
Multi-Model Data Query Languages and
Processing Paradigms

Qingsong Guo, Jiaheng Lu, Chao Zhang

University of Helsinki Huawei

Canada

Calvin Sun, Steven Yuan

Huawei Technologies Co. Ltd

CIKM 2020 Tutorial

Agenda

1. Introduction

2. Data models

3. Multi-model data query languages

4. Comparison of the query languages

5. Open problem and challenges

6. Hands-on section

A grand challenge on variety

●Big data: Volume, Variety, Velocity, Veracity

●Variety: hierarchical data (XML, JSON), graph data (RDF,

property graphs, networks), tabular data (CSV), etc.

Motivation: E-commerce

Customer

Social

Media

Gaming

Entertain

Banking

Finance

Our

Known

History

Purchase

Classification of approaches for multi-model

data management

Multi-model data

management

Single database: A Multi-model DB

Tabular

RDFXML

Spatial

Text
Multi-model DB

JSON

● A multi-model database is designed to support multiple

data models against a single, integrated backend.

Multi-model DBMSs

DB-engineers ranking ranks database according to their popularity. The ranking is updated

monthly.

There are 8 multi-model database in top-10.

There are 85 multi-model database among 359 in total.

Although many databases claimed that they are multi-model, they are not true
multi-model databases.

A true multi-model database is expected to do:

• Provide a unified query language that not only query the individual data
models, but also query across multiple data models,

• Index data with different models,

• Load multi-model data as is (no schema required before the loading),

• Provide ACID, scalability and security over multi-model data seamlessly.

A true multi-model database can do :

Two examples of open-source databases:

ArangoDB is designed as a native multi-model database,

supporting key/value, document and graph models.

Orient DB supports graph, document, key/value and object

models.

Both are open-source databases.

An example of multi-model data
and query

Mary (1)

John (2)

FriendFriend

William (3)
{"Order_no":"0c6df508",

“Orderlines": [

{ "Product_no":"2724f”

“Product_Name":“Toy",

"Price":66 },

{ "Product_no":“3424g”,

"Product_Name":“Book",

"Price":40 }]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"
"2"-- > "0c6df508"

An example of multi-model data
and query

Mary (1)

John (2)

FriendFriend

William (3)
{"Order_no":"0c6df508",

“Orderlines": [

{ "Product_no":"2724f”

“Product_Name":“Toy",

"Price":66 },

{ "Product_no":“3424g”,

"Product_Name":“Book",

"Price":40 }]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"
"2"-- > "0c6df508"

Mary (1)

John (2)

FriendFriend

William (3)
{"Order_no":"0c6df508",

“Orderlines": [

{ "Product_no":"2724f”

“Product_Name":“Toy",

"Price":66 },

{ "Product_no":“3424g”,

"Product_Name":“Book",

"Price":40 }]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"
"2"-- > "0c6df508"

Q: Return all products which are ordered by a friend

of a customer whose credit limit is over 3000

Let CustomerIDs =(FOR Customer IN Customers FILTER

Customer.CreditLimit > 3000 RETURN Customer.id)

Let FriendIDs=(FOR CustomerID in CustomerIDs FOR

Friend IN 1..1 OUTBOUND CustomerID Knows return

Friend.id)

For Friend in FriendIDs

For Order in 1..1 OUTBOUND Friend Customer2Order

Return Order.orderlines[*].Product_no

An example of multi-model query (ArangoDB)

Recommendation query:

Return all products which are ordered by a friend of a

customer whose credit limit is over 3000.

Select

expand(out("Knows").Orders.orderlines.Produ

ct_no) from Customers where CreditLimit >

3000

Recommendation query:

Return all products which are ordered by any friend of a

customer whose credit limit is over 3000.

Summary for Introduction part

• Multi-model data management emerges to handle the

Variety challenge of big data.

• There is no standard for multi-model query languages so

far.

• Existing multi-model query languages are extended from

SQL, XQuery or graph query languages.

Main references about Introduction to

multi-model databases

• Pete Aven Building on Multi-Model Databases Released July 2017 Publisher(s): O'Reilly Media, Inc.

ISBN: 9781491977903

• J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden, D. Maier, T.

Mattson, and S. B. Zdonik. The bigdawg polystore system. SIGMOD Rec., 44(2):11–16, 2015.

• J. Lu and I. Holubová. Multi-model data management: What’s new and what’s next? In Proceedings of

the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy,

March 21-24, 2017, pages 602–605. OpenProceedings.org, 2017.

• J. Lu and I. Holubová. Multi-model Databases: A new journey to handle the variety of data. ACM

Computing Surveys, 52(3), 2019.

We will briefly discuss the major data models adopted by database systems and a

benchmark for multi-model data.

• The relational model and its extensions

• The semi-structured data models, e.g. XML and JSON

• The graph data models

• …

02 Data models

Beat Signer - Department of Computer Science - bsigner@vub.ac.be 6February 27, 2015

Relation

The column headers of a table are called attributes and

for each attribute ai there is a set of permitted values

called the domain Di of ai

Given the domains D1, D2,..., Dn, a relation r is defined as

a subset of the cartesian product D1 D2 ... Dn

name st r eet . . . ci t y

Max Fr i sch Bahnhof st r asse 7 . . . Zur i ch

.

D1 D2 Dn

t1
tm

a1 a2 an

attributes

tuples

relation r

degree

cardinality

The Relational Model

The dominant data model of last 5 decades

● A relation is a subset of Cartesian product and logically represented as un-ordered tuples and each record

is uniquely identified by a key

● Table, column, rows

● Cannot nest one tuple within another

A relational model can be described by 3 components:

● Primitive types: integer, char, string, date, etc.

● Relational constructor used on the primitive types

● A set of operators that can be used to each primitive type and type constructor

The relational model can be extended by modifying these components

• Nested relational model (NRM)

– Remove the restriction of 1NF

– Contains nested type constructors that allow building nested relations from atomic types by

using tuple constructors and set constructors

• Object-relation model (ORM)

– separates set and tuple of the relational constructor and support object

• JSON

– includes other type constructors such as lists, multisets, arrays, etc.

Extensions for the Relational Model

• Self-describing by associating semantic tags or markers and enforce hierarchies of records and fields by

nesting elements within the data.

• Enable more flexible processing and exchanging of the data.

