Knowledge Bases

Lidia Pivovarova

Based on:

Building, Maintaining, and Using Knowledge Bases: A Report from the Trenches by Deshpande et. al SIGMOD'13

Introduction

- Knowledge base machine-readable way to store human knowledge.
- Usually consists of concepts, instances and relations

Figure 1: A tiny example of a KB

Examples

Applications

- search engines such as Google and Bing use global KBs to understand and answer user queries
- So do ecommerce Web sites, such as amazon.com and walmart.com, using product Kbs.
- iPhone voice assistant Siri uses KBs to parse and answer user queries
- echonest.com builds a large KB about music, then uses it to power a range of applications, such as recommendation, playlisting, fingerprinting, and audio analysis
- using KBs to find domain experts in biomedicine, to analyze social media, to search the Deep Web, and to mine social data...

This paper

- Describe an end-to-end process on building, maintaining and using KBs in industry
 - "how do we maintain a KB over time?",
 - "how do we handle human feedback?",
 - "how are schema and data matching done and used?"
 - "the KB will not be perfectly accurate, what kinds of application is it good for?",
 - "how big of a team do we need to build such a KB, and what the team should do?".

The team:

- Kosmix startup, later Walmart-Labs
- working on product search, customer targeting, social mining, and social commerce

Preliminaries

Figure 1: A tiny example of a KB

- Domain-Specific KBs vs.
 Global Kbs
- Ontology-like KBs vs.
 Source-Specific KBs

- a set of concepts
 C1, . . . , Cn,
- a set of instances li for each concept Ci,
- a set of relationships R1, . .
 . ,Rm among the concepts
- *is-a* special relation, that imposes a taxonomy

- BUILDING THE KNOWLEDGE BASE
 - Constructing the Taxonomy Tree from Wikipedia
 - Constructing the DAG on top of Taxonomy
 - Extracting Relationships from Wikipedia
 - Adding Metadata
 - Adding Other Data Sources
- MAINTAINING THE KNOWLEDGE BASE
 - Updating the Knowledge Base
 - Curating the Knowledge Base
- USING THE KNOWLEDGE BASE

- BUILDING THE KNOWLEDGE BASE
 - Constructing the Taxonomy Tree from Wikipedia
 - Constructing the DAG on top of Taxonomy
 - Extracting Relationships from Wikipedia
 - Adding Metadata
 - Adding Other Data Sources
- MAINTAINING THE KNOWLEDGE BASE
 - Updating the Knowledge Base
 - Curating the Knowledge Base
- USING THE KNOWLEDGE BASE

Constructing the Taxonomy Tree from Wikipedia

Figure 2: Two main kinds of Wikipedia pages - article page (left) and category page (right)

- Ideally: categories are concepts, articles are instences
- In reality: cycles, too general categories

Too general categories

Figure 4: Constructing the top levels of our taxonomy and the list of verticals

Cycles

Figure 3: Cyclic references in a Wikipedia category page

Solution:

- First build a graph
- Then use a pruning:
- Edmonds' algorithm,
 Tarjan implementation
- Finds optimal branching using edge weights
- Weights:
 - artcat, wsubcat, warticle
 - co-occurence count
 - name similarity
 - manually assigned weights

- BUILDING THE KNOWLEDGE BASE
 - Constructing the Taxonomy Tree from Wikipedia
 - Constructing the DAG on top of Taxonomy
 - Extracting Relationships from Wikipedia
 - Adding Metadata
 - Adding Other Data Sources
- MAINTAINING THE KNOWLEDGE BASE
 - Updating the Knowledge Base
 - Curating the Knowledge Base
- USING THE KNOWLEDGE BASE

Constructing the DAG on top of Taxonomy

- Ronald Reagan *U.S. President*
 - American actor
- Go back to Wikipedia graph and preserve as many relations as possible without having cycles

- BUILDING THE KNOWLEDGE BASE
 - Constructing the Taxonomy Tree from Wikipedia
 - Constructing the DAG on top of Taxonomy
 - Extracting Relationships from Wikipedia
 - Adding Metadata
 - Adding Other Data Sources
- MAINTAINING THE KNOWLEDGE BASE
 - Updating the Knowledge Base
 - Curating the Knowledge Base
- USING THE KNOWLEDGE BASE

