Fig. 13. Multidimensional index update performance for TPC-H.

TABLE 1
LOGICAL SURROGATE KEY INDEX ORIENTED VECTOR REFERENC-

ING OPERATION PERFORMANCE ON TPC-DS

TPC-DS

Cycles Increment %

AIR Execution Time (cycles) BUILD

in TO-

TAL%
BUILD % PROBE % TOTAL %

reason 36.69% -0.57% -0.17% 1.06%

store 42.48% -0.12% -0.07% 0.13%

promotion 37.83% 0.41% 0.46% 0.13%

household_de-

mographics
16.99% -0.03% -0.00003% 0.18%

date_dim 286.70% -0.13% 0.08% 0.07%

time_dim 298.47% -0.04% 0.20% 0.08%

item 112.67% 0.06% 0.29% 0.20%

customer_address 190.71% 0.29% 1.08% 0.41%

customer_de-

mographics
171.94% -0.04% 1.35% 0.81%

customer 207.83% 0.08% 1.64% 0.75%

store_returns 246.21% -5.28% 7.76% 5.19%

0,0

0,5

1,0

1,5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

U
p

d
a
te

 p
er

fo
rm

a
n

ce
(c

y
cl

e/
tu

p
le

)

Update rate for dimension

Multidimensional Index Update Overhead for SSB

date supplier part customer

0,0

1,0

2,0

3,0

4,0

5,0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%U
p

d
a
te

 p
er

fo
rm

a
n

ce
(c

y
cl

e/
tu

p
le

)

Update rate for dimension

Multidimensional Index Update Overhead for TPC-H

customer supplier part PARTSUPP order

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

mension, 1.5MB for part dimension, 3 MB for customer di-
mension and 25MB for LLC), the performance is very high
for cache resident vector referencing. Figure 14 shows the
performance of NPO, PRO and vector referencing algo-
rithms for SSB. On the multicore CPU platform, vector ref-
erencing achieves higher performance for large L3 cache
slice (2.5MB per core) and small vector size. Hash table or-
ganizes tuples in hash bucket, and each hash bucket has 8-
byte header and 8-byte next pointer. While Fusion OLAP
model only employs single vector for payload attribute
without key attribute and other additional space overhead,
the vector size can be further reduced by compression on
low cardinality grouping attributes. The small vector size
achieves performance gains by reducing cache misses from
both TLB and LLC.

On the MIC Phi platform, vector referencing proves
higher performance than on CPU platform for date and sup-
plier dimensions and lower performance for part and cus-
tomer dimensions. The Phi coprocessor has 512KB shared
L2 cache, when vector size is lower than 512 KB, the mas-
sive parallel threading accelerates the performance, when
vector size is higher than 512 KB, the vector referencing from
share L2 cache ring produces higher latency than that from
LLC on CPU. On the GPU platform, the vector referencing is
accelerated by SIMT mechanism rather than cache, and the
performance is lower than CPU and Phi for small vectors
and higher than CPU and Phi for larger vector that exceeds
the LLC size. NPO also achieves high performance for
small dimension table by caching, and the performance
drops remarkably as dimension table size increases. For
Phi with smaller LLC size per core, the NPO performance
on Phi is usually lower than on CPU for moderate dimen-
sion tables. PRO proves constant performance on CPU and
Phi for different size of dimension tables by the normalized
radix partitioning and in cache probing at the cost of 2x
memory consumption for partitioning two tables.

Figure 15 shows the results for TPC-H. The sizes of five
dimension vectors are 15MB, 1MB, 20MB, 80MB and
150MB, and the corresponding hash table is much larger
than dimension vector. For cache fit joins, vector referencing
and NPO all performs well on CPU platform, for large
hash table, PRO outperforms NPO. For vector referencing al-
gorithm, small vector size achieves the highest perfor-
mance on CPU platform with large LLC, big vector
achieves higher performance on GPU with SIMT mecha-
nism than on CPU and Phi.

TPC-DS schema has multiple small dimension tables,
whose size increase much slower than that of the fact ta-
bles. In addition, all the dimension vector sizes are smaller
than LLC size. the Vector referencing algorithm performs
well on CPU, Phi and GPU platforms, and NPO outper-
forms PRO for most cases on CPU and Phi platforms. For
big tables, PRO outperforms NPO on both CPU and Phi
platforms, and GPU also outperforms Phi for big tables.

