Data Sketches

Lecturer: Jiaheng Lu
Autumn 2016
Outline

• Massive data stream
• Bloom filter
• Count-min
• Count-sketch
• FM-sketch
Review Count-Min Sketch

- Model input data as a matrix
 - Create a small summary as an array of $w \times d$ in size
 - Use d hash function to map vector entries to $[1..w]$
Review Count-Min Sketch

C_1[h_1(i)]

C_2[h_2(i)]

\ldots

C_d[h_d(i)]

f_i
Count-sketch:
Dot product of two vectors

- Problem: Estimate the value of dot product of two vectors
- Example: $V_1: (1,0,1,2,0)$ and $V_2 (0,0,2,1,0)$
- $V_1 \cdot V_2 = 0+0+2+2+0 = 4$
Use Count-min for computing dot product?

- Map each vector to a $w \times d$ matrix
- Select the \textit{min} value of the dot product

- See an example to illustrate the method
Use Count-min for computing dot product? See an example.

V1: (1,0,1,2,0), Index (0,1,2,3,4)

Initial

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[h_1(j) = j \mod 3 \]
\[h_2(j) = (j \mod 4) \mod 3 \]
\[h_3(j) = (2^j) \mod 3 \]
Use Count-min for computing dot product? See an example.

V1: (1,0,1,2,0), Index (0,1,2,3,4)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 h_1(j) &= j \mod 3 \\
 h_2(j) &= (j \mod 4) \mod 3 \\
 h_3(j) &= (2 \times j) \mod 3 \\
\end{align*}
\]
Use Count-min for computing dot product? See an example.

V1: (1,0,1,2,0), Index (0,1,2,3,4)

Initial

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[h_1(j) = j \mod 3 \]
\[h_2(j) = (j \mod 4) \mod 3 \]
\[h_3(j) = (2^j) \mod 3 \]
Use Count-min for computing dot product? See an example.

V1: (1,0,1,2,0), Index (0,1,2,3,4)

Initial

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

h1(j) = \(j \mod 3 \)

h2(j) = \((j \mod 4) \mod 3 \)

h3(j) = \((2 \times j) \mod 3 \)
Use Count-min for computing dot product? See an example.

V2 (0,0,2,1,0), Index (0,1,2,3,4)

Initial

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[h_1(j) = j \mod 3 \]

\[h_2(j) = (j \mod 4) \mod 3 \]

\[h_3(j) = (2 \cdot j) \mod 3 \]
Use Count-min for computing dot product? See an example.

V2 (0,0,2,1,0), Index (0,1,2,3,4)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial

\[
h1(j) = j \mod 3
\]

\[
h2(j) = (j \mod 4) \mod 3
\]

\[
h3(j) = (2^j) \mod 3
\]
Use Count-min for computing dot product? See an example.

V2 (0,0,2,1,0), Index (0,1,2,3,4)

Initial

1 0 2
1 0 2
1 2 0

\[h_1(j) = j \mod 3 \]
\[h_2(j) = (j \mod 4) \mod 3 \]
\[h_3(j) = (2^j) \mod 3 \]
Use Count-min for computing dot product? See an example.

V1: (1,0,1,2,0), V2: (0,0,2,1,0),

\[
\begin{array}{ccc}
3 & 0 & 1 \\
3 & 0 & 1 \\
3 & 1 & 0 \\
\end{array}
\quad \begin{array}{ccc}
1 & 0 & 2 \\
1 & 0 & 2 \\
1 & 2 & 0 \\
\end{array}
\]

\[3 \times 1 + 1 \times 2 = 5\]
\[3 \times 1 + 1 \times 2 = 5\]
\[3 \times 1 + 1 \times 2 = 5\]

Min (5,5,5) = 5

The accurate value is 2+2=4. Over-estimation!
Count-Sketch

- Model input vector $V=(v_0, v_1, \ldots, v_{n-1})$ as a matrix
- Create a small summary as a matrix of $w \times d$ in size
- Use d hash function pairs to map vector entries to $[1..w]$
Count sketch

- Second hash function: g_i maps each i to $+1$ or -1
Count-sketch Algorithm

- Input: vector $V = (v_0, v_1, \ldots, v_{n-1})$
- Output: a matrix M of $w \times d$ in size

1. $C[0, 0] \ldots C[d-1, w-1] = 0$
2. for $j \leftarrow 0$ to $d-1$ do
 - Initialize h_j, g_j
3. for $j \leftarrow 0$ to $d-1$ do
 for $i \leftarrow 0$ to $w-1$
 - do $C[j, h_j(i)] \leftarrow C[j, h_j(i)] + g_j(i) \cdot v_i$
Count-sketch Algorithm (Cont.)