• Richer (than relational) type systems

– Object-Oriented data model

– Nested Relational data model

• Schemaless and Schema-Optional data

– XML as labelled tree

– Schemaless Labelled Graphs

• Scalable nested & semistructured formats

– (schemaless) JSON

– (machine-oriented, columnar) Parquet, ORC, …

– Google’s buffer protocols …

Semi-Structured Data: XML/JSON

Can be thought of as SQL data model extension

and restriction removal

• complex types: arrays, (nested) tuples, maps

• rigid schema is not necessary

JSON as an example

Primitive values

• A string, which looks like "Hello"

• A number, which looks like 42 or -3.14159

• true or false

• null

Structured values

• Object: a list of name-value pairs (i.e., fields)

{ "partno": 461,

"description": "Wrench"

}

• Array: an ordered list of items

– [1, 2.5, "Hello", true, null]

The items in an array and the values in the fields of an object can be

any JSON values, arrays and objects

{"Order_no":"0c6df508",

“Orderlines": [

{ “Product_no”: "2724f”

“Product_Name”: “Toy",

"Price":66 },

{ “Product_no”: “3424g”,

“Product_Name”: “Book",

"Price":40 }]

}

Order JSON document

• A generalization of the relational model and semi-structured model

• It consists of a set of vertices V and edges E connecting the vertices

from V

• Edge-labeled graph (N, E, L)

– RDF <subject, predicate, object>, knowledge graph

– SPARQL

• Property graph model (PGM)

– Represents data as a directed, attributed multi-graph. Vertices and

edges are rich objects with a set of labels and a set of key-value

pairs, so-called properties

– Cypher, openCypher, Gremlin, etc.

Graph Data Models

HopcroftUllman

Introduction to Automata Theory,

Languages, and Computation

authorOf

isCoauthor

authorOf

<Ullman, isCoauthor, Hopcroft>

< Hopcroft, authorOf, Introduction to Automata

Theory, Languages, and Computation>

<Ullman, authorOf, Introduction to Automata

Theory, Languages, and Computation>

Key features:

• Nodes have labels, Type:Human

• Nodes have key-value properties

• Relationships between nodes

• Relationships have labels

• Relationships have key / value properties

• Relationships are directed but transversal at equals speed

in both directions

• Semantics of the directions is up to the applications

Property Graph Model

Id: 100

Label: knows

Since: 2010/10/01

Id: 3

Type: Group

Name: Football

Id:2

Type: Human

Name: Bob

Age: 22

Id:1

Type: Human

Name: Alice

Age: 18
Id: 101

Label: knows

Since: 2010/10/02

Id: 101

Label: memberOf

Since: 2015/10/01

Id: 104

Label: hasMember

Id: 105

Label: memberOf

Since: 2017/01/01

• The simplest data model consists of a collection of <key, value> mappings

Key-Value Data

KEY1  Value1

KEY2  Value2

KEY3  Value3

KEY4  Value4

…

Key Value

User1: employee {65, 865, 9634}

User2: employee {34, 85, 76, 94}

User3: employee {name: mark, empid:346}

User4: employee {desg:manager, branchcode: 345}

… ….

(a) (b)

Formal Relational Query Languages

Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for

implementation

• Relational algebra

– More operational(procedural), and always used as an internal representation for query evaluation plans

– Select, Project, Union, Set different, Cartesian product, Rename

• Relational calculus

– Tuple Relational Calculus: filtering variable ranges over tuples {T | Condition}

• Alpha: proposed by Codd in 1971; QUEL: INGRES 1975

• { T.name | Author(T) AND T.article = 'database' }

– Domain Relational Calculus: the filtering variable uses the domain of attributes instead of entire tuple

values, { a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

• {< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}

Relational Query Language: SQL

• SQL is a standard language for querying and manipulating data

• SQL is a very high-level (declarative) programming language

– SELECT, WHERE, FROM syntax

– This works because it is optimized well!

• Many standards out there:

– ANSI SQL, SQL92 (a.k.a. SQL2), SQL99 (a.k.a. SQL3), ….

– Vendors support various subsets

– Recursive common table expression (CTE)

SQL stands for

Structured Query Language

• Path query

– Regular path query (RPQ)

– Conjunctive regular path query (CRPQ)

– Context-free path query (CFPQ, replacing regular

expressions with context-free grammar)

• XML documents

– XPath, XQuery

– .//x[@knows]/y

• JSON (JavaScript Object Notation)

– SQL++, JSONiq (based on XQuery), UNQL (like SQL), JsonPath

(XPath-like), GraphQL, etc.

Path Queries for Document Data

P = 𝑥 ՜
𝛼

𝑦

P := 𝑥
𝑘𝑛𝑜𝑤𝑠

+

𝑦

RPQ P: The (transitive) friend-of-a-

friend relationship in social network

CRPQ C = (P1 ^ P2 ^ ^ Pn), where R1, …,

Rn are RPQs

P1 := 𝑥 ՜
𝑎

+

𝑦

P2 := 𝑥 ՜
𝑐

+

𝑧

P3 := 𝑦 ՜
𝑏

+

𝑧

Ingredients for Graph Query Languages

Pioneered by academic work on Conjunctive Query (CQ) extensions for graphs (in the

90’s)

• SPARQL, Cypher, Gremlin

• Path expressions (PEs) for navigation

• Variables for manipulating data found during navigation

• Stitching multiple PEs into complex graph patterns  conjunctive regular path queries (CRPQs)

A complex graph patterns: Ans(x,y)= (x, hasWon, Nobel), (x, hasWon, Booker), (x, (citizenOf

| ((bornIn | livesIn) locatedIn*)), y)

A RPQ: citizenOf | ((bornIn | livesIn) locatedIn*)

A simple graph pattern: (x, hasWon, Nobel), (x, hasWon, Booker)

Running Example

Running example in CRPQ form

• count toys bought in common per customer

pair

Q(c1, c2, count (p)) :- c1 –Bought-> p,

c2 –Bought-> p,

p.category = “toys”,

c1 < c2

Product-Customer Graph

Vertex types:

• Product (name, category, price)

• Customer (ssn, name, address)

Edge types:

• Bought (discount, quantity)

• Customer c bought 100 units of product p at

discount 5%:

modeled by edge

c -- (Bought {discount=5%, quantity=100}) p

Running Example in SPARQL/Cypher

SELECT ?c1, ?c2, count (?p)

WHERE { ?c1 bought ?p.

?c2 bought ?p.

?p category ?cat.