As summary, vector referencing performance are majorly
influenced by caching and memory accessing latency.
When vector size is smaller than 512 KB (L2 cache size of
Phi), Phi wins for its massive parallel threads; when vector
is smaller than 25 MB (LLC size of CPU), CPU wins for vec-
tor caching; When vector is larger than LLC size, GPU wins

for SIMT mechanism to overlap memory access latency.
Multi-table join is the core function of OLAP with mul-

tidimensional accesses. We use SSB and TPC-H as typical
cases to evaluate multi-table join performance of state-of-
the-art in-memory databases Hyper, Vectorwise and
MonetDB with SQL statements. We also evaluate the Vec-
tor Referencing performance on CPU, Phi and GPU. We use
the fixed length fact vector index, vector referencing and col-
umn-at-a-time processing as unified OLAP framework for
different queries. For CPU and Phi platforms, the perfor-
mance is dominated by caching dimension vector indexes,
for GPU platform, and by memory accessing with SIMT
mechanism. Table 2 shows the results of each multi-table
join performance. GPU achieves the best performance for
join with big tables, and the SIMT mechanism can effi-
ciently overlaps the memory latency. For in-memory data-
bases, multi-table join is still costly especially for joining
with big table cases.

For Fusion OLAP model, the schema defines the vector
index computing framework, and each query refreshes the
index vectors with different value and distributions. To
measure how different selectivities and amounts of tables
affect performance, we use SSB to evaluate multidimen-
sional filtering performance with groups of queries (with
1,3,4 dimension tables, different selectivities for roll-up
and drill-down OLAP operators).

Fig. 14. Foreign key join performance for SSB.

Fig. 15. Foreign key join performance for TPC-H.

Fig. 16. Foreign key join performance for TPC-DS.

0

1

2

3

4

VecRef NPO PRO VecRef NPO PRO VecRef

2*CPU@40threads 2*Phi@240threads 2*G210

P
er

fo
rm

a
n

ce
(n

s/
tu

p
le

)

date

supplier

part

customer

0

2

4

6

VecRef NPO PRO VecRef NPO PRO VecRef

2*CPU@40threads 2*Phi@240threads 2*G210

P
er

fo
rm

a
n

ce
(n

s/
tu

p
le

)

customer

supplier

part

PARTSUPP

order

0

1

2

3

4

5

VecRef NPO PRO VecRef NPO PRO VecRef

2*CPU@40threads 2*Phi@240threads 2*G210

P
er

fo
rm

a
n

ce
(n

s/
tu

p
le

)

store promotion
household_demographics date_dim
time_dim item
customer_address customer_demographics
customer store_returns

YANSONG ZHANG, YU ZHANG, ET AL.: FUSION OLAP: FUSING THE PROS OF MOLAP AND ROLAP TOGETHER FOR IN-MEMORY OLAP 11

The predicate expressions are mapped to dimension
vectors as dimension filters, and the fact vector is used to
incrementally calculate aggregating cube address and fil-
ter for next vector referencing operation.

We manually execute the algorithm with different selec-
tivity and vector size orders on CPU and Phi platforms. We
choose the minimal executing time as multidimensional
filtering time. For GPU platform, we simply use selectivity
prior strategy as GPU doesn’t rely on cache.

Figure 17 illustrates the multidimensional filtering exe-
cution time for SSB with Scale Factor 100. For queries with
relative high selectivity such as Q2.1, Q3.1, Q4.1, GPU
works well for thousands of parallel working threads. For
low selectivity queries, both CPU and Phi work well with
sparse vector oriented random scan for the branch predic-
tion and auto pre-fetch mechanisms. For the average mul-
tidimensional filtering execution time, GPU outperforms
Phi and Phi outperforms CPU.

5.4 Benchmark performance evaluation

Fusion OLAP model targets at fusing the relational OLAP
model and multidimensional OLAP model together, in
which the dimensions and fact data are stored as relational
tables. OLAP queries are transformed to multidimensional
computing. The ideal roadmap is to add new modules in-
side the in-memory database such as vector index manage-
ment module for dimension vector index and fact vector
index, the multidimensional filtering module and vector
oriented aggregating module. We have verified that the
core Multidimensional Filtering algorithm can be imple-
mented inside BAT module of open-source MonetDB with
fetchjoin() function, and the vector index oriented aggrega-
tion can also be implemented as SQL processing with vec-
tor index BAT as grouping column, but entirely integrating
Fusion OLAP model is a complex work involving adding
new index and modifying system modules such as MAL-
parser, MALoptimizer, MALscheduler, MALengine.
Moreover, the MAL engine is quite different to other non-
open-source in-memory databases.

