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Abstract—In the world of academia, research documents
enable the sharing and dissemination of scientific discoveries.
During these “big data” times, academic search engines are
widely used to find the relevant research documents. Considering
the domain of computer science, a researcher often inputs a query
with a specific goal to find an algorithm or a theorem. However,
to this date, the return result of most search engines is just as a
list of related papers. Users have to browse the results, download
the interesting papers and look for the desired information, which
is obviously laborious and inefficient. In this paper, we present a
novel academic search system, called PandaSearch, that returns
the results with a fine-grained interface, where the results are well
organized by different categories, such as definitions, theorems,
lemmas, algorithms and figures. The key technical challenges in
our system include the automatic identification and extraction
of different parts in a research document, the discovery of
the main topic phrases for a definition or a theorem, and the
recommendation of related definitions or figures to elegantly
satisfy the search intention of users. Based on this, we have built
a user friendly search interface for users to conveniently explore
the documents, and find the relevant information.

I. INTRODUCTION

In the world of academia, search engines are widely used
to find the relevant research documents. There are many tools
and systems which help to find relevant papers, such as DBLP,
PubMed, arXiv, Citeseer, Google Scholar, ACM Digital Library
and IEEE CS Digital library. These present a search engine like
interface which allows users to search papers via keywords,
or via faceted search on features such as author, venue etc.
Although this approach provides good search results in many
cases, it is far from optimal since it does not directly provide
the exact information users want. For example, a user submits
“DFS algorithm” to search a Depth-First-Search algorithm
on graphs, or “Differential privacy” for definitions about
differential privacy. In the existing search engine, the returned
result is just a list of related papers. Users have to browse the
results, download the interested papers and search the desired
information, which is obviously laborious and inefficient. In this
paper, our goal is to build a novel search engine for various fine-
grained information, such as definitions, algorithms, lemmas,
figures et al. , which are called “knowledge cells” hereafter, to
enable a researcher to conveniently find the information.

To support this aim, we have built a fine-grained search
engine, to aid the specific type of information discovery and
analysis. There are some challenges to overcome in meeting
this goal. The first one is to correctly identify the boundary of
each knowledge cell. The structures of papers can vary greatly,
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DEFINITION 2.1 (DIVERGENT DESIGN). Given a workload
W = QuU, a weight function f, and a number of replicas n, a di-
vergent design corresponds toaset p = {(W1, f1),..., (W, fa)}
such that:

s Wi=Q:UU foralli € [1,n], where Q1 U---UQn = Q.
e fi(u) = f(u)forallu e U.
» ZiE[l,n] fi(a) = fla)

The  configuration  of

I; = DBAdv(W3, fi, b).

each replica is computed as

Fig. 1. Example of an extracted definition

and the correct identification of the region of each knowledge
cell is a challenging job. In our system, we build a boundary
identifier to automatically identify the region of a knowledge
cell.

The second challenge is to discover the topics (or key
phrases) of each knowledge cell to facilitate users in searching
information. Some definitions or theorems highlight their topics
at the beginning. For example, the topic of the definition in
Figure 1 is clearly shown in the parenthesis at the beginning
of the definition (i.e. “DIVERGENT DESIGN”), but in Figure
2, the topic is hidden in the textual description. The topic of
a knowledge cell may appear in different places, such as the
caption of a figure, the specification within a table, and even
reference context which refers to an algorithm in the main
body of the document; this makes it difficult to apply a simple
solution for topic extraction.

The third challenge is to display knowledge cells according
to users’ queries. The scientific community has converged on
the Portable Document Format (PDF) as the de facto standard
for sharing research papers. But the current PDF analytic tools
(such as PDFBox) do not provide interfaces to extract a part of
one pdf page. Therefore, it is a challenge to correctly extract
and display knowledge cells from PDF files.

The fourth challenge is to effectively rank the results. The
existing system ranks the results (i.e. papers) according to
publishing years (e.g. DBLP, Microsoft academic search) or
citation numbers (e.g. Google Scholar). But both of these
criterions are not suitable to our application, since a document
with more citations does not necessarily mean that all of its
knowledge cells are more important. Due to the above reasons,
the current ranking strategy is not applicable for our case.

