
Graph Data Management
Analysis and Optimization of Graph Data Frameworks

presented by Fynn Leitow

Overview
1) Introduction

a) Motivation

b) Application for big data

2) Choice of algorithms

3) Choice of frameworks

a) Framework implementation

4) Framework analysis

a) Performance comparison

b) Optimization techniques

5) Conclusion & Criticism

by Fynn Leitow

Motivation

➢How to implement graph analysis algorithms on huge graphs?

➢How do they perform?

➢How about parallel computing?

Application for big data

➢Social Networks & Web of Data

➢extremely large & dynamic

➢can’t be handled by legacy programs

Social Networks

➢vertices: people, pictures, videos

➢edges: relations among nodes (friendship, follower)

➢scale-free: follow power-law distribution (few vertices have high popularity)

Web of Data
➢Large-scale structured data by governments, researchers, companies

➢Publishing principles:

○ Unique ressource identifier

○ publication at this URI in RDF triples (ressource-data-framework, statements similar to entity-
relationship model but more general)

○ links to similar online ressources

➢RDF example: “The sky has the color blue”

subject:
“the sky”

object:
“the color blue”

predicate:
“has”

Typical queries
➢ social networks:

○ punctual updates (of vertices, adding edges)

○ transitive closures (“other people you might know”, ...)

○ betweenness queries (“common friends”, shortest path, ...)

➢ Web of data:

○ bulk inserts

○ joins

○ logical inference (deductions)

All men are
mortal

Therefore,
Socrates is

mortal.

Socrates
is a man

Objective of the paper

➢ Analyse existing graph frameworks - also for machine learning!

➢ native, hand-optimized implementation as reference point

➢ give suggestions to improve performance gap

Algorithms
PageRank (statistics)
Breadth-first search (graph traversal)
Triangle Counting (statistics)
Collaborative filtering (machine learning)

1.PageRank (site popularity)
➢how many links go to this this site?

➢technically: probability for a random walk to end on this vertex

t - iteration
r - probability for random jump
e - set of directed edges
degree(j) - number of outgoing edges

2. Breadth-first search (BFS) - Graph traversal

➢calculates “distance” (smallest number of edges) from start to any other
vertex

➢Distance(start) initialized to zero, all others to infinity

➢iteratively computes for neighboring vertices:

3. Triangle Counting - graph statistics
➢Triangle := two vertices are both neighbors of a common third vertex

➢Algorithm:

○ each vertex shares his neighborhood list with its neighbors

○ do neighbors overlap with the neighborhood lists? -> triangle!

i j

k

Collaborative filtering - machine learning
➢Recommendation system: predicts user ratings based on an incomplete set

of (user, item) ratings

(a)Given a rating matrix R, find P and Q so that R = PQ is approximated best.

(b) find the bipartite
graph with edge
weights Ru,v

Overview

➢We focus on PageRank and BFS

Algorithm Application Graph type Vertex property Message size
(Bytes/edge)

PageRank Graph statistics Directed,
unweighted edges

Double (pagerank) Constant (8)

Breadth First
Search

Graph traversal Undirected,
unweighted edges

Int (distance) Constant (4)

Collaborative
Filtering

Machine learning Bipartite graph;
Undirected,
weighted edges

Array of Doubles
(pu or qv)

Constant (8K)

Triangle Counting Graph statistics Directed,
unweighted edges

Long (# triangles) Variable (0-106)

Frameworks
Graphlab
CombinatorialBLAS
SocialLite
Galois
Giraph

Explanation: Framework & Ninja gap

➢Framework: layered structure indicating what kind of programs can/should
be built and how they should interrelate

➢can include programs, specify interfaces, offer programming tools,...

➢Ninja performance gap: “Performance gap between naively written C++/C
code that is parallelism unaware (often serial) and best-optimized code on
modern multi-/many-core processors” [1]

Choice of Frameworks:

(Austin Texas University)

COMBINATORIAL_BLAS
(UCSB)

(Stanford University)

➢Galois: parallel computing framework for irregular
data structures

Overview
Framework Programming

model
Language Graph

Partitioning
Communication
layer

GraphLab Vertex C++ 1-D (vertex-part.) Sockets

CombBLAS Sparse (adjacency) matrix C++ 2-D (edge-part.) MPI

SociaLite Datalog (declarative,
deductive database tables)

Java 1-D Sockets

Galois Task-based C/C++ N/A N/A

Giraph (Hadoop) Vertex Java 1-D Netty

PageRank - vertex programming

➢Graphlab & Giraph, similar for Galois

➢runs on a single vertex and communicates with adjacent vertices

➢Vertex program for one iteration:

PageRank - sparse matrix (CombBLAS)