Therefore, in our experiments, we use SQL statements
to simulate creating dimension vector indexes. The fact
vector index is simulated by adding a column, and vector
index aggregating is simulated by SQL based aggregating
with vector index column as WHERE and GROUP BY

clause. The multidimensional filtering operation is de-
signed as external module with normalized vectors as in-
put and output, and the module can be adaptive to migrate
to MIC Phi, GPU platforms or database engines. For exam-
ple, Q4.1 of SSB is a typical OLAP query with four dimen-
sion tables, the dimension tables act as bitmap index or di-
mension vector index. The dimension with predicate ex-
pression (yet without grouping attribute) is used as bitmap
index for filtering, while the dimension (with or without
predicate expression) which appears in GROUP BY clause
acts as vector index.

Q4.1:

SELECT d_year, c_nation, SUM(lo_revenue - lo_supplycost) AS profit

FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey AND lo_partkey = p_partkey

AND lo_orderdate = d_datekey AND c_region = 'AMERICA'

AND s_region = 'AMERICA' AND (p_mfgr = 'MFGR#1' OR p_mfgr = 'MFGR#2')

GROUP BY d_year, c_nation;

For Fusion OLAP model, the OLAP processing is di-
vided into three stages. In first stage, we simulate the di-
mension vector index generating with SQL statements.

(1) creating dimension vector index for customer table

CREATE TABLE vect(groups CHAR(30),ID INTEGER AUTO_INCREMENT);

CREATE TABLE dimvec(key INTEGER, vec INTEGER);

INSERT INTO vect(groups) SELECT DISTINCT c_nation FROM customer

WHERE c_region = 'AMERICA';

INSERT INTO dimvec SELECT c_custkey, ID FROM vect,customer WHERE c_re-

gion = 'AMERICA' AND groups=c_nation;

(2) creating dimension bitmap index for supplier table

CREATE TABLE bitmap(ID INTEGER);

INSERT INTO bitmap SELECT s_suppkey FROM supplier WHERE s_region =

'AMERICA';

(3) creating dimension bitmap index for part table

CREATE TABLE bitmap(ID INTEGER);

INSERT INTO bitmap SELECT p_partkey FROM part WHERE p_mfgr = 'MFGR#1'

OR p_mfgr = 'MFGR#2';

(4) creating dimension vector index for date table

CREATE TABLE vect(groups INTEGER,ID INTEGER AUTO_INCREMENT);

CREATE TABLE dimvec(key INTEGER, vec INTEGER);

INSERT INTO vect(groups) SELECT DISTINCT d_year FROM date;

INSERT INTO dimvec SELECT d_datekey, ID FROM vect, date WHERE

groups=d_year;

TABLE 2

MULTI-TABLE JOIN PERFORMANCE(MS).

Bench. Multi-Table Joins
VecRef@

CPU

VecRef@

Phi

VecRef@

GPU
MonetDB Vectorwise Hyper

S
S

B

lineorder⋈date 46 83 47 719 412 141

lineorder⋈date⋈
supplier 81 175 133 1400 1005 519

lineorder⋈date⋈
supplier⋈part 357 459 242 2100 1598 1161

lineorder⋈date⋈
supplier⋈part⋈cus-

tomer
491 769 359 3100 2280 2295

T
P

C
-H

lineitem⋈supplier 161 254 74 2300 851 399

lineitem⋈supplier⋈
part 307 611 269 8700 4024 2430

lineitem⋈supplier⋈
part⋈orders 864 1090 470 63000 7028 4133

lineitem⋈supplier⋈
part⋈orders⋈cus-

tomer
913 1204 530 66000 8151 5252

Fig. 17. Multidimensional filtering performance for SSB.

0

100

200

300

400

500

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 AVG

T
im

e(
m

s)

Queries

Mutidimensional Filtering for SSB

2*CPU@40threads 2*Phi@240threads 2*G210

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

By these SQL statements, we obtain the relational table
as dimension vector indexes. For the build-in dimension
vector index generator, creating group dictionary table and
creating dimension vector index by join can be optimized
within the single scan as described in Algorithm 1.