FILTER (?cat == “toys” && ?c1 < ?c2) }

GROUP BY ?c1, ?c2

MATCH (c1:Customer) –[:Bought]-> (p:Product)

<-[:Bought]- (c2:Customer)

WHERE p.category = “Toys” AND c1.name < c2.name

RETURN c1.name AS cust1,

c2.name AS cust2,

COUNT (p) AS inCommon

c1.name, c2.name are composite group key

– no explicit group-by clause, just like CQ

• Querying with SPARQL • Querying with Cypher

Running Example in Gremlin

V().hasLabel(‘Customer’).as(‘c1’)

.out(‘Bought’).hasLabel(‘Product’).has(‘category’,’Toys’).as(‘p’)

.in(‘Bought’).hasLabel(‘Customer’).as(‘c2’)

.select (‘c1’, ‘c2’,‘p’).by(‘name’)

.where (‘c1’, lt(‘c2’))

.group().by(select(‘c1’,’c2’)).by(count())

filter traversers by labelplace one traverser on each vertex

for each traverser extract the tuple of bindings for

variables c1,c2,p, return its projection on ‘name’

property.

group tuples first by() specifies group key

second by() specifies group aggregation

extend each traverser t: bind variable ‘c1’ to

the vertex where t resides

filter these tuples according to where condition

Traversers flow along out-edges/in-edges of type ‘Bought’

• S. Abiteboul and C. Beeri. On The Power Of Languages For The Manipulation Of Complex Objects. Technical Report 846, INRIA, Paris,
May 1988.

• R. Angles, M. Arenas, P. Barceló, P. A. Boncz, G. H. L. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow, J. F. Sequeda, O. van
Rest, and H. Voigt.

• G-CORE: A core for future graph query languages. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 1421–1432. ACM, 2018.

• E. F. Codd. Derivability, redundancy and consistency of relations stored in large data banks. Research Report / RJ / IBM / San Jose,
California, RJ599, August 1969.

• E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–387, 1970.

• E. F. Codd. Extending the database relational model to capture more meaning. ACM Trans. Database Syst., 4(4):397–434, Dec. 1979.

• A. Deutsch, Y. Xu, M. Wu, and V. Lee. Tigergraph: A native MPP graph database. CoRR, abs/1901.08248, 2019.

• O. Hartig and J. Pérez. Semantics and complexity of GraphQL. In Proceedings of the 2018 World Wide Web Conference, WWW ’18,
pages 1155–1164, Republic and Canton of Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee.

• I. Robinson, J. Webber, and E. Eifrem. Graph Databases: New Opportunities for Connected Data. O’Reilly Media, Inc., 2nd edition, 2015.

• M. A. Rodriguez. The Gremlin Graph Traversal Machine and Language. CoRR, abs/1508.03843, 2015.

• M. H. Scholl. Extensions to the Relational Data Model. In Conceptual Modelling, Databases and CASE: An Integrated View of Information
Systems Development. Jon.Wiley & Sons, 1992.

• M. H. Scholl, H. Paul, and H. Schek. Supporting flat relations by a nested relational kernel. In VLDB’87, Proceedings of 13th International
Conference on Very Large Data Bases, September 1-4, 1987, Brighton, England, pages 137–146. Morgan Kaufmann, 1987.

Reference

We will discuss the syntax of 6 well-known multi-model data query languages,

which fall into three categories:

 Relation-extensions: Asterix SQL++, Oracle PL/SQL

 Document-extensions: Marklogic XQuery, ArangoDB AQL

 Graph-extensions: OrientDB, AgensGraph

03 Multi-model data query languages

• SQL++ : A Backwards-Compatible SQL , which can access a SQL extension with nested

and semi-structured data

• Queries exhibit XQuery and OQL abilities, yet backwards compatible with SQL-92

• Supports relation and JSON

• Simpler than XML and the XQuery data model

• Unlike labeled trees (the favorite XML abstraction of XPath and XQuery research) makes

the distinction between tuple constructor and list/array/bag constructor

AsterixDB SQL++

SQL++: http://arxiv.org/abs/1405.3631

http://db.ucsd.edu/wp-content/uploads/pdfs/375.pdf

http://arxiv.org/abs/1405.3631
http://db.ucsd.edu/wp-content/uploads/pdfs/375.pdf

{
location: 'Alpine',
readings: {{
{
time: timestamp('2014-03-12T20:00:00'),
ozone: 0.035,
no2: 0.0050

},
{
time: timestamp('2014-03-12T22:00:00'),
ozone: 'm',
co: 0.4

} }}
}

• With schema
• Or, schemaless
• Or, partial schema

SQL++ Data Model

{
location: string,
readings: {{
{
time: timestamp,
ozone: any,
*

}
}}

}

{

'location': 'Alpine',

'readings': [

{

'time': timestamp('2014-03-12T20:00:00'),

'ozone': 0.035,

'no2': 0.0050

},

{

'time': timestamp('2014-03-12T22:00:00'),

'ozone': 'm',

'co': 0.4

}]

}

Arbitrary compositions of array, bag, tuple

SQL++ Data Model

Can think of as extension of SQL

• Extend with arrays + nesting + heterogeneity by

following JSON’s notation

Can also think of as extension of JSON

• Use single quotes for literals

• Extended with bags and enriched types

{

'location': 'Alpine',

'readings': {{

{

'time': timestamp('2014-03-12T20:00:00'),

'ozone': 0.035,

'no2': 0.0050

},

{

'time': timestamp('2014-03-12T22:00:00'),

'ozone': 'm',

'co': 0.4

} }}

}

Array nested inside a tuple

Heterogeneous tuples in collections Bags {{ … }}

Enriched types

20

BNF Grammar for SQL++ queries

• Semi-structured query

• Composability:

• SELECT-FROM-WHERE (SFW)

• Complex: tuple, collection or map

• Configuration parameters

• A map contains mappings of value

pairs

SQL++ Queries

Expression ::= OperatorExpression | QuantifiedExpression

OperatorExpression ::=

PathExpression | Operator OperatorExpression |

OperatorExpression Operator (OperatorExpression)? |
OperatorExpression <BETWEEN> OperatorExpression <AND> OperatorExpression

Operator Expression

SQL++ Expressions

QuantifiedExpression ::=

((<ANY>|<SOME>) | <EVERY>) Variable <IN> Expression ("," Variable "in"
Expression)* <SATISFIES> Expression (<END>)?

