Research Works to Cope with Big Data Volume and Variety

Jiaheng Lu University of Helsinki, Finland

Big Data: 4Vs

Hadoop and Spark platform optimization

Multi-model databases: quantum framework and category theory

Outline

- Big data platform optimization (10 mins)
 - Motivation
 - Two main principles and approaches
 - Experimental results
- Multi-model databases (10 mins)
 - Overview
 - Quantum framework
 - Category theory

Optimizing parameters in Hadoop and Spark platforms

Data Analysis

Decision making

Key to success = Timely and Cost-effective analysis

- Popular big data platform : Hadoop and Spark
- Burden on users
 - Responsible for provisioning and configuration
 - Usually lack expertise to tune the system

- Popular big data platform : Hadoop and Spark
- Burden on users
 - Responsible for provisioning and configuration
 - Usually lack expertise to tune the system

As a data scientist, I do not know how to improve the efficiency of my job?

9

- Popular big data platform : Hadoop and Spark
- Burden on users: provision and tuning
- Effect of system-tuning for jobs

	Tuned vs. Default
Running time	Often 10x
System resource utilization	Often 10x
Others	Well tuned jobs may avoid failures like OOM, out of disk, job time out, etc.
	Good
	performance

after tuning

Automatic job optimization toolkit

- NOT our goal: Change the codes of the system to improve the efficiency
- Our goal: Configure the parameters to achieve good performance

Our system is easy to be used in the existing Hadoop and Spark system

Problem definition

Given a MapReduce or Spark job with input data and running cluster, we find the setting of parameters that optimize the execution time of the job. (i.e. minimize the job execution time)

Challenges: too many parameters

Symbol	Parameter	Groups	
Nm	mapred.map.tasks	Map input split	
Nr	mapred.reduce.tasks	Reduce output	
Smin	mapred.min.split.size	Map input split	
Smax	mapred.max.split.size	Map input split	
B_m	io.sort.mb	Map output buffer	
Trec	io.sort.record.percent	Map output buffer	
C	mapred.compress.map.output	Map output compr.	
N _{copy}	<pre>mapred.reduce.parallel. copies</pre>	Reduce copy	
Naf	io.sort.factor	Reduce input	
B_r	<pre>mapred.job.reduce .input.buffer.percent</pre>	Reduce input	
SOB	dfs.block.size	Reduce output	
$N_{ms}(i)$	<pre>mapred.tasktracker .map.tasks.maximum</pre>	Set by HAC	
$N_{rs}(i)$	<pre>mapred.tasktracker .reduce.tasks.maximum</pre>	Set by HAC	

There are more than **190 parameters**

in Hadoop!

Two key ideas in job optimizer

1.Reduce search space!

190 13 4

KEEP CALM BECAUSE LESS IS MORE

14

13 parameters we tune

Symbol	Parameter	Groups
N_m	mapred.map.tasks	Map input split
Nr	mapred.reduce.tasks	Reduce output
Smin	mapred.min.split.size	Map input split
Smax	mapred.max.split.size	Map input split
B_m	io.sort.mb	Map output buffer
Trec	io.sort.record.percent	Map output buffer
C	mapred.compress.map.output	Map output compr.
N _{copy}	<pre>mapred.reduce.parallel. copies</pre>	Reduce copy
Naf	io.sort.factor	Reduce input
B_r	<pre>mapred.job.reduce .input.buffer.percent</pre>	Reduce input
SOB	dfs.block.size	Reduce output
$N_{ms}(i)$	mapred.tasktracker .map.tasks.maximum	Set by HAC
$N_{rs}(i)$	<pre>mapred.tasktracker .reduce.tasks.maximum</pre>	Set by HAC

Four key factors

- We identify four key factors (parameters) to model a MapReduce job execution
 - The number of Map task waves *m*. (number of Map tasks)
 - The number of Reduce task waves r. (number of Reduce tasks)
 - The Map output compression option c. (true or false)
 - The copy speed in the Shuffle phase v (number of parallel copiers)

16

Cost model

Producer: the time to produce the Map outputs in m waves

$$\mathcal{T}_{producer} = t_{map}(\mathcal{D}, c) + t_{schedule}(m) + t_{cs}(\mathcal{D}, c, v, r)$$

Transporter: the non-overlapped time to transport Map outputs to the Reduce side

$$\mathcal{T}_{trasporter} = \min\left(\left(\frac{m-1}{mrv} \cdot D_s - \frac{m-1}{m} \cdot \mathcal{T}_{producer} - t_{lrw}\left(\frac{m-1}{mr} \cdot D_s\right)\right), 0\right) + \frac{(2mr-m-r+1)}{mrv} \cdot D_s + t_{lrw}(D_s)\right)$$

Consumer: the time to produce Reduce outputs in r waves

$$\mathcal{T}_{consumer} = t_{reduce}(\mathcal{D}, c) + t_{schedule}(r) - t_{lrw}(B_r) \cdot r$$