Table 3-5 give the results of SQL oriented dimension
vector index creating time of Hyper, Vectorwise and

MonetDB.
Hyper cannot supports AUTO_INCREMENT con-

straint, and thus we simply use a NULL integer value to
simulate dimension key. Each query has different amount
of dimension vector indexes or bitmap indexes. We sum-
marize all the time for generating group dictionary table
and dimension vector index table as total time (ToTime)
for generating dimension vector indexes in the first stage.

In the second stage, the multidimensional filtering stage
uses our compiled program to evaluate execution time for
CPU, Phi and GPU platforms. The execution time is shown
in figure 17.

In the third stage, we get a fact vector index to identify
which fact tuple belongs to the multidimensional subset of
query and the address in aggregating cube. The OLAP
query is simplified as single table aggregation. In experi-
ments, we add a vector column in fact table, update the col-
umn with -1 (denotes NULL) or group ID (or 1 for bitmap
index) according to selectivity and group cardinality. For
examples, for Q1.1, we update vector column with 1 and -1
according to selectivity, and we rewrite the SQL statement
with additional predicate expression “vector=1”.

Q1.1: UPDATE lineorder SET vector=(CASE WHEN lo_orderkey <= 0.142857 *

600000000 THEN 1 ELSE -1 END);

SELECT SUM(lo_extendedprice*lo_discount) AS revenue FROM lineorder

 WHERE vector=1 AND lo_discount BETWEEN 1 AND 3 AND lo_quantity < 25;

For Q4.1, we update the vector column with group car-
dinality and selectivity to simulate the fact vector index
generated by multidimensional filtering stage. The query
is rewritten with additional predicate expression “vec-
tor>=0” and group by clause with vector column.

Q4.1: UPDATE lineorder SET vector=(CASE WHEN lo_orderkey <= 0.016000 *

600000000 THEN (lo_orderkey%35) ELSE -1 END);

SELECT vector, SUM(lo_revenue - lo_supplycost) AS profit FROM lineorder

WHERE vector>=0 GROUP BY vector;

Figure 18 shows the vector index oriented aggregation
performance for Hyper, Vectorwise and MonetDB. For
high selectivity like Q1.1(14.29%), Q3.1(3.4%), Q4.1(1.6%),
MonetDB commonly spends more time for aggregating,
for low selectivity queries, MonetDB has similar aggregat-
ing performance as Hyper. Vectorwise proves to be higher
performance than the other two for the efficient vectorized
processing in vector index filtering.

We also evaluate the OLAP performance accelerated by
Fusion OLAP with CPU, Phi and GPU. Figure 19(a)(b)(c)
show the breakdown query processing time of Fusion
OLAP with different processors for multidimensional fil-
tering and database oriented dimension vector index pro-
cessing and aggregating. For queries with high selectivity
like Qx.1, the major execution time is spent on aggregation,

TABLE 3

CREATING DIMENSION VECTOR INDEXES BY HYPER(S).

Query GeDic1 GeVec1 GeDic2 GeVec2 GeDic3 GeVec3 GeDic4 GeVec4 ToTime

Q1.1

0.0001

0.0001

Q1.2

0.0001

0.0001

Q1.3

0.0001

0.0001

Q2.1 0.0023 0.0421

0.0086 2.05E-05 0.0007

0.0536

Q2.2 0.0050 0.0443

0.0088 1.20E-05 0.0007

0.0589

Q2.3 0.0019 0.0130

0.0108

0.0257

Q3.1 0.0045 0.0685 0.0016 0.0093 1.23E-05 0.0006

0.0845

Q3.2 0.0036 0.0798 0.0015 0.0056 1.11E-05 0.0007

0.0912

Q3.3 0.0047 0.0611 0.0028 0.0040 1.07E-05 0.0007

0.0733

Q3.4 0.0048 0.0611 0.0029 0.0041 1.70E-05 0.0002

0.0731

Q4.1 0.0040 0.0237

0.0079

0.0437 1.78E-05 0.0013 0.0807

Q4.2

0.0449 0.0020 0.0138 0.0035 0.0000 1.25E-05 0.0004 0.0647

Q4.3

0.0449 0.0013 0.0071 0.0023 0.0135 1.25E-05 0.0004 0.0694

TABLE 4

CREATING DIMENSION VECTOR INDEXES BY VECTORWISE(S).

