Preliminary: Probability and tail bound for sketches algorithms

Lecturer: Jiaheng Lu

Fall 2016

Basic Probability Theory

A probability space is a triple $(\Omega, \mathrm{E}, \mathrm{P})$ with

- a set Ω of elementary events (sample space),
- a family E of subsets of Ω with $\Omega \in \mathrm{E}$ which is closed under \cap, \cup, and - with a countable number of operands
(with finite Ω usually $\mathrm{E}=2^{\Omega}$), and
- a probability measure $\mathbf{P}: \mathrm{E} \rightarrow[0,1]$ with $\mathrm{P}[\Omega]=1$ and $\mathrm{P}\left[\cup_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}\right]=\sum_{\mathrm{i}} \mathrm{P}\left[\mathrm{A}_{\mathrm{i}}\right]$ for countably many, pairwise disjoint A_{i}

Probabilities of events

> Properties of P:
> $\mathrm{P}[\mathrm{A}]+\mathrm{P}[\neg \mathrm{A}]=1$
> $\mathrm{P}[\mathrm{A} \cup \mathrm{B}]=\mathrm{P}[\mathrm{A}]+\mathrm{P}[\mathrm{B}]-\mathrm{P}[\mathrm{A} \cap \mathrm{B}]$
$\mathrm{P}[\varnothing]=0$ (null/impossible event)
$\mathrm{P}[\Omega]=1$ (true/certain event)

Independence of events

- Two events A and B are independent if

$$
p(A \cap B)=p(A) p(B)
$$

- Conditional probability: For two events A and B with $p(B)>0$, the probability of A conditioned on B is $p(A \mid B)=\frac{p(A \cap B)}{p(B)}$.

Random variable

- A random variable X is a function $X: \Omega \rightarrow R$.
- $\operatorname{Pr}[X=a]=\sum_{s \in \Omega: X(s)=a} p(s)$.
- Two random variables X and Y are independent if

$$
\operatorname{Pr}[(X=a) \wedge(Y=b)]=\operatorname{Pr}[X=a] \operatorname{Pr}[Y=b] .
$$

Expectation

- Expectation:

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{s \in \Omega} p(s) X(s) \\
& =\sum_{i \in \operatorname{Range}(X)} i \cdot \operatorname{Pr}[X=i]
\end{aligned}
$$

- Linearity of expectation:

$$
\mathbf{E}\left[\sum_{i} X_{i}\right]=\sum_{i} \mathbf{E}\left[X_{i}\right]
$$

no matter whether X_{i} 's are independent or not.

variance

- The variance of X is

$$
\operatorname{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}
$$

- The standard deviation of X is

$$
\sigma=\sqrt{\operatorname{Var}[X]}
$$

Concentration and tail bounds

- In many analysis of randomized algorithms, we need to study how concentrated a random variable X is close to its mean $E[X]$.
- Many times $X=X_{1}+\cdots+X_{n}$.
- Upper bounds of

$$
\operatorname{Pr}[X \text { deviates from } E[X] \text { a lot }]
$$ is called tail bounds.

Markov's Inequality: when you only know expectation

- [Thm] If $X \geq 0$, then

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a}
$$

In other words, if $E[X]=\mu$, then

$$
\operatorname{Pr}[X \geq k \mu] \leq \frac{1}{k}
$$

Chebyshev's Inequality: when you also know variance

- [Thm $\quad \operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^{2}}$.

In other words,

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq k \cdot \sqrt{\operatorname{Var}[X]}] \leq \frac{1}{k^{2}} .
$$

Chernoff's Bound

- [Thm] Suppose $X_{i}= \begin{cases}1 & \text { with prob. } p \\ 0 & \text { with prob. } 1-p\end{cases}$ and let

$$
X=X_{1}+\cdots+X_{n} .
$$

Then

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\delta^{2} \mu / 3}
$$

where $\mu=n p=\mathrm{E}[X]$.

Some basic applications: coin tossing

- A fair coin
- $f(x)=0$: with probability $1 / 2$
- $f(x)=1$: with probability $1 / 2$
- Repeatedly toss the coin, Let S_{n} be the number of heads from the first n tosses.
- $E\left(S_{n}\right)=n / 2, \operatorname{Var}\left(S_{n}\right)=n / 4$
- $E\left(S_{n} / n\right)=1 / 2, \operatorname{Var}\left(S_{n} / n\right)=1 /(4 n)$

Some basic applications: coin tossing

- In terms of Chebyshev's inequality
- $P\left(\left|\frac{S_{n}}{n}-1 / 2\right| \geq \varepsilon\right) \leq 1 /\left(4 n \varepsilon^{2}\right)$
- For example $P\left(\left|\frac{S_{n}}{n}-1 / 2\right| \geq 1 / 4\right) \leq 4 / n$
- But if we use Chernoff bound, $E\left(S_{n}\right)=n / 2$
- $\operatorname{Pr}\left[\left|\mathrm{S}_{\mathrm{n}}-\mathrm{n} / 2\right| \geq \delta n / 2\right] \leq 2 e^{-\delta^{2} n / 6}$,
- Taking $\delta=1 / 2, \operatorname{Pr}\left[\left|\mathrm{~S}_{\mathrm{n}} / n-1 / 2\right| \geq 1 / 4\right] \leq 2 e^{-\delta^{2} n / 6}=2 e^{-n / 24}$.