In this demonstration, we propose a framework to effectively
identify different categories of knowledge cells in research
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Definition 3 We define the freshness of element e;
averaged over time, F'(e;). and the freshness of database
S averaged over time, F'(S), as

i
Fle;) = Jim B [ Fleg t)dt
‘:ﬂ—hmf/F‘?t

The time average of age can be defined similarly. o

Fig. 2. Another example of a definition, whose topic is hidden in the
description
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Fig. 3. System Framework

documents for the domain of computer science, and provide
a user friendly interface for searching and browsing them to
address the above challenges. Our system can be accessed
online at: www.cspandasearch.net.

II. SYSTEM OVERVIEW

Figure 3 shows the framework of our system. It consists
of three main components. In the region identification stage,
papers are collected and analyzed. The different knowledge
cells are identified and extracted. The next stage is about
keyphrase extraction. The keyphrase of each knowledge cell
is extracted, which is used for keyword search later. Finally,
the search and recommender engine (including user interface,
query engine, ranking and index databases) allows users to
search knowledge cells and explore the related information.
Below, we describe these three steps in details.

Paper collection and converting We collected a large corpus
of documents by crawling public websites. As a preprocessing
step, from each paper we converted all papers from PDF format

Running time s for real graphs
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Figure 2: Running time for large real graphs.

Dataset | Nodes | Edges | Avg. Degree |
com-DBLP 317,080 1,049,866 3.31
com- Youtube 1,134,890 2,987,624 2.63
com-LiveJournal | 3,997,962 | 34,681,189 8.67
com-Orkut 3072441 | 117,185,083 38.14
Table 7: Large real graphs.

Fig. 4. Example for the mixture of figures and tables

to both text and image JPG files for processing, because text
files can be used for keyword search, but they cannot keep the
original appearance of figures and formulas. On the other hand,
the image files can keep the original structure and shape, but
cannot be used for keyword match. Therefore, we make use
of two different formats for the purpose of search and display
respectively. In total, we obtained a collection of 12,946 papers
mainly from the computer science domain.

A. Region Identification of Knowledge Cells

Given the wide variety of styles for the region of a knowledge
cell, we need to develop an automatic algorithm to identify
and extract them for the purpose of display and analysis. Some
knowledge cells such as definitions, theorems or lemmas often
start with the bold font at the beginning of a paragraph. See
the example in Figure 1 or 2, where a definition is started with
the keyword “Definition”; this is easy to recognize. But in the
example of Figure 4, a figure is displayed together with a table
such that it is not easy for machines to distinguish between a
figure and a table. As a result, we built a boundary detector
with active learning to automatically extract a knowledge cell.

Training data sets We need a training set to accurately train
our detector to find the region of a knowledge cell. However,
the process of manually labeling thousands of documents is a
very time-consuming one. Therefore, we use active learning
[1] to speed up this process to generate a high quality training
set much more efficiently. In our implementation, we built a
training set of 1000 documents, containing 13,876 knowledge
cells which are labeled.

Boundary detection  Our detector uses a large number of
features to decide the start and end points of a knowledge cell.
The main features are derived from the context around each
boundary in question. For example, the features to indicate a
“Definition” cell include (a) whether a paragraph starts with
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a word “Definition”, (b) whether the first letter is capitalized,
and (c) whether the word is followed by a number. Similarly,
for each type of a knowledge cell, we can generate a number
of features for machine learning algorithms. We make use of
the feature based, open source libSVM classifier [2] to identify
from the possible regions of knowledge cells in documents.
We evaluated the precision of this detector in the way that
we score this as correct if the detector correctly finds the
boundary and extracts the knowledge cell. Under this measure,
for example, our classifier achieves 78% precision, 72% recall
for definitions, and 84% precision, 75% recall for algorithms,
which are sufficient for the purpose of this demonstration.