Query GeDic1 GeVec1 GeDic2 GeVec2 GeDic3 GeVec3 GeDic4 GeVec4 ToTime

Q1.1

0.005

0.005

Q1.2

0.004

0.004

Q1.3

0.005

0.005

Q2.1 0.015 0.021

0.006 4.00E-03 1.20E-02

0.058

Q2.2 0.013 0.02

0.006 3.00E-03 0.016

0.058

Q2.3 0.009 0.018

0.006 0.004 0.012

0.049

Q3.1 0.017 0.032 0.007 0.018 4.00E-03 0.012

0.09

Q3.2 0.015 0.022 0.006 0.015 4.00E-03 0.012

0.074

Q3.3 0.016 0.02 0.005 0.013 3.00E-03 0.011

0.068

Q3.4 0.017 0.02 0.005 0.013 4.00E-03 0.011

0.07

Q4.1 0.017 0.027

0.007

0.013 4.00E-03 0.01 0.078

Q4.2

0.012 0.007 0.016 1.50E-02 0.031 3.00E-03 0.01 0.094

Q4.3

0.013 0.006 0.015 0.014 0.002 4.00E-03 0.001 0.055

TABLE 5

CREATING DIMENSION VECTOR INDEXES BY MONETDB(S).

Query GeDic1 GeVec1 GeDic2 GeVec2 GeDic3 GeVec3 GeDic4 GeVec4 ToTime

Q1.1

0.002

0.002

Q1.2

0.001

0.001

Q1.3

0.001

0.001

Q2.1 0.016 0.029

0.019 0.003 0.004

0.071

Q2.2 0.018 0.019

0.018 0.001 0.003

0.058

Q2.3 0.015 0.012

0.018 0.002 0.002

0.048

Q3.1 0.010 0.279 0.017 0.024 0.003 0.002

0.336

Q3.2 0.015 0.069 0.016 0.013 0.002 0.003

0.118

Q3.3 0.017 0.044 0.016 0.010 0.002 0.003

0.092

Q3.4 0.015 0.034 0.017 0.012 0.003 0.003

0.082

Q4.1 0.020 0.282

0.021

0.095 0.002 0.002 0.421

Q4.2

0.095 0.016 0.026 0.023 0.286 0.003 0.003 0.452

Q4.3

0.098 0.017 0.018 0.034 0.041 0.002 0.003 0.213

Fig. 18. Aggregation performance for SSB.

0

0,2

0,4

0,6

0,8

1

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

T
im

e(
s)

Queries

Hyper Vectorwise MonetDB

YANSONG ZHANG, YU ZHANG, ET AL.: FUSION OLAP: FUSING THE PROS OF MOLAP AND ROLAP TOGETHER FOR IN-MEMORY OLAP 13

for queries with low selectivity, the multidimensional fil-
tering dominates the whole performance which can be ac-
celerated by CPU, Phi and GPU. Compared with hash join
algorithms, vector referencing algorithm is adaptive for both
caching and massive parallel processing, it achieves high
performance on CPU, Phi and GPU platforms.

Join is the most complex and costly operation in rela-
tional database, which dominates the performance of rela-
tional database. Figure 20 gives the results of average
query execution time of 13 OLAP queries in SSB, with Fu-
sion OLAP accelerating techniques, and each in-memory
databases achieves better performance than ever. Hyper
achieves up to 35% improvement by GPU accelerated Fu-
sion OLAP; Vectorwise outperforms Hyper and MonetDB
in dimension vector index processing and aggregation.
Vectorwise achieves maximal 365% improvement by GPU
accelerated Fusion OLAP; MonetDB takes more time in ag-
gregating than Hyper and Vectorwise, the maximal im-
provement achieves 169%. Besides performance improve-
ment, the core module of multidimensional filtering can be
deployed on multicore CPU platform, many-core Phi plat-
form and GPU platform, and the multidimensional filter-
ing module can be adaptive to be embedded in relational
database engines with simple vectors as input and output
data.
Summary. We summarize the main findings in our exper-
iments belows.