Quantified Expressions

1. Arithmetic Operators, to perform basic mathematical operations;

2. Collection Operators, to evaluate expressions on collections or objects;

3. Comparison Operators, to compare two expressions;

4. Logical Operators, to combine operators using Boolean logic.

Query ::= (Expression | SelectStatement) ";"

https://ci.apache.org/projects/asterixdb/sqlpp/manual.html#Arithmetic_operators
https://ci.apache.org/projects/asterixdb/sqlpp/manual.html#Collection_operators
https://ci.apache.org/projects/asterixdb/sqlpp/manual.html#Comparison_operators
https://ci.apache.org/projects/asterixdb/sqlpp/manual.html#Logical_operators

[0.7, [0.5, 2]]

ℾ1 = ⟨ readings: {{
{co: 2.2},
{co: 1.2, no2: [0.5, 2]},
{co: 1.8, no2: 0.7} }},
max: 2 ⟩

Bout
FROM = Bin

WHERE = {{
⟨ r : {co: 2.2} ⟩,
⟨ r : {co:1.2, no2:[0.5, 2]} ⟩,
⟨ r : {co: 1.8, no2:0.7} ⟩ }}

A SQL++ Query

FROM readings AS r

WHERE r.co < max

ORDER BY r.no2

LIMIT 2

SELECT l.co AS co

Bout
WHERE = Bin

ORDERBY = {{
⟨ r : {co:1.2, no2:[0.5, 2]} ⟩,
⟨ r : {co:1.8, no2:0.7} ⟩

}}

Bout
ORDERBY = Bin

LIMIT =[
⟨ r : {co:1.8, no2: 0.7} ⟩,
⟨ r : {co:1.2, no2:[0.5, 2]} ⟩]

Bout
LIMIT = Bin

SELECT = [
⟨ r : {co:1.8, no2:0.7} ⟩,
⟨ r : {co:1.2, no2:[0.5,2]} ⟩]

FROM readings AS r

SELECT r AS co

WHERE r < 1.0

Bout
FROM = Bin

WHERE

= {{ ⟨ r : 1.3 ⟩, ⟨ r : 0.7 ⟩, ⟨ r : 0.3 ⟩, ⟨ r : 0.8 ⟩ }}

Bout
WHERE = Bin

ORDERBY

= {{ ⟨ r : 0.7 ⟩, ⟨ r : 0.3 ⟩, ⟨ r : 0.8 ⟩ }}

[
{ co: 0.8 },
{ co: 0.7 }
]

readings :
[1.3, 0.7, 0.3, 0.8]

ORDER BY r DESC

LIMIT 2

Bout
ORDERBY = Bin

LIMIT

= [⟨ r : 0.8 ⟩, ⟨ r : 0.7 ⟩, ⟨ r : 0.3 ⟩]

Bout
LIMIT = Bin

SELECT = [⟨ r : 0.8 ⟩, ⟨ r : 0.7 ⟩]

Bindings From Tuple Variables to Element Variables

SELECT r AS co
FROM readings AS r
WHERE r < 1.0
ORDER BY r DESC
LIMIT 2

• Find the highest two sensor readings that are below 1.0

Backwards Compatibility with SQL

SELECT DISTINCT r.sid
FROM readings AS r
WHERE r.temp < 50

sid temp

2 70.1

2 49.2

1 null

sid

2

Find sensors that recorded a temperature below 50

readings : {{
{ sid: 2, temp: 70.1 },
{ sid: 2, temp: 49.2 },
{ sid: 1, temp: null }

}}

{{
{ sid : 2 }

}}

Path Navigation

@tuple_nav {absent: missing, type_mismatch: null}

@array_nav {absent: missing, type_mismatch: null}

([r.co, r.so, 7.co, r.no[1], r.no[3], r.co[1]])

Two types path navigations
1. Tuple path navigation t.a from the tuple t to its attribute a returns the value of a

2. Array path navigation a[i] returns the i-th element of the array a

<r:{ ci: 1.2, no: [0.5, 2] }>

Oracle PL/SQL

A relational DBMS extended to support multi-model data

• Relational: SQL

• XML document: XML is a special data type and use XMLExists to replace the where clause

• Graph: SPARQL-in-SQL query

• RDF: SPARQL-in-SQL query

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT (fn:upper-case(?object) as ?object1)
WHERE { ?subject dc:title ?object }

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?subject (afn:namespace(?object) as ?object1)
WHERE { ?subject <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?object }

Oracle PL/SQL Program

PL/SQL Block consists of three sections:

• The Declaration section (optional).

• The Execution section (mandatory)

– SQL commands are embedded here

• The Exception Handling (or Error) section (optional)

DECLARE

Variable declaration

BEGIN

Program Execution

EXCEPTION

Exception handling

END;

LOOP

statements;

EXIT;

{or EXIT WHEN condition;}

END LOOP;

DECLARE

var_salary number(6);

var_emp_id number(6) = 16;

BEGIN

SELECT salary

INTO var_salary

FROM employee

WHERE emp_id = var_emp_id;

dbms_output.put_line(var_salary);

dbms_output.put_line('The employee ' || var_emp_id || ' has salary ' || var_salary);

END;

Query: get the salary of an employee with id '16' and display it on the

screen

Oracle PL/SQL XQuery

PL/SQL using XQuery to query XML data

• SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast combine that power of expression

and computation with the strengths of SQL

We can query relational data as XML using XMLQuery, but we can not join relational data and XML data in

a single query together

DEFINE REGION = 'Asia’

SELECT XMLQuery('for $i in fn:collection("oradb:/HR/REGIONS"),

$j in fn:collection("oradb:/HR/COUNTRIES")

where $i/ROW/REGION_ID = $j/ROW/REGION_ID

and $i/ROW/REGION_NAME = $regionname

return $j’

PASSING CAST(‘®ION’ AS VARCHAR2(40)) AS “regionname”

RETURNING CONTENT) AS asian_countries

FROM DUAL;

MarkLogic Data Models

A document DBMS extended to support multi-model data

• XML, RDF, Full-text search

MarkLogic Data Models

subject predicate object doc ID position

:person4 :first-name "John" 11 5 - 9

:person5 :alma-mater :Brown 4 25 - 40

:person5 :birth-year 1929 9 13 - 17

• Extending Triples with Context• Triples in Documents

MarkLogic XQuery Queries

FLWOR expressions
• For, Let, Where, Order by, Return

• XPath expressions

"a FLWOR expression ... supports iteration and binding of variables to intermediate results.