B. Keyphrases Extraction from Knowledge Cells

We now discuss our approach to the identification of
keyphrases for different knowledge cells. We built a topic
generator by extending the ideas of CiteTextRank [3], which
is a keyphrase extraction algorithm. For our purpose, we apply
some changes to this algorithm. Since we extract keyphrases
for different knowledge cells in one document, we do not use
the citation among documents, whereas we use the reference
context of knowledge cells within one document. For example,
one reference context in a research paper looks like “Figure 4
also shows MRR plots comparing CTR models”, which indicates
that Figure 4 talks about “MRR” and “CTR models”.

Given a target knowledge cell K, the objective of the
keyphrase extraction task is to extract a ranked list of candidate
words or phrases from K that best represent K. Algorithms
([3]) for unsupervised keyphrase extraction involve the three
steps. Before we describe the algorithm in details, we first give
a definition about the context of a knowledge cell.

Definition 1: (Context of a knowledge cell) Given a docu-
ment D and a knowledge cell K in D, a referred context of K
is defined as a context in which K is referred in D. In addition,
there are two types of context regarding to the own description
of K, one is called the key context, which summarizes the
topic of K, such as the title of an algorithm, or the caption of
a figure; Otherwise it is a plain context.

Candidate words extraction  Candidate words or lexical
units are extracted from the context of the target knowledge
cells (see Definition 1) by applying stopword and parts-of-
speech filters. If a knowledge cell K is referred in multiple
contexts, then we aggregate all such contexts and simply refer
to them as the referred context (as applicable). Only nouns
and adjectives that are likely to be keyphrases are retained in
this step.

Candidate words score  Next, candidate words are scored
based on the following criterion. Let 7" represent the types of
available contexts of K. We construct an undirected graph G
= (V:E) for K as follows:

1. For each unique candidate word extracted from all
available contexts of K, add a vertex in G;

2. Add an undirected edge between two vertices v; and v;
if the words corresponding to these vertices occur within a
window of n continuous tokens in any of the contexts.

3. The weight w;; of an edge (v;,v;) € E is given as

Z Z vt - stim(c, k) - Oceure(v;, vj)

teT ceCy

)

=Wy =

where sim(c, k) is the cosine similarity between the tf-idf
vectors of any context ¢ of k and k; Occur.(v;,v;) is the co-
occurrence frequency of words corresponding to v; and v; in
context ¢, C} is the set of contexts of type t € T'; and ~; is
the weight for contexts of type . We incorporate the notion
of “importance” of contexts of a certain type using the
parameters. For instance, one might assign higher importance
to key context and reference context over plain context.

4. We score the vertices in G (and the corresponding
candidate words) using the PageRank algorithm.

Keyphrases selection  Finally, consecutive words, phrases
or n-grams are scored by using the sum of scores of individual
words that comprise the phrase [4]. The top-scoring phrases
are output as predictions (the keyphrases for the document).

C. Ranking of knowledge cells

In this subsection, we discuss how to extend the model
of Random Walk with Restart (for short RWR, also known
as personalized PageRank) [5] to assign a weight for each
knowledge cell to facilitate the ranking of the search results.
As mentioned in Introduction, the existing algorithms use the
publishing years and/or the citation numbers to rank the results,
which may not be suitable here, because both criterions do not
reflect the importance of a particular knowledge cell.

RWR can be briefly described as follows. From a node ¢,
the random walker can walk to its neighbors with probabilities
proportional to the edge weights. In each step, it has a
probability of ¢ to return to g, where c is a constant. RWR
can be defined recursively as

(1—-¢) 2)

Z Pj,q - Wjt¢

JEAdj(q)

where ¢ (0< ¢ <1) is the constant restart probability, and

3)

In our application, each node represents a knowledge cell.
j€Adj(q) means that the paper of j cites that of q. Further,
NormCiteNum(j,q) denotes the normalized number of
citations of ¢ appeared in j, which reflects the importance
of the paper of ¢ with respect to that of j. Note that sim(j, A)
denotes the cosine similarity between the tf-idf vectors of the
keyphrases of j and that of the abstract of the paper which
the cell j belongs to. The intuition in Equation (3) is that (i) a
knowledge cell should be assigned a higher weight if it has
more overlapping words with the abstract, which illustrates the
main idea of the paper; and (ii) a knowledge cell whose paper
has more citations should be assigned a higher weight.