- Input: two matrixes M1 and M2 for two vectors
- Output: the estimation of the dot product of two vectors

\[
\text{for } j \leftarrow 0 \text{ to } d-1 \text{ do} \\
E(j) = \sum_{i=0}^{w-1} (M1(j, i) \times M2(j, i))
\]

Return Median \{ E(j) | j=0,1,…,d-1 \}
Example of count-sketch (V1)

V1: (1,0,1,2,0), Index (0,1,2,3,4)

Initial

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

h1(j) = j mod 3
h2(j) = (j mod 4) mod 3
h3(j) = (2*j) mod 3

Map index domain with h and g functions,

g hash functions

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>g2</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>g3</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>
Example of count sketch (V1)

V1: (1,0,1,2,0), Index (0,1,2,3,4)

Initial

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>h1(j) = j mod 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h2(j) = (j mod 4) mod 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h3(j) = (2*j) mod 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>g2</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>g3</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>

g hash functions
Example of count sketch (V1)

V1: (1,0,1,2,0), Index (0,1,2,3,4)

Initial

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$h1(j) = j \mod 3$
$h2(j) = (j \mod 4) \mod 3$
$h3(j) = (2^j) \mod 3$

g hash functions

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g1$</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>$g2$</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>$g3$</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>
Example of count sketch (V1)

V1: (1,0,1,2,0), Index (0,1,2,3,4)

\[
\begin{align*}
\text{Initial} & \\
1 & 0 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0 \\
\end{align*}
\]

\[
\begin{align*}
\text{h1(j)} & = j \mod 3 \\
\text{h2(j)} & = (j \mod 4) \mod 3 \\
\text{h3(j)} & = (2^j) \mod 3 \\
\end{align*}
\]

\[
\begin{array}{c|ccccc}
 & 0 & 1 & 2 & 3 & 4 \\
\hline
g1 & +1 & -1 & -1 & +1 & -1 \\
g2 & -1 & +1 & -1 & +1 & +1 \\
g3 & +1 & -1 & +1 & -1 & +1 \\
\end{array}
\]
Example of count sketch (V1)

V1: (1,0,1,2,0), Index (0,1,2,3,4)

Initial

\[h_1(j) = j \mod 3 \]
\[h_2(j) = (j \mod 4) \mod 3 \]
\[h_3(j) = (2^j) \mod 3 \]

\[\begin{array}{c|c|c|c|c|c}
 & 0 & 1 & 2 & 3 & 4 \\
 \hline
 g_1 & +1 & -1 & -1 & +1 & -1 \\
 g_2 & -1 & +1 & -1 & +1 & +1 \\
 g_3 & +1 & -1 & +1 & -1 & +1 \\
\end{array} \]
Example of count sketch (V1)

V1: (1,0,1,2,0), Index (0,1,2,3,4)

\[h_1(j) = j \mod 3 \]
\[h_2(j) = (j \mod 4) \mod 3 \]
\[h_3(j) = (2^j) \mod 3 \]
Example of count sketch (V2)

V2: (0,0,2,1,0), Index (0,1,2,3,4)

Initial

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>-2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

h1(j) = j mod 3
h2(j) = (j mod 4) mod 3
h3(j) = (2*j) mod 3

g hash functions

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>g2</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>g3</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>
Example of count sketch (V2)

V2: (0,0,2,1,0), Index (0,1,2,3,4)

Initial

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

\[h_1(j) = j \mod 3 \]
\[h_2(j) = (j \mod 4) \mod 3 \]
\[h_3(j) = (2^*j) \mod 3 \]

\[
\begin{array}{c|ccccc}
\hline
& 0 & 1 & 2 & 3 & 4 \\
\hline
g_1 & +1 & -1 & -1 & +1 & -1 \\
g_2 & -1 & +1 & -1 & +1 & +1 \\
g_3 & +1 & -1 & +1 & -1 & +1 \\
\hline
\end{array}
\]
Example of count sketch (result)

V1: (1,0,1,2,0),

\[
\begin{array}{ccc}
3 & 0 & -1 \\
1 & 0 & -1 \\
-1 & 1 & 0 \\
\end{array}
\]

V2: (0,0,2,1,0),

\[
\begin{array}{ccc}
1 & 0 & -2 \\
1 & 0 & -2 \\
-1 & 2 & 0 \\
\end{array}
\]

\[
3 \times 1 + (-1) \times (-2) = 5 \\
1 \times 1 + (-1) \times (-2) = 3 \\
(-1) \times (-1) + 1 \times 2 = 3
\]

Median (5,3,3) = 3

The accurate value is 2+2=4.
Underestimation!
Questions?