This kind of expression is often useful for computing joins between two or more

documents and for restructuring data."

Extracting subsets: XPath vs. FLWOR approach

• Get the title element for each recipe whose yield is greater than 20:

collection(‘recipeml/docs.xml’)/recipeml/ recipe/head/title[../yield > 20]

• Go through all the documents in the collection, and for any with a yield of more than 20, get the

title:

for $doc in collection('recipeml/docs.xml')/recipeml
where $doc/recipe/head/yield > 20
return $doc/recipe/head/title

MarkLogic Querying Triples

Which person born in Brooklyn

PREFIX db: <http://dbpedia.org/resource/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX onto: <http://dbpedia.org/ontology/>

SELECT ?person, ?name

WHERE { ?person onto:birthPlacedb:Brooklyn;

foaf:name ?name .}

sem:sparql("

select ?country {

<http://example.org/news/Nixon>

<http://example.org/wentTo> ?country

} ",(),(),

cts:and-query((

cts:path-range-query("//sem:triple/@confidence",">",80) ,

cts:path-range-query("//sem:triple/@date","<",xs:date("1974-

01-01")),

cts:or-query((

cts:element-value-query(xs:QName("source"),"AP

Newswire"),

cts:element-value-query(xs:QName("source"),"BBC")

))

))

)

Which countries did Nixon visit?

ArangoDB Query Language AQL

A native multi-model DBMS that supports
• Graph

• Key-value

• Json

Doing queries with AQL
• Data retrieval with filtering, sorting and more

• Simple graph queries

• Traversing through a graph with different options

• Shortest path queries

SQL AQL

database database

table collection

row document

column attribute

table joins collection joins

primary key
primary key (automatically present

on _key attribute)

index index

ArangoDB AQL

• Selecting all rows / documents from a table / collection,

with all columns / attributes

FOR user IN users

RETURN user

• Filtering rows / documents from a table / collection, with

projection

FOR user IN users

FILTER user.active == 1

RETURN {

name: CONCAT(user.firstName,

" ",

user.lastName),

gender: user.gender

}

• Sorting rows / documents from a table / collection FOR user IN users

FILTER user.active == 1

SORT user.name, user.gender

RETURN user

AQL JOINS

Similar to joins in relational databases, ArangoDB has its own implementation of JOINS. Coming from an SQL

background, you may find the AQL syntax very different from your expectations.

FOR user IN users

FOR friend IN friends

FILTER friend.user ==

user._key

RETURN MERGE(user, friend)

• Outer join: Outer joins are not directly supported in

AQL, but can be implemented using subqueries:

FOR user IN users

LET friends = (

FOR friend IN friends

FILTER friend.user == user._key

RETURN friend

)

FOR friendToJoin IN (

LENGTH(friends) > 0 ? friends :[{ /* no match exists

*/ }]

)

RETURN { user: user, friend: friend

}

• Inner join can be expressed easily in AQL by

nesting FOR loops and using FILTER statements:

AQL Graph Traversal

• Traverse to the parents

This FOR loop doesn’t iterate over a collection or an array, it walks the graph and iterates over the connected vertices it

finds, with the vertex document assigned to a variable (here: v).

• Traverse to the children
FOR c IN Characters FILTER c.name == "Ned" FOR v IN

1..1 INBOUND c ChildOf RETURN v.name

• Traverse to the grandchildren
FOR c IN Characters FILTER c.name == "Tywin" FOR v

IN 2..2 INBOUND c ChildOf RETURN v.name

• Traverse with variable depth
FOR c IN Characters FILTER c.name == "Joffrey" FOR v

IN 1..2 OUTBOUND c ChildOf RETURN DISTINCT

v.name

FOR v IN 1..1 OUTBOUND "Characters/2901776" ChildOf RETURN

v.name

OrientDB

A Multi-Model Database

• Document, Graph, Spatial, FullText

• Tables -> Classes

• Extended SQL

#12:382

Frank
#15:39

Helsinki

#22:11

Lives_in

Since: 2003

Each element in the Graph has own

immutable Record ID, such as

#13:55, #22:11

in = #13:55 out = #13:55

(Vertex)(Vertex)

(Edge)

Connections use persistent pointersData models

OrientDB: Data Model

{ “@rid”: “12:382”,

“@class”: “Customer”,

“name”: “Frank”,

“surname” : “Raggio”,

“phone” : “+358 0402678479”,

“details”: {

“city”:”London",

“tags”:”millennial” }

}

12:382

Frank

Vertices and edges are JSON documents
• Schema-less

• Schema-full

• Schema-hybrid

• Nested documents

• Rich indexing and querying

#15:39

Helsinki

Lives_in

OrientDB Query Language

OrientDB supports SQL as a query language with some differences

• SELECT city, sum(salary) AS salary

• FROM Employee

• GROUP BY city

• HAVING salary > 1000

Get all the outgoing vertices connected with edges with label (class)

“Eats” and "Favourited" from all the Restaurant vertices in Rome

SELECT out('Eats', 'Favorited')

FROM Restaurant

WHERE city = 'Rome'

OrientDB: Graph Traversal

SELECT expand(out())

FROM #12:468

SELECT expand(out())

FROM Customer

WHERE name = ‘Green’

This uses an index to retrieve the

starting vertex (#12:468) vertex

Order

2332

Green

Lives_in Order

8834

Shampoo

#15:4334

#12:468

#15:19345

#15:49602

OrientDB: Graph Traversal

SELECT expand(out().out())

FROM #12:468

SELECT expand(out().out())

FROM Customer

WHERE name = ‘Green’

Order

2332

Green

Lives_in Order

8834

Shampoo

#15:4334

#12:468

#15:19345

#15:49602SELECT expand(in().in())

FROM #15:49602

SELECT expand(in().in())

FROM Product

WHERE name = ‘White Soap’

OrientDB Traverse and Pattern Matching

In a social network-like domain, a user

profile is connected to friends through links.