➢single iteration of PageRank:

A - adjacency matrix
pt - vector of PageRank values
pt = pt / [vector of vertex out-degrees]~

PageRank - declarative (SociaLite)

➢Head: PageRank of vertex n for iteration t+1 is sum of two rules:

➢1st: constant term, 2nd: normalized values from iteration t

➢InEdge[n](s): vertices in 1st, neighbors in 2nd column

➢second version optimized for distributed machines

BFS - vertex programing (GraphLab, Giraph)

➢Initialize Distance to zero or infinity, respectively

➢Continue until there are no more updates

Breadth First Search - sparse matrix (CombBLAS)

➢matrix-vector multiplication in each iteration:

v = ATs

v - non-zeros indicate start vertices for next iteration

A - adjacency matrix

s - starting vertices

Breadth First Search - SociaLite

➢1st rule handles source, 2nd recursively follows neighbors

Breadth First Search - Galois
➢Work lists are maintained &

parallel processed for each
level by Galois

Framework Analysis
Datasets - Performance on single and multiple nodes

Experimental Setup

➢Twitter & Yahoo large enough for multiple (4, 16 for triangle) nodes

➢Intel Xeon E5-2697, 24 cores @ 2.7 Ghz, 64 GB DRAM / node

➢Real data distributed by power law -> synthetic as well

Dataset FB, Wiki,
Livejournal

Netflix Twitter Yahoo Music Synthetic Graph500
(64 nodes)

Synthetic Collaborative
Filtering (64 nodes)

vertices
(k = 103)

3 - 5 M 480 k users
18 k movies

62 M 1.0 M users
0.6 M items

537 M 63 M users
1.3 M items

edges
(M = 106)

42 - 85 M 99 M ratings 1468 M 253 M ratings 8539 M 16743 M ratings

Performance results (single node)
➢native fastest

➢Galois very fast
(single node only)

➢Giraph slow

➢synthetic data in line
with real-world results

Performance (single node)

➢CombBlas, Graphlab and SociaLite perform well on average

➢CombBlas ran out of memory on Triangle Count (A2 calculations)

Performance (multiple nodes, synthetic)

➢“weak scaling”: graph data
per node constant,

➢horizontal line denotes
perfect scaling

multiple node (real-world / combined)

Observations

➢Again: Native best, Giraph worst, CombBLAS OOM.

➢Graphlab & SociaLite perform well on - counting because data structure is

optimized for UNION - operations

➢CombBLAS performs well for the other three algorithms

➢GraphLab drops off for PageRank & BFS due to network bottleneck

Further Analysis: Resource monitoring

➢CPU utilization (> larger is better)

➢Peak network transfer rate (>)

➢memory footprint (<)

➢network data volume (<)

=> find out why certain trends are observed

Resource monitoring
➢Giraph - only 16 % CPU due to memory requirements for each worker

➢Pagerank: limited by network traffic for all ~> performance difference

Optimization
➢ Data Structure

○ 2x : bit vectors (exploit bit-level parallelism in hardware)

○ compressed sparse-row (CSR) format for adjacency list

➢ Data Compression

○ 2x : bit vectors + delta coding (store differences rather than actual values)

➢ Overlap of Computation and Communication

○ 1.2-2x : start computation before receiving whole message, chunk large messages

➢ Message passing mechanisms

○ 2.5-3x : use MPI (message passing interface) instead of TCP sockets

○ 2x : use multiple sockets between two nodes

➢ Partitioning schemes (1-d, 2-d, vertex-cut,...)

Optimization - PageRank & DFS
➢optimization

performed for the
native algorithm

DFS: bit-vectors for
list of already visited
vertices

Criticism & Summary

Criticism

➢Not including spark-based GraphX (7x slower than GraphLab on PageRank)

➢For those frameworks without pre-implemented code, your implementation
might be too good/too bad and distort the results.

✓ Creates value for end-users and framework developers alike

✓ Methods and algorithms well explain without being too technical

Summary

➢vertex-based: every vertex is an instance, communicates non-iterative

➢Galois: best single node results. Giraph: slow

➢Optimization: bit vectors, delta coding, CSR, Overlap, MPI

⇒Reduce the performance gap through recommended changes and let the end
user choose by preference.

Sources

[1] Can Traditional Programming Bridge the Ninja Performance Gap for Parallel Computing Applications?
(Satish et al. ; 2012)

Images: Giraph, Graphlab, SociaLite, Galois

Introductory Paper: Graph Data Management Systems for New Application Domains (Cudré-Mauroux,
Elnikety; 2011)

Main Paper, other tables and figures: Navigating the maze of graph analytics frameworks using massive
graph datasets (Satish et al.; SIGMOD 2014)

