Building, maintaining and using Knowledge Bases (KBs)

Suravi Saha Roy
Department of Computer Science
University of Helsinki
Knowledge Bases (KBs)

- Concept taxonomy
- Instances
- Relationships

Figure 1: A tiny example of a KB
Increasingly Critical to a Wide Variety of Applications

- General search
 - Google search using Knowledge Graph
- Product search
 - Walmart.com, Amazon.com
- Question answering
 - IBM Watson, Apple Siri
- Advertising
- Information extraction
- Deep Web search
- Recommendation, playlisting, music (echonest.com)
- Biomedical expert finding (knode.com)
- Social commerce & media analysis (event discovery, event monitoring)
Example Knowledge Base: Kosmix KB

- 6.5M concepts, 6.7M concept instances, 165M relationship instances
- 23 verticals, 30G of disk space
- First built around 2005 at Kosmix
 - for Deep Web search, advertising, social media analysis
- Has been significantly expanded at WalmartLabs since 2011
 - for product search, social commerce, mining of social media, understanding Web data
State of the Art

- Significant & growing interest in academia and industry for a wide variety of applications
- Important for Big Data
 - Big Data needs big semantics, which often come in form of large KBs
- But little has been published about building, maintaining, using KBs
- Current works have addressed only isolated aspects:
 - Initial construction, data representation, storage format, query APIs
- No work has addressed the end-to-end process
- This work: end-to-end process of building, maintaining, using Kosmix KB
 - How to maintain the KB over time?
 - How to handle human feedback?
 - How to integrate various data sources?
 - What kinds of applications is a not-so-accurate KB good for?
 - How big of a team is required to build such a KB? What should the team do?
Key Distinguishing Aspects of Kosmix KB

- **Building the KB**
 - started with Wikipedia, added many more data sources
 - extracting a KB from Wikipedia is non-trivial, use Web and social data / curation to guide the process
 - adding a lot of social / Web metadata to KB nodes

- **Updating the KB**
 - rerun from scratch instead of incremental updating
 - must reuse human curation

- **Curating the KB**
 - ongoing process, regularly evaluate the KB
 - add curations in form of commands which enable reusing of human curation can curate multiple errors all at once
Building the Kosmix KB

- Convert Wikipedia into a KB, then add more data sources

Why starting with Wikipedia?
- must process social media because it often mentions latest events/persons so we need them to be in our KB asap
- Wikipedia is ideal for this
 - e.g. very soon after Malala Yousafzai became famous in 2012, Wikipedia had a homepage for her.
1. Convert Wikipedia into a Graph

- Crawl Wikipedia, parse & construct a graph
 - nodes = Wikipedia pages, edges = links among Wikipedia pages
- Remove irrelevant parts of graph
 - administration, help, discussion
- Add remaining parts into a new graph with a ROOT node
2. Extract Taxonomy of Concepts from Graph

- To obtain taxonomic tree
 - for each node, find a single path to ROOT
- But nodes can have multiple paths to ROOT
 - which one to pick?
- Picking wrong path causes many problems
 - e.g. ROOT ➔ Movies ➔ Actors ➔ Ronald Reagan
 “Reagan left a mixed legacy”: will be classified incorrectly under “Movies”
2. Extract Taxonomy of Concepts from Graph (continued)

- Intuitively, pick **most popular/important/relevant** path
 - e.g. most people know Reagan as a president, not as an actor
- Solution:
 - assign to each edge $A \rightarrow B$ a weight to capture its popularity/importance/relevance
 - run a spanning tree discovery algorithm using these weights
 - output a maximum spanning tree
2. Extract Taxonomy of Concepts from Graph (continued)

- How to assign weights to edge A \(\rightarrow \) B?
 - assign multiple weights, they form a weight vector