(1) The maintenance cost of Fusion OLAP model is ac-
ceptable. The index update is performed with effi-
cient vector referencing operations for big dimen-
sion update in TPC-H, and the update overhead is

only 15.37% higher than original vector referenc-
ing operator which is invoked for a long time. The
logical surrogate key indexes make vector referenc-
ing adaptive to update operations, and thus the ad-
ditional overhead is below 2% for small and mod-
erate dimensions, while the maximal overhead is
about 6% for the big referenced fact table in TPC-
DS. Therefore, the overall update maintenance
overhead is small enough for updates scenarios.

(2) For the core star-join operations of OLAP, vector
referencing outperforms state-of-the-art in-memory
analytical databases with CPU, Phi and GPU plat-
forms. We achieve the significant speedup of up to
7∼9x for SSB and TPC-H star-join tests.

(3) Finally, we verify how to accelerate in-memory an-
alytical databases with vector index mechanism.
The simulation results show that vector indexes
can futhre achieve 35%∼365% improvement on in-
memory databases.

6 RELATED WORK

In the era of in-memory computing, main-memory becomes
a new disk to bridge the big performance gap between
DRAM and processor. One recent research topic is to improve
in-memory join performance with hardware-conscious opti-
mization techniques. The no-partitioning hash table join
represents hardware-oblivious join algorithm [18] without
considering hardware features of TLB size, page size,
SIMD etc., which is simple for implementation but is
proved to be less efficient than hardware-conscious join al-
gorithms of radix partitioning hash joins and sort-merge
joins [13] [19]. Hardware-conscious joins achieve better
performance, but they are difficult to tune for maximal per-
formance [22] [24]. A neglected point is that hardware-con-
scious joins commonly need double space consumption in
the partitioning or sorting phases, which may significantly
reduce the rate of memory utilisation.

The new trend is to accelerate query processing perfor-
mance with hardware accelerators. As MIC Phi equips with
512-bit vector processing unit inside core, [15] further devel-
oped the source code of [13] with 512-bit SIMD optimizations
on MIC Phi platform. Their experimental results show that
no-partitioning hash join benefits more than radix partition-
ing hash join on Phi opposite to CPU platform. The latest re-
search [16] used entirely vector codes for fundamental opera-
tions such as selection scan, hash table and partitioning. The
hash join optimization is also implemented on APU platform
[20], GPU platform [14] [21] and FPGA platform [17]. The
platform-conscious designs keep improving performance by
tuning algorithm with new hardware parameters [25], the

(a) Breakdowns of Fusion OLAP for SSB with Hyper.

(b) Breakdowns of Fusion OLAP for SSB with Vectorwise.

(c) Breakdowns of Fusion OLAP for SSB with MonetDB.

Fig. 19. Breakdowns of Fusion OLAP for SSB.

Fig. 20. Average Query Execution Time of SSB.

0

0,5

1

1,5
Q

1
.1

Q
1

.2
Q

1
.3

Q
2

.1
Q

2
.2

Q
2

.3
Q

3
.1

Q
3

.2
Q

3
.3

Q
3

.4
Q

4
.1

Q
4

.2
Q

4
.3

Q
1

.1
Q

1
.2

Q
1

.3
Q

2
.1

Q
2

.2
Q

2
.3

Q
3

.1
Q

3
.2

Q
3

.3
Q

3
.4

Q
4

.1
Q

4
.2

Q
4

.3
Q

1
.1

Q
1

.2
Q

1
.3

Q
2

.1
Q

2
.2

Q
2

.3
Q

3
.1

Q
3

.2
Q

3
.3

Q
3

.4
Q

4
.1

Q
4

.2
Q

4
.3

CPU accelerated OLAP@Hyper Phi accelerated OLAP@Hyper GPU accelerated OLAP@Hyper

T
im

e(
s)

GenVec MDFilt VecAgg

0

0,2

0,4

0,6

0,8

Q
1

.1
Q

1
.2

Q
1

.3
Q

2
.1

Q
2

.2
Q

2
.3

Q
3

.1
Q

3
.2

Q
3

.3
Q

3
.4

Q
4

.1
Q

4
.2

Q
4

.3
Q

1
.1

Q
1

.2
Q

1
.3

Q
2

.1
Q

2
.2

Q
2

.3
Q

3
.1

Q
3

.2
Q

3
.3

Q
3

.4
Q

4
.1

Q
4

.2
Q

4
.3

Q
1

.1
Q

1
.2

Q
1

.3
Q

2
.1

Q
2

.2
Q

2
.3

Q
3

.1
Q

3
.2

Q
3

.3
Q

3
.4

Q
4

.1
Q

4
.2

Q
4

.3

CPU accelerated

OLAP@Vectorwise

Phi accelerated

OLAP@Vectorwise

GPU accelerated

OLAP@Vectorwise

T
im

e(
s)