Two key ideas in job optimizer

2. Keep everything busy

- CPU: map, reduce and compression
- I/O: sort and merge
- Network: shuffle

MRTunner approach:

Profile data

- Job profile
 - Selectivity of Map input/output
 - Selectivity of Reduce input/output
 - Ratio of Map output compression
- Data profile
 - Data Size
 - Distribution of input key/value
- System profile
 - Number of machines
 - Network throughput
 - Compression/Decompression throughput
 - Overhead to create a map or reduce task

Experimental evaluation

- Performance Comparison
 - Hadoop-X (Commercial Hadoop):
 - Starfish: Parameters advised by Starfish
 - MRTuner: Parameters advised by MRTuner
- Workloads
 - Terasort
 - N-gram
 - Pagerank

Effectiveness of MRTuner Job Optimizer

Running time of jobs

Commercial Hadoop-X

JobName	ID	Clu-	Input	Hadoop	MRTuner	Speed
		ster	(GB)	-X(sec)	(sec)	-up
Terasort	TS-1	\mathcal{A}	10	469	278	1.7
Terasort	TS-2	\mathcal{A}	50	2109	1122	1.87
Terasort	TS-3	B	200	767	295	2.60
Terasort	TS-4	B	1000	6274	2192	2.86
N-Gram	NG-1	\mathcal{A}	0.18	4364	192	22.7
N-Gram	NG-2	\mathcal{A}	0.7	N/A	661	∞
N-Gram	NG-3	\mathcal{A}	1.4	N/A	1064	∞
N-Gram	NG-4	B	1.4	1100	249	4.41
N-Gram	NG-5	B	2.8	1292	452	2.86
N-Gram	NG-6	B	5.6	1630	930	1.75
PR(Trans.)	PR-1	\mathcal{A}	3.23	962	446	2.2
PR(Deg.)	PR-2	\mathcal{A}	Inter	49	41	1.2
PR(Iter.)	PR-3	\mathcal{A}	Inter	933	639	1.5
PR(Trans.)	PR-4	B	3.23	148	65	2.28
PR(Deg.)	PR-5	B	Inter	24	22	1.09
PR(Iter.)	PR-6	B	Inter	190	82	2.32

For N-gram job, MRTuner obtains more than 20x speedup than Hadoop-X

Comparison between Hadoop-X and MRTuner (N-gram)

Cluster-wide Resource Usage from Ganglia

Impact of Parameters on Selected Jobs

Ongoing research topics

- Efficient job optimization on YARN and Spark
- Tune for container size and executor size

Multi-model databases: Quantum framework and category theory

Multi-model databases

Motivation: one application to include multi-model data

An E-commerce example with multi-model data

NoSQL database types

Photo downloaded from: http://www.vikramtakkar.com/2015/12/nosql-types-of-nosql-database-part-2,html

Multiple NoSQL databases

Sales-History	Recommendations	Customer	
DocumentStore	GraphStore	DocumentStore	
MongoDB	Neo4j	MongoDB	
Sales	Social media	Customer	
Redis		MongoDB	
Shopping-cart		Catalog	
KeyValueStor	e	DocumentStore	
Shopping-Cart		Product-Catalog	

Multi-model DB

• One unified database for multi-model data

Challenge: a new theory foundation

Call for a unified model and theory for multi-model data!

The theory of relations (150 years old) is not adequate to mathematically describe modern (NoSQL) DBMS.

Two possible theory foundations

Quantum framework; Approximate query processing for open field in multi-model databases

Category theory: Exact query processing and schema mapping for close field in multi-model databases

Quantum framework

Database is based on the components: Logic (SQL expressions) Algebra (relational algebra)'

The Quantum framework adds quantum probability and quantum algebra.

Why not classical probability

Apply three rules on multi-model data Quantum superposition Quantum entanglement Quantum inference

Unifying multi-model data in Hilbert space

Relation XML

Use quantum probability to answer the query approximately

Two possible theory foundations

Quantum framework; Approximate query processing for open field in multi-model databases

Category theory: Exact query processing and schema mapping for close field in multi-model databases

What is category theory?

It was invented in the early 1940's

Category theory has been proposed as a new foundation for mathematics (to replace set theory)

A category has the ability to compose the arrows associatively

Unified data model

One unified data model with objects and morphisms

Relation XML

Transformation

 Natrual transformation between multiple language for multi-model data

Ongoing research topics

- Approximate query processing based on quantum framework
- Multi-model data integration based on category theory

Conclusion

1. Parameter tuning is important for Big data platform like Hadoop and Spark.

2. Emerging two new theoretical foundations on multi-model databases: quantum framework and category theory

Reference

- Jiaheng Lu, Irena Holubová: Multi-model Data Management: What's New and What's Next? EDBT 2017: 602-605
- Jiaheng Lu: Towards Benchmarking Multi-Model Databases. CIDR 2017
- Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, Chen Wang: MRTuner: A Toolkit to Enable Holistic Optimization for MapReduce Jobs. PVLDB 7(13): 1319-1330 (2014)