III. SYSTEM DEMONSTRATION

Our demo will focus on two scenarios with respect to the
discovery and exploration of multiple types of knowledge cells.

pj)q = S’Lm(]7 A) . NOTmCiteNum(j) q)

1410



ALL Defnition Lemma Theorem Algorithm Figure

Definition: XSD

DEFINITION 1. An XSD is a triple D = (T, p,7) consist-
ing of a finite set of types T; a mapping p from T to regular
expressions T as given by the syntax

rao=ANalrr|r+r|r™ |77 | ?
where A denotes the empty string and a ranges over element
names; and a mapping 7 that assigns a type to each pair

(t,a) with the element name a occurring in p(t).

Inferring XML Schema Definitions from XML Data

Algorithm: XML Key Mining Algorithm

Algorithm 1 XML Key Mining Algorithm
for all ¢ € ContextMinery, x do
for all 7 € TargetPathMiner, y (c) do
S = OneKeyPathMiner, y (¢, 7)
P = MinimalKeyPathSetMiner, y (¢, 7. S)
for each P € P retum (c.7, P)

Discoverying XSD Keys from XML Data

Figure:

Fig. 5. The result interface to process a query “XSD”.
“ar
ble XML Key Mining Algorithm

ALL Defnition Lemma Theorem Algorithm  Figure

Algorithm: XML Key Mining Algorithm

Algorithm 1 XML Key Mining Algorithm
for all ¢ € ContextMiner;, x do
for all + € TargetPathMiner, y (c) do
S = OneKeyPathMiner, v (¢, 7)
P = MinimalKeyPathSetMiner, y (c, 7, S)
for each P € P retum (¢, 7, P)

Discovering XSD Keys from XML Data

Marcelo Arenas, Jonny Daenen, Frank Neven, Martin Ugarte, Jan Van den Bussche, Stijn
Vansummeren

2013 ACM SIGMOD

Similar Algorithms:

Fig. 6. Browsing algorithms about “XML Key Mining Algorithm”.

A. Information discovery

The first function we provide allows searching for a knowl-
edge cell in the domain of computer science, such as “XSD”
shown in Figure 5, which means “XML Schema Definitions”.
Users can input keywords to retrieve a list of definitions,
lemmas, theorems, algorithms, and figures to obtain exactly the
information they want to analyze. For ease of exploration, each
returned result is shown with snippets indicating the paper title,
which users can click to see the detailed information about

this paper.

B. Information exploration

Then we allow further exploration to see more related
knowledge cells. For example, when users are browsing the
“XML key mining” algorithm in Figure 5, they can focus on
“XML key mining” by clicking the algorithm button to see
more related algorithms which appear in other papers. This
switches to the search by the algorithm interface, as shown
in Figure 6. Likewise, when a user is looking through the
interface with respect to some specific pictures in Figure 5,
they can easily locate the other figures used in same or the
other related documents by clicking the figure button. In this
way, users are able to explore the different knowledge cells
broadly and deeply by following the found knowledge cell
links provided by the system. We will invite our audience to
try out our system, search different knowledge cells, and make
discoveries for new theorems, figures, definitions, etc.

IV. RELATED SYSTEMS AND CONCLUSION

A number of tools (e.g. [6]) have been built to assist
researchers and students to effectively search for relevant
literature. Google Scholar, Microsoft Academic Search, Arnet-
Miner and CiteSeerX are some of the existing websites which
provide detailed information of a paper. Users interact with
these websites by manually submitting queries and evaluating
the produced output. While all existing sites provide useful
and relevant functionality, the motivation and contributions
of our system are different: our tool provides an end-to-end
solution which, given a keyword search, identifies the relevant
knowledge cells, including definitions, lemmas, figures et al.,
to make them available to users. Our demonstration represents
a step forward in practice for handling a general problem about
content analysis of research documents. Our system can be
accessed online at: www.cspandasearch.net.
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