Quantum Machine Learning:
Foundation, New
Techniques, and Opportunities
for Database Research

SIGMOD’23 Tutorial

Tobias Winker, Sven Groppe (University of Libeck)
Valter Uotila, Zhengtong Yan, Jiaheng Lu (University of Helsinki)
Maja Franz, Wolfgang Mauerer (Technical University of Applied Science Regensburg)

Tutorial Page

 Additional material
(slides/links etc.):
https://www.helsinki

). UNIVERSITY OF HELSINKI EN v

3

RESEARCH GROUP
UNIFIED DATABASE MANAGEMENT SYSTEMS (UDBMS)

fi/en/researchgroup
s/unified-database-
Mmanagement-
systems-
udbms/sigmod-
2023-tutorial

Home > Unified Database Management Systems (UDBMS) > SIGMOD 2023 Tutorial

SIGMOD 2023 TUTORIAL

Quantum Machine Learning: Foundation, New techniques, and Opportunities for Database Research

In recent years, quantum computing has experienced remarkable progress. The progress has been rapid in both hardware and
software fields. The prototypes of quantum computers already exist and have been made available to users through cloud
services. Although fault-tolerant, large-scale quantum computers do not yet exist, the potential of quantum computing technology
is undeniable. Quantum algorithms have a proven ability to either outperform the corresponding classical algorithms or are
impossible to be efficiently simulated by classical means under reasonable complexity-theoretic assumptions. Even noisy
intermediate-scale quantum computing technologies are speculated to exhibit computational advantages over classical systems.

One of the most promising approaches to possibly demonstrate this advantage is quantum machine learning. Meanwhile, the
database community has successfully applied various machine learning algorithms for data management tasks, so combining the
fields appears promising. However, quantum machine learning is a new field for most database researchers. In this tutorial, we
provide a fundamental introduction to quantum computing and quantum machine learning and show the potential benefits and
applications for database research. In addition, we demonstrate how to apply quantum machine learning to optimize the join
order problem for databases.

The tutorial is planned for 3 hours and will have the following structure.

¢ Introduction and motivation (10 min). We introduce the background and remarkable progress of quantum computing. We

https://www.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/sigmod-2023-tutorial

Code

(]
. Pyt h O n C O d e fo r fl rst Q Search or jump to... Pull requests Issues Codespaces Marketplace Explore
t B TobiasWinker / QC4DB_VQC _Tutorial Public ®Unwatch 2 ~ Y Fork 0~ W Star 1 ~
steps:
p ° <> Code (lIssues 1% Pullrequests (@ Actions [Projects [0 Wiki @ Security |~ Insights

guantum machine i PR -

No description, website, or topics provided.

° ° ° .f. majafranz Use avg loss for plotting ffgagse on Mar2 © 11 commits
earning optimizes o
[.gitignore Initial commit 3 months ago Y 1star
. . [READMEmd Update README.md 3 months ago o SuEtciing
% 0 forks
[benchmark.csv Initial commit 3 months ago
Report rep:
°) datacsv Initial commit 3 months ago
[]
| ltt p S o //g I t | I l I b o ‘ O l I l/ [prepareData.py Added Readme and requirments.txt 3 months ago Releases
N O qcjo.ipynb Use avg loss for plotting 2 months ago
(] (]
I O I a S W I n e r Q(4 D [requirementsitxt Added Readme and requirments.txt 3 months ago
O vacpy Added final evaluation and storing of model 3 months ago
- Packages
B V ‘ I l lto rI a I ‘= README.md V4 No packag ed
Publish your first package

QC4DB_VQC Tutorial

Contributors 2

A simple example of using a variational quantum circuit (VQC) for quantum machine learning for join order A _
L majafranz Maja Franz

optimization.
oL TobiasWinker
Usage
1. Install requirements Languages

pip install -r requirements.txt i .
® Jupyter Notebook 96.8% @ Python 3.2%

2. Run the code

Suggested Workflows

python vgc.py Based on your tech stack

https://github.com/TobiasWinker/QC4DB_VQC_Tutorial

Publication

* Tobias Winker, Sven Groppe, Valter
Uotila, Zhengtong Yan, Jiaheng Lu, Maja
Franz, Wolfgang Mauerer.