Figure 5: Extraction of relationships from a Wikipedia page

- BUILDING THE KNOWLEDGE BASE
 - Constructing the Taxonomy Tree from Wikipedia
 - Constructing the DAG on top of Taxonomy
 - Extracting Relationships from Wikipedia
 - Adding Metadata
 - Adding Other Data Sources
- MAINTAINING THE KNOWLEDGE BASE
 - Updating the Knowledge Base
 - Curating the Knowledge Base
- USING THE KNOWLEDGE BASE

Add Metadata

- Adding Synonyms
 - Redirect pages: e.g. Sokrat → Socrates
- Adding Homonyms
 - Disambiguation text: e.g. Socrates the philosopher,
 Socrates a Brazilian football player, Socrates a play, Socrates a movie...
- Adding Metadata per Node
 - Web urls, Twitter Ids,
 - Co-occurring concepts and instances,
 - Wikipedia page trafic
 - Frecuency of concept mentios in Wiki and social
 - Web-signature, social signature

- BUILDING THE KNOWLEDGE BASE
 - Constructing the Taxonomy Tree from Wikipedia
 - Constructing the DAG on top of Taxonomy
 - Extracting Relationships from Wikipedia
 - Adding Metadata
 - Adding Other Data Sources
- MAINTAINING THE KNOWLEDGE BASE
 - Updating the Knowledge Base
 - Curating the Knowledge Base
- USING THE KNOWLEDGE BASE

Adding other Data Sources

Table 1: Examples of non-Wikipedia sources that we have added

Name	Domain	No. of instances
Chrome	Automobile	100K
Adam	Health	100K
Music-Brainz	Music	17M
City DB	Cities	500K
Yahoo! Stocks	Stocks and companies	50K
Yahoo! Travel	Travel destinations	50K

Main principles:

- Handle as many simple cases as possible
- In difficult cases alert human expert
- Remember and re-use all human actions

- Extract a taxonomy from a new source
- Merge taxonomies using concordance ("car" = "auto", "movie" = film")
- Merge taxonomies
- Extract instances and attributes
- Try to merge as many instances as possoble automaticaly
- Alert experts in other cases

- BUILDING THE KNOWLEDGE BASE
 - Constructing the Taxonomy Tree from Wikipedia
 - Constructing the DAG on top of Taxonomy
 - Extracting Relationships from Wikipedia
 - Adding Metadata
 - Adding Other Data Sources
- MAINTAINING THE KNOWLEDGE BASE
 - Updating the Knowledge Base
 - Curating the Knowledge Base
- USING THE KNOWLEDGE BASE

Updating the Knowledge Base

- Incremental update may cause difficulties in handling inconsistencies
- Thus, the whole KB is rebuilt from scratch
 - a single machine with 256G RAM, 0.8GHz processor, and 32 processors, takes roughly 12.5 hours to complete the construction pipeline
- To preserve manual changes
 - All human curations are saved in a form of commands in a special language that can be rerun after update

- BUILDING THE KNOWLEDGE BASE
 - Constructing the Taxonomy Tree from Wikipedia
 - Constructing the DAG on top of Taxonomy
 - Extracting Relationships from Wikipedia
 - Adding Metadata
 - Adding Other Data Sources
- MAINTAINING THE KNOWLEDGE BASE
 - Updating the Knowledge Base
 - Curating the Knowledge Base
- USING THE KNOWLEDGE BASE

Curating the Knowledge Base

- Evaluating the quality
 - random sample of paths (from root to leave)
 - nodes with more than 200 childre
- Curating by writing commands
 - Adding/deleting nodes and edges
 - Changing edge weights
 - Changing the assignment of an instance-of or an is-a relationship
 - Recommending an ancestor to a node
 - Assigning preference to a subtree in the graph

The team

- 25-30 developers.
- a core team of 4 persons was in charge of the KB
- A data analyst performed quality evaluation and curated the KB
- A developer wrote code, developed new features, added new signals on the edges, and so on.
- A system person worked 50% of the time on crawling the data sources, and maintaining the in-house Wikipedia mirror and the Web corpus.
- An UI specialist worked 50% of the time on the look and feel of the various tools.
- A team lead designed, supervised, and coordinated the work.

Applications

Figure 6: A result page for querying Deep Web using the keyword "Renewable Energy"

- Understanding User Queries
- In-context Advertising
- Social Mining

Figure 7: Event monitoring in social media using Tweetbeat

- Event Monitoring in Social Media
- Product search
- Social gifting

Thanks for your attention!