- Examples
 - **Web signal**: co-occurrence count of A and B on the Web
 - e.g. how many times “Ronald Reagan” and “President” co-occur in the same Web page?
 - **Social signal**: same as Web signal, but measure co-occurrence in social media
 - **List signal**: how many times A and B co-occur in the same Wikipedia list?
 - **Similarity in the names** of the two nodes
 - e.g. “Actors” and “Actors by Nationality”
 - analyst can also assign weights to the edges
2. Extract Taxonomy of Concepts from Graph (continued)

- It keeps all paths for the nodes
 - very useful for applications
- To keep all paths, must detect and break cycles
- End result: DAG of concepts + taxonomic tree imposed on the DAG
3. Extract Relations for the KB

Typical solution:
- Define a set of relations
 - livesIn, birthYear
- Write extractors for them
 - using rules
 - machine learning
- Apply extractors
 - livesIn(Reagan, DC),
 - birthYear(Reagan, 1911)

- Problems:
 - Wikipedia has 10,000+ interesting relations
 - can’t manually define and extract all
 - difficult to obtain high accuracy
3. Extract Relations for the KB (continued)

- Our solution: extract fuzzy relations
- Extract <Barack Obama, Bo (dog), Family> as a relation
 - a relation exists between “Barack Obama” and “pug (dog)”, encoded by string “Family”
 - but we don’t know anything more precise

```
Barack Obama           pug(Dog)
                     .................
family
                     .................
                     .................
                     .................
   ....pug...........
```

- Yet this is already quite useful
- Example: Querying “Obama family” on a search engine
 - search query and relations which contains “family”
 - can return “pug(dog)” as an answer
 - even though word “family” never appears in the page “pug (dog)”
4. Extract Metadata for KB Instances

Web URLs
- en.wikipedia.org/wiki/Mel_Gibson
- movies.yahoo.com/person/mel-gibson/
- imdb.com/name/nm0000154/

Twitter ID
- @melgibson

Wikipedia page visits (last day, last week,..)
- 7, 33, ...

Web signature
- “actor”, “Hollywood”, “Oscar”, ...

Social signature (last 3 hours)
- “car”, “crash”, “Maserati”, …
5.1 Add More Data Sources to the KB

- Challenges:
 1. Match source taxonomy to KB taxonomy
 2. Match source instances to KB instances

- Key innovations:
 1. Interleave taxonomy matching and instance matching
 2. Heavily use node metadata to match instances
5.2 Updating the KB

- Typical solution: Incremental updates
 - fast, relatively easy to preserve human curations
- But difficult in this case
 - They use “global” algorithms (e.g. spanning tree discovery) during KB construction
- Proposed solution
 - Run the pipeline from the scratch daily
 - Challenge: how to preserve human curation?
5.3 Human Curation

- Automatically constructed KB often contains errors
 - automatic version of Kosmix KB is about 70% accurate
 - need human curation
- A human analyst
 - evaluates the quality of the KB and writes curations
- Evaluate quality
 - samples paths and examines their accuracy
 - checks parent assignment for all nodes having at least 200 children
 - gets alerted by developers in case of quality issues
- Curate by writing commands
- Current KB contains several thousand commands (written over 3-4 years)
- Raises the accuracy of the KB to well above 90%
Observation and conclusion

- Possible to build relatively large KBs with modest hardware and team size
- Human curation is important
- An Imperfect relationships still quite useful
 - provide contexts for KB nodes, show how they relate to one another
- Capturing contexts is critical for processing social media
 - especially social contexts
- Important to have clear & proven methodologies to build & maintain KBs as multiple teams try to build their own KBs
- Reference: *Building, Maintaining, and Using Knowledge Bases: A Report from the Trenches* Omkar Deshpande1, Digvijay S. Lamba1, Michel Tourn2, Sanjib Das3, Sri Subramaniam1, Anand Rajaraman, Venky Harinarayan, AnHai Doan1,31@WalmartLabs, 2Google, 3University of Wisconsin-Madison
Thank You