GenVec MDFilt VecAgg

0

0,5

1

1,5

2

Q
1
.1

Q
1
.2

Q
1
.3

Q
2
.1

Q
2
.2

Q
2
.3

Q
3
.1

Q
3
.2

Q
3
.3

Q
3
.4

Q
4
.1

Q
4
.2

Q
4
.3

Q
1
.1

Q
1
.2

Q
1
.3

Q
2
.1

Q
2
.2

Q
2
.3

Q
3
.1

Q
3
.2

Q
3
.3

Q
3
.4

Q
4
.1

Q
4
.2

Q
4
.3

Q
1
.1

Q
1
.2

Q
1
.3

Q
2
.1

Q
2
.2

Q
2
.3

Q
3
.1

Q
3
.2

Q
3
.3

Q
3
.4

Q
4
.1

Q
4
.2

Q
4
.3

CPU accelerated OLAP@MonetDB Phi accelerated OLAP@MonetDB GPU accelerated

OLAP@MonetDB

T
im

e(
s)

GenVec MDFilt VecAgg

0

0,5

1

1,5

2

Hyper Vectorwise MonetDB

T
im

e(
s)

Average Query Processing Time of SSB

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

hardware feature variety and complexity make these optimi-
zation approaches hardly benefits for different coprocessors.

Another roadmap is to exploit new OLAP operation, in-
stead of the relational join operation. Paper [26] proposed a
native join index to accelerate join performance, and [23] fur-
ther proposed an array oriented storage and computing
model for data warehouse. These methods simplify hash joins
with array addressing, and rely less in hardware features
which can be considered as hardware-oblivious join algo-
rithms for both CPU and coprocessors platforms. Unlike the
hash joins, the join performance of the array addressing is ma-
jorly dominated by the array size which is pre-determined by
data warehouse schemas and the LLC size of multicore. HBM
size of KNL Phi and SIMT mechanism of GPU can automati-
cally make array addressing efficient. This paper further ex-
ploits how to develop a multidimensional processing ori-
ented OLAP model to make OLAP faster and more adaptive
to hybrid coprocessors.

7 CONCLUSIONS

In this paper, we have proposed Fusion OLAP model
which fuses the benefits of high performance multidimen-
sional addressing from MOLAP with the advantage of ef-
ficient storage from ROLAP together. The multidimen-
sional address module can be efficiently implemented by
multicore CPU, MIC Phi and GPU processors for its simple
vector structure and vector referencing operations. This fea-
ture improves in-memory analytical database performance
by hardware oriented multidimensional addressing accel-
erator with the minimal changes for databases. We have
evaluated Fusion OLAP performance by simulating Fu-
sion OLAP operations with staged processing, which com-
bine customized vector index computing with vector index
oriented aggregating phases. In our future work, we will
further explore the Fusion OLAP techniques to make in-
memory databases adaptive to the emerging hybrid copro-
cessor platforms.
Acknowledgements. This work was supported by the Na-
tional Natural Science Foundation of China (61732014,
61772533) and Academy of Finland (310321). Yu Zhang is
the corresponding author.

REFERENCES

[1] http://go.sap.com/documents/2016/03/ba1aa531-647c-0010-82c7-

eda71af511fa.html

[2] https://www.monetdb.org/Home

[3] http://www.actian.com/products/big-data-analytics-platforms-with-

hadoop/vector-smp-analytics-database/

[4] J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka, H. Plattner, J. Krüger, M.

Grund, “High-Performance Transaction Processing in SAP HANA”.

IEEE Data Eng. Bull. 36(2): 28-33 (2013)

[5] http://hyper-db.com/

[6] http://www.memsql.com/

[7] http://www.oracle.com/us/corporate/features/database-in-

memory-option/index.html

[8] http://www.ibmbluhub.com/

[9] P. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz, V. Pa-

padimos, “Real-Time Analytical Processing with SQL Server”. Proc.