• TRAVERSE out("Friend")

• FROM #10:1234 WHILE $depth <= 3

• STRATEGY BREADTH_FIRST

MATCH {class: Person, WHERE: (name = ‘Abel’), AS: me} -

friendOf->{}-friendOf>{AS: foaf}, {AS: me}-friendOf->{AS: foaf}

RETURN me.name AS myName, foaf.name AS foafName

Traverse Pattern Matching

Me

F

FoaF

friendOf

friendOf

friendOf

AgensGraph

A forked project of PostgreSQL (v9.6.2) supports

• Relational data, property graph, and JSON documents

Features

• Integrated querying using SQL (Relational data) and Cypher (Graph data)

• SQL for relational data and Cypher for Graph data

• JSON is a special data type

• Graph data object management

• Hierarchical graph label organization

• Property indexes on both vertexes and edges

AgensGraph Data Model

• Extended property graph model

• Data objects

– Graph

– Vertex and edge

– Each vertex and edge can have a JSON document as its property

• Label hierarchy

– Vertexes and edges can be grouped into labels (e.g. person, student, teacher, …)

– Labels are organized as a hierarchy

RPQ with AgensGraph

RPQ can be written as Variable-length Edge (VLE) Query

• Can be implemented using recursive common table expression (CTE) in SQL

• But CTE is inefficient for VLE query

– Using CTE is BFS (Breadth First Search)-style processing

– BFS processing needs to buffer intermediate results

VLE with Cypher

MATCH

p=(x)-[:Parent*]->(y)

RETURN

(x), (y), length(p)

ORDER BY (y), (x),length(p)

match (x)-[*1..5]->(y) return x, y;

x y

• ArangoDB Query Language(AQL). https://www.arangodb.com/docs/stable/aql/index.html.

• C. Zhang and J. Lu. Holistic evaluation in multi-model databases benchmarking. Distributed and Parallel Databases,
pages 1–33, 2019.

• C. Zhang, J. Lu, P. Xu, and Y. Chen. UniBench: A Benchmark for Multi-model Database Management Systems. In TPCTC
’18, Rio de Janeiro, Brazil, August 27-31, 2018, Revised Selected Papers, volume 11135 of Lecture Notes in
Computer Science, pages 7–23. Springer, 2018.

• S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E.
Gabrielova, R. Grover, Z. Heilbron, Y. Kim, C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen,
and T. Westmann. AsterixDB: A scalable, open source BDMS. Proc. VLDB Endow., 7(14):1905–1916, 2014.

• R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, andD. Vrgoc. Foundations of modern query languages for
graph databases. ACM Comput. Surv., 50(5):68:1–68:40, 2017.

• K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ semi-structured data model and query language: A
capabilities survey of SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR, abs/1405.3631, 2014.

• P. T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50–60, 2012.

Reference

https://www.arangodb.com/docs/stable/aql/index.html

A comparative study of the query languages from 4 perspectives.

 The semantic difference

 The internal representations

 The expressive power

 The manner of query evaluation

04 Comparison of the query languages

Processing Paradigm

In general, the evaluation of a multi-model query consists of the

following stages:

• The parser transforms the query into an internal representation, e.g.,

relational algebra expression for SQL;

• By using heuristic rules, the optimizer rewrites the expression into one that

promises a more efficient evaluation;

• Different query evaluation plans are constructed for the optimized

expression, (e.g., taking into account access paths for the data);

• The engine executes the evaluation plan and return results to the user.

Parser

Query

Optimizer

Query

Executor

Query

Query Tree

Execution Plan

Query processing in AgensGraph

• Cypher query is processed by the same process with SQL

• We integrate Cypher query processing with SQL query engine from the

parser to the executor

– So you can use any PostgreSQL’s expressions and functions in Cypher

• Cypher query’s results is a relation

– We treat Cypher query as a subquery

– Existing query optimizations can be applied to Cypher query too(e.g. rolling

up subquery, predicate push-down, join ordering, …)

• Can make a query by combining SQL and Cypher as a subquery

Query processing in AgensGraph

• Cypher query is a chain of Cypher clauses

– Each clause produces its results as a relation

• Chained execution

– The results from the former clause are provided to the next clause

• Transform a Cypher query to a query tree

– Each clause is transformed to a query structure

– A MATCH clause is transformed to a query structure with joins

– The chained clauses are combined as subqueries

Comparisons

Query languages can be compared W.R.T the following perspectives:

• Semantics: precisely defines the computation for each expression

• Internal representation: the internal representation of a parsed query

• Expressive power: what can and what cannot be expressed in a given query language?

• Complexity of evaluation: how complex is it to actually evaluate the queries expressible in the query

language?

• Complexity of static analysis: how difficult is it to analyze and optimize queries to ensure a good evaluation

performance?

• PostgreSQL outputs a table with two columns named “A”

• Oracle throws an ERROR: reference to column “A” is

ambiguous

Formal semantics for declarative query languages

SELECT * FROM (SELECT R.A, R.A FROM R) S

SELECT * FROM R WHERE EXISTS (

SELECT * FROM (

SELECT R.A, R.A FROM R) S)

• Both PostgreSQL and Oracle output R

Who is right?

Let’s have a look at the SQL standard!

● If the <select list>* is simply contained in a

<subquery> that is immediately contained in an

<exists predicate>, then the <select list> is

equivalent to a <value expression> that is an arbitrary

<literal>.

● Otherwise, the <select list> * is equivalent to a

<value expression> sequence in which each <value

expression> is a column reference that references a

column of T and each column of T is referenced

exactly once. The columns are referenced in the

ascending sequence of their ordinal position within T

• Avoid ambiguity of natural language

• Clearly defined and not subject to interpretation

• Easy to understand and implement

The need of formal semantics for query languages

Previous attempts

• Many simplifying assumptions: no bags, no nulls

• No justification of correctness

• Operational semantics
– describing the meaning of a programming language by specifying how it executes on an abstract machine.

– very helpful in implementation

– Relational algebra

• Denotational semantics
– defining the meaning of programming languages by mathematical concepts.

– Relational calculus (Two-valued logic)

• Axiomatic semantics
– giving the meaning of a programming construct by axioms or proof rules in a program logic

– useful in developing and verifying programs

Three kinds of semantics

SQL++ FROM clause allows variables to range over any

data (SQL FROM clause tuple variables range over tuples

only)

Semantics of SQL++ FROM are defined inductively
• (1) Lines 4-5: the SQL++ core base case where the FROM

item ranges over a single collection or tuple

• (2) Lines 6-7: the SQL++ core inductive case where the

FROM item comprises correlation between two other FROM

items

• (3) Lines 8-12: the “syntactic sugar” cases, where the

grammar introduces well known SQL constructs (e.g., joins,

outer joins) as well as the unnesting constructs of NoSQL

databases

SQL++ Semantics: BNF Grammar for FROM Clause

Semantics for path navigations(t:a and a[i])

Utilize parameters from the @tuple_nav

and array_nav parameter groups
• The absent parameter specifies the returned value when an

attribute/array element is absent: null, missing, or throw an

error.

