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Motivation

➢How to implement graph analysis algorithms on huge graphs?

➢How do they perform?

➢How about parallel computing?



Application for big data

➢Social Networks & Web of Data

➢extremely large & dynamic

➢can’t be handled by legacy programs



Social Networks

➢vertices: people, pictures, videos

➢edges: relations among nodes (friendship, follower)

➢scale-free: follow power-law distribution (few vertices have high popularity)



Web of Data
➢Large-scale structured data by governments, researchers, companies

➢Publishing principles:

○ Unique ressource identifier

○ publication at this URI in RDF triples (ressource-data-framework, statements similar to entity-
relationship model but more general)

○ links to similar online ressources

➢RDF example: “The sky has the color blue”

subject:
“the sky”

object:
“the color blue”

predicate:
“has”



Typical queries
➢ social networks:

○ punctual updates (of vertices, adding edges)

○ transitive closures (“other people you might know”, ...)

○ betweenness queries (“common friends”, shortest path, ...)

➢ Web of data:

○ bulk inserts

○ joins

○ logical inference (deductions)

All men are
mortal

Therefore,
Socrates is

mortal.

Socrates
is a man



Objective of the paper

➢ Analyse existing graph frameworks - also for machine learning!

➢ native, hand-optimized implementation as reference point

➢ give suggestions to improve performance gap



Algorithms
PageRank (statistics)
Breadth-first search (graph traversal)
Triangle Counting (statistics)
Collaborative filtering (machine learning)



1.PageRank (site popularity)
➢how many links go to this this site?

➢technically: probability for a random walk to end on this vertex

t - iteration
r - probability for random jump
e - set of directed edges
degree(j) - number of outgoing edges



2. Breadth-first search (BFS) - Graph traversal

➢calculates “distance” (smallest number of edges) from start to any other
vertex

➢Distance(start) initialized to zero, all others to infinity

➢iteratively computes for neighboring vertices:



3. Triangle Counting - graph statistics
➢Triangle := two vertices are both neighbors of a common third vertex

➢Algorithm:

○ each vertex shares his neighborhood list with its neighbors

○ do neighbors overlap with the neighborhood lists? -> triangle!

i j

k



Collaborative filtering - machine learning
➢Recommendation system: predicts user ratings based on an incomplete set

of (user, item) ratings

(a)Given a rating matrix R, find P and Q so that R = PQ is approximated best.

(b)  find the bipartite
graph with edge
weights Ru,v



Overview

➢We focus on PageRank and BFS

Algorithm Application Graph type Vertex property Message size
(Bytes/edge)

PageRank Graph statistics Directed,
unweighted edges

Double (pagerank) Constant (8)

Breadth First
Search

Graph traversal Undirected,
unweighted edges

Int (distance) Constant (4)

Collaborative
Filtering

Machine learning Bipartite graph;
Undirected,
weighted edges

Array of Doubles
(pu or qv )

Constant (8K)

Triangle Counting Graph statistics Directed,
unweighted edges

Long (# triangles) Variable (0-106 )



Frameworks
Graphlab
CombinatorialBLAS
SocialLite
Galois
Giraph



Explanation: Framework & Ninja gap

➢Framework: layered structure indicating what kind of programs can/should
be built and how they should interrelate

➢can include programs, specify interfaces, offer programming tools,...

➢Ninja performance gap: “Performance gap between naively written C++/C
code that is parallelism unaware (often serial) and best-optimized code on
modern multi-/many-core processors” [1]



Choice of Frameworks:

(Austin Texas University)

COMBINATORIAL_BLAS
(UCSB)

(Stanford University)



➢Galois: parallel computing framework for irregular
data structures

Overview
Framework Programming

model
Language Graph

Partitioning
Communication
layer

GraphLab Vertex C++ 1-D (vertex-part.) Sockets

CombBLAS Sparse (adjacency) matrix C++ 2-D (edge-part.) MPI

SociaLite Datalog (declarative,
deductive database tables)

Java 1-D Sockets

Galois Task-based C/C++ N/A N/A

Giraph (Hadoop) Vertex Java 1-D Netty



PageRank - vertex programming

➢Graphlab & Giraph, similar for Galois

➢runs on a single vertex and communicates with adjacent vertices

➢Vertex program for one iteration:



PageRank - sparse matrix (CombBLAS)

➢single iteration of PageRank:

A - adjacency matrix
pt - vector of PageRank values
pt = pt / [vector of vertex out-degrees]~



PageRank - declarative (SociaLite)

➢Head: PageRank of vertex n for iteration t+1 is sum of two rules:

➢1st: constant term, 2nd: normalized values from iteration t

➢InEdge[n](s): vertices in 1st, neighbors in 2nd column

➢second version optimized for distributed machines



BFS - vertex programing (GraphLab, Giraph)

➢Initialize Distance to zero or infinity, respectively

➢Continue until there are no more updates



Breadth First Search - sparse matrix (CombBLAS)

➢matrix-vector multiplication in each iteration:

v = ATs

v - non-zeros indicate start vertices for next iteration

A - adjacency matrix

s - starting vertices



Breadth First Search - SociaLite

➢1st rule handles source, 2nd recursively follows neighbors



Breadth First Search - Galois
➢Work lists are maintained &

parallel processed for each
level by Galois



Framework Analysis
Datasets - Performance on single and multiple nodes



Experimental Setup

➢Twitter & Yahoo large enough for multiple (4, 16 for triangle) nodes

➢Intel Xeon E5-2697, 24 cores @ 2.7 Ghz, 64 GB DRAM / node

➢Real data distributed by power law -> synthetic as well

Dataset FB, Wiki,
Livejournal

Netflix Twitter Yahoo Music Synthetic Graph500
(64 nodes)

Synthetic Collaborative
Filtering (64 nodes)

# vertices
(k = 103)

3 - 5 M 480 k users
18 k movies

62 M 1.0 M users
0.6 M items

537 M 63 M users
1.3 M items

# edges
(M = 106)

42 - 85 M 99 M ratings 1468 M 253 M ratings 8539 M 16743 M ratings



Performance results (single node)
➢native fastest

➢Galois very fast
(single node only)

➢Giraph slow

➢synthetic data in line
with real-world results



Performance (single node)

➢CombBlas, Graphlab and SociaLite perform well on average

➢CombBlas ran out of memory on Triangle Count (A2 calculations)



Performance (multiple nodes, synthetic)

➢“weak scaling”: graph data
per node constant,

➢horizontal line denotes
perfect scaling



multiple node (real-world / combined)



Observations

➢Again: Native best, Giraph worst, CombBLAS OOM.

➢Graphlab & SociaLite perform well on        - counting because data structure is

optimized for UNION - operations

➢CombBLAS performs well for the other three algorithms

➢GraphLab drops off for PageRank & BFS due to network bottleneck



Further Analysis: Resource monitoring

➢CPU utilization ( > larger is better)

➢Peak network transfer rate ( > )

➢memory footprint ( < )

➢network data volume ( < )

=> find out why certain trends are observed



Resource monitoring
➢Giraph - only 16 % CPU due to memory requirements for each worker

➢Pagerank: limited by network traffic for all ~> performance difference



Optimization
➢ Data Structure

○ 2x : bit vectors (exploit bit-level parallelism in hardware)

○ compressed sparse-row (CSR) format for adjacency list

➢ Data Compression

○ 2x : bit vectors + delta coding (store differences rather than actual values)

➢ Overlap of Computation and Communication

○ 1.2-2x : start computation before receiving whole message, chunk large messages

➢ Message passing mechanisms

○ 2.5-3x : use MPI (message passing interface) instead of TCP sockets

○ 2x : use multiple sockets between two nodes

➢ Partitioning schemes (1-d, 2-d, vertex-cut,...)



Optimization - PageRank & DFS
➢optimization

performed for the
native algorithm

DFS: bit-vectors for
list of already visited
vertices



Criticism & Summary



Criticism

➢Not including spark-based GraphX (7x slower than GraphLab on PageRank)

➢For those frameworks without pre-implemented code, your implementation
might be too good/too bad and distort the results.

✓ Creates value for end-users and framework developers alike

✓ Methods and algorithms well explain without being too technical



Summary

➢vertex-based: every vertex is an instance, communicates non-iterative

➢Galois: best single node results. Giraph: slow

➢Optimization: bit vectors, delta coding, CSR, Overlap, MPI

⇒Reduce the performance gap through recommended changes and let the end
user choose by preference.
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