• Why does the Count-sketch need to generate the second hash function g_i to produce the random +1 and -1 values?

• Answer the questions in the self-assessment form
Outline

• Massive data stream
• Bloom filter
• Count-min
• Count-sketch
• FM-sketch
Distinct Value Estimation

• Problem: Find the *number of distinct values* in a stream of values

Data: 3 2 5 3 2 1 7 5 1 2 3 7

Number of distinct values: 5
FM Sketch

• The algorithm was introduced by Philippe Flajolet and G. Nigel Martin in their 1985 paper "Probabilistic Counting Algorithms for Data Base Applications"

• Download here

• Approximating the number of distinct elements in a stream with a single pass and space efficient
FM Sketch

- Map input \(x \) to an integer \(h(x) \) in the range \([0;2^L-1]\), where the outputs are sufficiently uniformly distributed.
- Define \(\text{Tail}(h(x)) = \text{number of trailing consecutive 0 from right} \)

\[
\begin{align*}
\text{Tail}(101001) &= 0 \\
\text{Tail}(101010) &= 1 \\
\text{Tail}(101100) &= 2
\end{align*}
\]

- Use a bit array to estimate the number of distinct elements
FM algorithm

1. Initialize a bit-array A to be of length L and contain all 0's.
2. For each item x:
 1. `index = Tail(h(x))`
 2. `A[index] = 1`
3. Let R denote the smallest index i such that A[i]=0
4. Estimate the number of distinct elements as $\frac{2^R}{\phi}$, where $\phi = 0.77351$.
FM sketch example

Data: 3 4 5 1 2 5 3

h(x) = (x * 7) mod 15

Bit-array A:

| 0 | 0 | 0 | 0 | 0 |
FM sketch example

Data: 3 4 5 1 2 5 3

\[h(x) = (x \times 7) \mod 15 \]

Bit-array A:

| 0 | 0 | 1 | 0 |

3 * 7 = 21

mod 15

3 * 7 = 21

6 = 0110

Tail

1
FM sketch example

Data: 3 4 5 1 2 5 3

\[h(x) = (x \times 7) \mod 15 \]

Bit-array A:

| 0 | 0 | 1 | 1 |

\[4\times7=28 \mod 15 \quad 13=1101 \mod 15 \quad \text{Tail} \]

0
FM sketch example

Data: 3 4 5 1 2 5 3

$$h(x) = (x \times 7) \mod 15$$

Bit-array A:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

$$5 \times 7 = 35 \mod 15$$

5 = 0101

Tail 0
FM sketch example

Data: 3 4 5 1 2 5 3

\[h(x) = (x \times 7) \mod 15 \]

Bit-array A:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1*7=7 mod 15 7=0111 Tail 0
FM sketch example

Data: 3 4 5 1 2 5 3

\[h(x) = (x \times 7) \mod 15 \]

Bit-array A:

| 0 | 0 | 1 | 1 |

mod 15

\[2 \times 7 = 14 \]

Tail

\[14 = 1110 \]

\[1 \]
FM sketch example

Data: 3 4 5 1 2 5 3

Bit-array A:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

Estimate the number of distinct elements as \(\frac{2^R}{\phi} \), where \(\phi = 0.77351 \).

\[R=2, \quad \frac{2^2}{0.77} = 5.2 \approx 5. \]

Correct estimation!
Why FM algorithm can work?

- Because hash function \(\text{Tail}(h(x)) \) mapping input items to \(i \) with probability:

 - \(\Pr[\text{Tail}(h(x) = 0] = 1/2 \),

 - \(\Pr[\text{Tail}(h(x) = 1] = 1/4 \),

 - \(\Pr[\text{Tail}(h(x) = 2] = 1/8 \)

- Intuitively, \(2^R \) can be used to estimate the number of distinct elements. \(\varphi = 0.77351 \) is a correction ratio for more accurate result.

Hence, the result is \(2^R / \varphi \)
• Watch a video on FM sketch

• https://www.youtube.com/watch?v=IHitCLlljHo
Summary of FM Sketch

• Computing the number of distinct taking time proportional to the size of the data,

• FM sketch allows approximate computation with much smaller space
 • Logarithmic in the number of distinct elements.
Conclusions on sketches

• We introduced four sketches:
 – Bloom-filter, Count-min, Count-sketch and FM sketch

• Sketch methods: Simple, yet powerful, ideas with great reach

• Public code implementation:

 http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
Reference

- Read the following reference papers about sketch algorithms to have a deeper understanding

- Sketch Techniques for Approximate Query Processing

- https://people.cs.umass.edu/~mcgregor/711S12/sketches1.pdf