• The type mismatch parameter specifies whether to return

null, missing, or throw an error when a tuple/array navigation

is invoked on a non-tuple/array.

SQL++ Path Navigation Semantics

FROM readings AS r

SELECT r AS co

WHERE r < 1.0

Bout
FROM = Bin

WHERE

= {{ ⟨ r : 1.3 ⟩, ⟨ r : 0.7 ⟩, ⟨ r : 0.3 ⟩, ⟨ r : 0.8 ⟩ }}

Bout
WHERE = Bin

ORDERBY

= {{ ⟨ r : 0.7 ⟩, ⟨ r : 0.3 ⟩, ⟨ r : 0.8 ⟩ }}

[
{ co: 0.8 },
{ co: 0.7 }
]

readings :
[1.3, 0.7, 0.3, 0.8]

ORDER BY r DESC

LIMIT 2

Bout
ORDERBY = Bin

LIMIT

= [⟨ r : 0.8 ⟩, ⟨ r : 0.7 ⟩, ⟨ r : 0.3 ⟩]

Bout
LIMIT = Bin

SELECT = [⟨ r : 0.8 ⟩, ⟨ r : 0.7 ⟩]

Variable binding semantics:

from Tuple Variables to Element Variables

SELECT r AS co
FROM readings AS r
WHERE r < 1.0
ORDER BY r DESC
LIMIT 2

• Find the highest two sensor readings that are below 1.0

BNF Grammar for SQL++ Values

• Missing value

• Defined value

• scalar, complex or null

• Complex: tuple, collection or map

• A collection is an array or a bag

• A map contains mappings of value pairs

Semantics of SQL++ Values

Semantics for RPQ

RPQ definition

The regular path queries are all and only those

expressions recursively generated as follows.

• If a ∈ L, then a ∈ RPQ.

• If e ∈ RPQ, then (e)- ∈ RPQ.

• If e, f ∈ RPQ, then (e) /(f) ∈ RPQ.

• If e, f ∈ RPQ, then e+f ∈ RPQ.

• If e ∈ RPQ, then e+ ∈ RPQ.

Semantics
As a query algebra, RPQ allows us to: select all edges (i.e., paths of

length 1) sharing an edge label, take the inverse of a set of paths,

concatenate paths from two sets of paths, take the union of two sets of

paths, and to take the transitive closure of a set of paths.

Let G= (V, E, η, λ, v) be a property graph. The semantics of evaluating an

RPQ p ∈ RPQ over G is the set of vertex pairs ⟨p⟩G = V × V , recursively

defined as follows.

• If p=a ∈ L, then ⟨p⟩G = {s, t) | ∃edge ∈ E such that η(edge) = (s, t)

and a ∈ λ(edge)}.

• If p= (e)- ∈ RPQ, then ⟨p⟩G ={(t, s) | (s, t) ∈ ⟨e⟩G}.

• If p= e/f ∈ RPQ, then then ⟨p⟩G ={(t, s) | ∃u ∈ V such that (s,u) ∈
⟨e⟩G and (u, t) ∈ ⟨f⟩G.

• If p=e+f ∈ RPQ, then ⟨p⟩G = ⟨e⟩G + ⟨f⟩G

• If g = (e)+ ∈ RPQ, then ⟨p⟩G = {(s, t) | (s, t) ∈ TC(⟨e⟩G)}, where

TC(⟨e⟩G) denotes the transitive closure of binary relation ⟨e⟩G

CRPQ Examples

• Pairs of customers who have bought same product (do not list a

customer with herself):

Q1(c1,c2) :- c1 –Bought.^Bought-> c2, c1 != c2

• Customers who have bought and also reviewed a product:

Q2(c) :- c –Bought-> p, c –Reviewed-> p

CRPQ Semantics

• Naturally extended from single path expressions, following model of CQs

• Declarative

– lifting the notion of satisfaction of a path expression atom by a source-target node pair to the

notion of satisfaction of a conjunction of atoms by a tuple

• Procedural

– based on SPRJ manipulation of the binary relations

yielded by the individual path expression atoms

Internal representations

An algebra is always used as an internal representation to support query optimization (a set

of equivalent rules):

1. SQL++: the nested relational algebra

2. Oracle PL/SQL: relational algebra

3. Marklogic XQuery: XQuery algebra,

4. ArangoDB AQL: no algebraic implementation

5. OrientDB: no defined algebra

6. AgensGraph: extend the relational algebra (PostgreSQL)

63

Recursions (Reference to their own)
• recursive Common Table Expressions (CTEs)

• SQL99

Expressive Powers

Three important expressive powers

• Conjunctive queries

– Defined by Select, Project, Join algebra

• Relational completeness

– Relational algebra, relational calculus

– SQL92, AQL

• Turing completeness

– Simulate the Turing machine

– Oracle PL/SQL

– Gremlin is the only one in graph languages

syntax of a recursive CTE:
WITH expression_name (column_list)

AS

(-- Anchor member

initial_query

UNION ALL

-- Recursive member that references

expression_name.

recursive_query

)

-- references expression name

SELECT *

FROM expression_name

CQ< SQL92 < ArangoDB QL, SQL++, AgensGraph, OrientDB < Oracle PL/SQL = MarkLogic XQuery

• How complex is it to actually evaluate the queries expressible in the language?

• There is a trade-off between the expressive power and evaluation complexity

Three types of complexity of evaluating a query

• Data complexity:

– Make the query as a fixed entity and to measure the complexity in terms of the size of the database

only.

