

Preliminary: Probability and tail bound for sketches algorithms

Lecturer: Jiaheng Lu

Fall 2016

Basic Probability Theory

A **probability space** is a triple (Ω, E, P) with

- a set Ω of elementary events (sample space),
- a family E of subsets of Ω with Ω∈E which is closed under
 ∩, ∪, and with a countable number of operands
 (with finite Ω usually E=2^Ω), and
- a **probability measure P:** $\mathbf{E} \rightarrow [0,1]$ with $P[\Omega]=1$ and $P[\cup_i A_i] = \sum_i P[A_i]$ for countably many, pairwise disjoint A_i

Properties of P: $P[A] + P[\neg A] = 1$ $P[A \cup B] = P[A] + P[B] - P[A \cap B]$ $P[\emptyset] = 0$ (null/impossible event) $P[\Omega] = 1$ (true/certain event)

Independence of events

• Two events A and B are independent if

 $p(A \cap B) = p(A)p(B)$

• Conditional probability: For two events A and B with p(B) > 0, the probability of A conditioned on B is $p(A|B) = \frac{p(A \cap B)}{p(B)}$.

Random variable

- A random variable X is a function $X: \Omega \to R$.
- $\Pr[X = a] = \sum_{s \in \Omega: X(s) = a} p(s)$.
- Two random variables *X* and *Y* are independent if

 $\Pr[(X = a) \land (Y = b)] = \Pr[X = a] \Pr[Y = b].$

Expectation

• Expectation:

$$\mathbf{E}[X] = \sum_{s \in \Omega} p(s)X(s)$$
$$= \sum_{i \in \text{Range}(X)} i \cdot \Pr[X = i]$$

• Linearity of expectation:

 $\mathbf{E}[\sum_{i} X_{i}] = \sum_{i} \mathbf{E}[X_{i}]$

no matter whether X_i 's are independent or not.

• The variance of X is

$$Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

• The standard deviation of *X* is

$$\sigma = \sqrt{\mathbf{Var}[X]}$$

Concentration and tail bounds

- In many analysis of randomized algorithms, we need to study how concentrated a random variable X is close to its mean E[X].
 - Many times $X = X_1 + \dots + X_n$.
- Upper bounds of

 $\Pr[X \text{ deviates from } E[X] \text{ a lot}]$

is called *tail bounds*.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Markov's Inequality: when you only know expectation

• [Thm] If $X \ge 0$, then

$$\Pr[X \ge a] \le \frac{\mathbf{E}[X]}{a}.$$

In other words, if $E[X] = \mu$, then $\Pr[X \ge k\mu] \le \frac{1}{k}$.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Chebyshev's Inequality: when you also know variance

• [Thm] $\Pr[|X - \mathbf{E}[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$. In other words,

$$\Pr[|X - \mathbf{E}[X]| \ge k \cdot \sqrt{\operatorname{Var}[X]}] \le \frac{1}{k^2}.$$

Chernoff's Bound

• [Thm] Suppose $X_i = \begin{cases} 1 & \text{with prob. } p \\ 0 & \text{with prob. } 1 - p \end{cases}$ and let

$$X = X_1 + \dots + X_n.$$

Then

$$\Pr[|X - \mu| \ge \delta\mu] \le 2 e^{-\delta^2 \mu/3},$$

where $\mu = np = \mathbf{E}[X]$.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Some basic applications: coin tossing

- A fair coin
 - f(x) = 0: with probability 1/2
 - f(x) = 1: with probability 1/2
- Repeatedly toss the coin, Let S_n be the number of heads from the first n tosses.
- $E(S_n) = n/2$, $Var(S_n) = n/4$
- $E(S_n/n) = 1/2$, $Var(S_n/n) = 1/(4n)$

Some basic applications: coin tossing

- In terms of Chebyshev's inequality
- $P(|\frac{S_n}{n} 1/2| \ge \epsilon) \le 1 / (4n \epsilon^2)$

• For example
$$P(|\frac{S_n}{n} - 1/2| \ge 1/4) \le 4/n$$

- But if we use Chernoff bound, $E(S_n) = n/2$
- $\Pr[|S_n n/2| \ge \delta n/2] \le 2 e^{-\delta^2 n/6}$,
- Taking $\delta = \frac{1}{2}$, $\Pr[|S_n/n 1/2| \ge 1/4] \le 2e^{-\delta^2 n/6} = 2e^{-n/24}$.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Matemaattis-luonnontieteellinen tiedekunta / Iso tiedonhallinta/ Jiaheng Lu