VLDB Endowment, vol. 8, no. 12, pp. 1740-1751, 2015.

[10] P. A. Boncz, S. Manegold, and M. L. Kersten. “Database architecture op-

timized for the new bottleneck: Memory access“. Proc. VLDB Endow-

ment, pages 54–65, 1999.

[11] P. A. Boncz, M. Zukowski, N. Nes, “MonetDB/X100: Hyper-Pipelining

Query Execution“. Proc. CIDR, 2005: 225-237

[12] T. Neumann. “Efficiently Compiling Efficient Query Plans for Modern

Hardware“. Proc. VLDB Endowment, vol. 4, no. 9, pp. 539-550, 2011.

[13] C.Balkesen, J. Teubner, G. Alonso, M. T.Özsu, “Main-memory hash joins

on multi-core CPUs: Tuning to the underlying hardware”. Proc. ICDE,

pages 362-373, 2013.

[14] Y. Yuan, R. Lee, X. Zhang, “The Yin and Yang of Processing Data Ware-

housing Queries on GPU Devices”. PVLDB 6(10): 817-828 (2013)

[15] S. Jha, B. He, M. Lu, X. Cheng, H. P. Huyn, “Improving Main Memory

Hash Joins on Intel Xeon Phi Processors: An Experimental Approach”.

PVLDB 8(6): 642-653, 2015.

[16] O. Polychroniou, A. Raghavan, K. A. Ross, “Rethinking SIMD Vectori-

zation for In-Memory Databases”. Proc. SIGMOD, pp. 1493-1508, 2015.

[17] R. J. Halstead, I. Absalyamov, W. A. Najjar, V. J. Tsotras, “FPGA-based

Multithreading for In-Memory Hash Joins”. Proc. CIDR, 2015.

[18] S.Blanas, Y. Li, J. M. Patel, “Design and evaluation of main memory hash

join algorithms for multi-core CPUs”. Proc. SIGMOD, pp. 37-48, 2011.

[19] C. Balkesen, G. Alonso, J. Teubner, M. T. Özsu, “Multi-Core, Main-

Memory Joins: Sort vs. Hash Revisited”. PVLDB 7(1): 85-96, 2013.

[20] J. He, M. Lu, B. He, “Revisiting Co-Processing for Hash Joins on the Cou-

pled CPU-GPU Architecture”. PVLDB 6(10): 889-900, 2013.

[21] S. Breß, M. Heimel, M. Saecker, B. Kocher, V. Markl, G. Saake, “Oce-

lot/HyPE: Optimized Data Processing on Heterogeneous Hardware”.

PVLDB 7(13): 1609-1612, 2014.

[22] S. Richter, V. Alvarez, J. Dittrich, “A Seven-Dimensional Analysis of

Hashing Methods and its Implications on Query Processing”. PVLDB

9(3): 96-107, 2015.

[23] Y Zhang, X Zhou, Y Zhang, Y Zhang, M Su, S Wang. Virtual

Denormalization via Array Index Reference for Main Memory

OLAP. IEEE Trans. Knowl. Data Eng. 28(4): 1061-1074 (2016).

[24] S Schuh, X Chen, J Dittrich, “An Experimental Comparison of

Thirteen Relational Equi-Joins in Main Memory”. Proc. SIGMOD,

pp. 1961-1976,2016.

[25] R Rui, Y Tu, “Fast Equi-Join Algorithms on GPUs: Design and

Implementation”. Proc.SSDBM, pages 1-12, 2017.

[26] Y Zhang, S Wang, J Lu, “Improving performance by creating a

native join-index for OLAP”. Frontiers Comput. Sci. China 5(2):

236-249, 2011.

Yansong Zhang is an associate professor in the
School of Information at the Renmin University of
China. His research interests include Main-Memory
Database, Data Warehouse, OLAP and Coprocessor
processing.

Yu Zhang is an associate professor in National Sat-
ellite Meteorological Center. Her research interests
include GPU based OLAP and database optimiza-
tion.

Shan Wang is a professor in the School of Infor-
mation at the Renmin University of China. Her cur-
rent research focuses on high performance data-
base, data warehouse, knowledge engineering and
information retrieval.

Jiaheng Lu is an associate professor of the Depart-
ment of Computer Science at the University of Hel-
sinki, Finland. His recent research interests include
multi-model database management systems, and job
optimization for big data platform.