• Query complexity：

– Measure the cost in terms of the size of the query by assuming the database never changes

• Combined complexity

– A general scenario both the database changes and many different queries are asked

Query evaluation complexity

• Standard complexity classes

– LogSpace, Ptime, NP, Pspace, ExpTime

Two parallel complexity classes AC0 and TC0

• AC0 :

– the class of all problems solvable by uniform constant depth, polynomial size circuits with not , and

and or gates of unbounded fan-in

• TC0:

– An analog of AC0 where also threshold gates are available

• LogCFL

– The class of all problems that are logspace-reducible to a context-free language

Query evaluation complexity

AC0 ⊂ TC0 ⊆ LogSpace ⊆ LogCFL ⊆ Ptime ⊆ NP ⊆ Pspace ⊆ ExpTime

• Theorem

– The data complexity of Evaluation(CQ) is in AC0

– The combined complexity of Evaluation(CQ) is NP-complete

– The combined complexity of Evaluation(Acyclic CQ) is LogCFL

– The containment problem Evaluation(Acyclic CQ) is LogCFL

For the multi-model query languages

• AC0 :

– LogCFL ⊆ SQL++ ⊆ ArangoDB QL ⊆ AgensGraph ⊆ OrientDB ⊆ NP

– NP ⊆ MarkLogic XQuery ⊆ Oracle PL/SQL ⊆ Pspace

– SQL++ ⊆ ArangoDB QL ⊆ AgensGraph ⊆ OrientDB ⊆ Oracle PL/SQL ⊆ MarkLogic XQuery

Query evaluation complexity

• E. F. Codd. A Data Base Sublanguage Founded on the Relational Calculus. In Proceedings of the 1971 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control, SIGFIDET ’71, pages 35–68, New York, NY, USA, 1971. Association for Computing
Machinery.

• E. F. Codd. A data base sublanguage founded on the relational calculus. In Proceedings of the 1971 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control, SIGFIDET ’71, pages 35–68, New York, NY, USA, 1971.

• E. F. Codd. Relational completeness of data base sublanguages. Research Report /RJ / IBM / San Jose, California, RJ987, 1972.

• J. Marton, G. Szárnyas, and D. Varró. Formalising openCypher Graph Queries in Relational Algebra. In Advances in Databases and
Information Systems - 21st European Conference, ADBIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceedings, volume 10509 of
Lecture Notes in Computer Science, pages 182–196. Springer, 2017.

• V. Z. Moffitt and J. Stoyanovich. Temporal graph algebra. In Proceedings of The 16th International Symposium on Database
Programming Languages, DBPL 2017, Munich, Germany, September 1, 2017, pages 10:1–10:12. ACM, 2017.

• A. Mokhov. Algebraic graphs with class (functional pearl). In Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell,
Oxford, United Kingdom, September 7-8, 2017, pages 2–13. ACM, 2017.

• M. Negri, G. Pelagatti, and L. Sbattella. Formal Semantics of SQL Queries. ACM Trans. Database Syst., 16(3):513–534, Sept. 1991.

• K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ semi-structured data model and query language: A capabilities survey of
SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR, abs/1405.3631, 2014.

• M. A. Rodriguez. The Gremlin Graph Traversal Machine and Language. CoRR, abs/1508.03843, 2015.

• H. Thakkar, D. Punjani, S. Auer, and M. Vidal. Towards an integrated graph algebra for graph pattern matching with Gremlin. In
Database and Expert Systems Applications - 28th International Conference, DEXA 2017, Lyon, France, August 28-31, 2017, Proceedings,
Part I, volume 10438 of Lecture Notes in Computer Science, pages 81–91. Springer, 2017.

• A. M. Turing. On computable numbers, with an application to the Entscheidungs problem. Proceedings of the London Mathematical
Society, 2(42):230–265, 1936.

Reference

Open problems and challenges in designing multi-model data query languages

 Design an algebra for a multi-model query language

 General approaches for cross-model query optimization

05 Open problem and challenges

Cross-model query involves many types of join operators

• Relation-Graph join

• Relation-JSON join

• Graph-Graph join

• Graph-JSON join

• …

How to define an algebra or logic?

• Typically we are to define an algebra or logic that capture the semantics for each join operation.

Defining a formal semantics for MMQL

Many challenges in query evaluation: query optimization, query execution, self-tuning, data

placement/migration

Cross-model query optimization

• Query-based vs. workload-based optimization

• View-based query rewriting

• Cost-based optimizations (cost model precisely capture the query cost)

• An algebra for query rewriting

Cross-model query optimization

Summary

• We discussed 6 representative multi-model data query languages

– from essential syntax

• We have made a comparison of these query languages

– from point of view of expressive power and semantics

• The existing multi-model data query languages is far beyond perfect

– Both semantics and cross-model query evaluation

We will invite the participants to learn, write and run some multi-model queries of

UniBench by using a native multi-model database, ArangoDB (please install it in advance)

1. A brief introduction to UniBench and ArangoDB (5 mins)

2. Hands-on experience for multi-model queries with ArangoDB (20 mins)

3. Hands-on exercises for participants (10 mins)

4. Q&A (10 mins)

06 Hands-on section

● A mixed data model: a scenario related to

social network and e-commerce

● Multi-model data generation: scalable

generation of 5 types of data

● Multi-model workloads: 10 multi-model

queries, 2 multi-model transactions

UniBench: A benchmark for multi-model databases

Project website: https://www.helsinki.fi/en/researchgroups/unified-database-

management-systems-udbms/unibench-towards-benchmarking-multi-model-dbms

https://www.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/unibench-towards-benchmarking-multi-model-dbms

A query example of UniBench
Given a start customer c and a product category b, find persons who are c's friends within 3-hop friendships in

Knows graph, return their bought products in the given category b, as well as the products’ feedback with the 5-score

rating.

• Native multi-model NoSQL database (JSON, Key-value, and

Property Graph, Spatial, Text), Schema-less

• Query language: AQL (For, Let, Filter, Return, FLFR expressions)

• ACID transaction and Auto Sharding

• Open source (Apache 2.0)

ArangoDB

Link for the hands-on session:

https://version.helsinki.fi/chzhang/cikm-2020-hands-on-

session-for-multi-model-queries/-/blob/master/hands-
on.ipynb

https://version.helsinki.fi/chzhang/cikm-2020-hands-on-session-for-multi-model-queries/-/blob/master/hands-on.ipynb

• ArangoDB. https://www.arangodb.com/.

• ArangoDB Query Language(AQL). https://www.arangodb.com/docs/stable/aql/index.html.

• Chao Zhang and Jiaheng Lu. Holistic evaluation in multi-model databases benchmarking. Distributed and Parallel Databases, 2019.

• Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen. UniBench: A Benchmark for Multi-model Database Management Systems. In
TPCTC ’18, Rio de Janeiro, Brazil, August 27-31, 2018, Revised Selected Papers, volume 11135 of Lecture Notes in Computer Science,
pages 7–23. Springer, 2018.

Reference

https://www.arangodb.com/
https://www.arangodb.com/docs/stable/aql/index.html

THANKS
Does anyone have any questions?