Quantum Machine Learning:
Foundation, New Techniques, and
Opportunities for Database Research.
In Companion of the 2023 International
Conference on Management of Data
(SIGMOD-Companion ’23), June 18-23,

2023, Seattle, WA, USA.
https://doi.org/10.1145/3555041.3589404

Quantum Machine Learning: Foundation, New Techniques, and
Opportunities for Database Research

Tobias Winker
Sven Groppe

Liibeck, Germany

ABSTRACT

In the last few years, the field of quantum computing has experi

enced remarkable progress. The prototypes of quantum computers
already exist and have been made available to users through cloud
services (e.g., IBM Q experience, Google quantum Al, or Xanadu
quantum cloud). While fault-tolerant and large-scale quantum com-
puters are not available yet (and may not be for a long time, if
ever), the potential of this new technology is undeniable. Quantum
algorithms have the proven ability to either outperform classical
approaches for several tasks, or are impossible to be efficiently sim-
ulated by classical means under reasonable complexity-theoretic
assumptions. Even imperfect current-day technology is speculated
to exhibit computational advantages over classical systems. Recent
research is using quantum computers to solve machine learning
tasks. Meanwhile, the database community has already success-
fully applied various machine learning algorithms for data man-
agement tasks, so combining the fields seems to be a promising
endeavour. However, quantum machine learning is a new research
field for most database researchers. In this tutorial, we provide a
fundamental introduction to quantum computing and quantum
machine learning and show the potential benefits and applications
for database research. In addition, we demonstrate how to apply
quantum machine learning to the join order optimization problem
in databases.

CCS CONCEPTS

« Computer systems organization — Quantum computing; «
Computing methodologies — Machine learning; « Informa-
tion systems — Data management systems.

KEYWORDS
Quantum machine learning, quantum computing, databases

ACM Reference Format:

Tobias Winker, Sven Groppe, Valter Uotila, Zhengtong Yan, Jiaheng Lu,
Maja Franz, and Wolfgang Mauerer. 2023. Quantum Machine Learning:
Foundation, New Techniques, and Opportunities for Database Research.
In Companion of the 2023 International Conference on Management of Data

Permission to make digital or hard copies of all or part of this work for personal o
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored, Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD- Companion ‘23, June 18~23, 2023, Scattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed 1o ACM.
ACM ISBN 978-1-4503-9507-6/23/06.. . 51500
Tittpsy/dorong/10.1145/3555(41,3589404

University of Helsinki
Helsinki, Finland

Valter Uotila Maja Franz
Zhengtong Yan
University of Liibeck Jiaheng Lu

Wolfgang Mauerer
Technical University of Applied
Science Regensburg
Regensburg, Germany

10* { #Qublts/#Papers © [¥papers, quantun

1 . jcomputing in title:
nature.con
. DBLP
#papers, ‘quantum ma-
ichine learning” in title:
e o nature.coa

DBLP
Supported #qubits in
i A quantum computer:
1BM
Google
Intel
Rigetti
Quantun Brlliance
usTC
Xanadu Quantum
Technologies

Year - D-Wave |

2012 2014 2016 2018 2020 2022 2024 2026 2028 (Quantum Annealing) |

10

-
a
be+xon

Figure 1: Timeline of quantum computing and quantum ma-
chine learning papers, and quantum computers (including
roadmaps). Figure is extended from [24].

(SIGMOD-Companion 23), June 18-23, 2023, Seattle, WA, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3555041. 3550404

1 INTRODUCTION

Considering the timeline of available and future quantum com-
puters in relation to the number of supported qubits in Figure 1,
there seems to be an exponential growth trend in the number of
supported qubits. The roadmap of major players contains quantum
computers (QC) allowing to scale in 2023 (IBM), supporting 4000
qubits in 2025 (IBM) and 10000 qubits in 2029 (Google). Although
the number of qubits is known to be a problematic measure for
general QC capabilities (and other metrics such as quantum volume
[13] have been proposed), the prestigious race for the most qubits
is a driver of the current hype in quantum technologies promising
numerous quantum applications in practice within this decade.

A quite obvious correlation exists between the availability of
quantum computers supporting more qubits and the publication
performance of researchers in the areas of quantum computing
and quantum machine learning (see Figure 1). There seem to be
differences in the absolute numbers of published papers in the ad-
dressed areas for different scientific communities: In 2022, there
have been 6.8 times more papers published on nature.com (aiming
to publish journal articles in the areas of natural sciences) contain-
ing ‘quantum computing’ and 4.7 times more papers containing
"quantum machine learning’ in the title than are included in the
dbip computer science bibliography (providing open bibliographic

https://doi.org/10.1145/3555041.3589404

Agenda

* Introduction and motivation

* Basics of Quantum Computing

* Quantum machine learning (+ coffee break)

* Demo: quantum machine learning optimizes join orders
* Open problems and challenges for database research

* QA session

Golden Age of Quantum Computing ? 1/3

e ,Billion USD-race” of funding quantum computing technologies between
nations, e.g.:

* more than 55 billion USD in state-sponsored research and development initiatives
worldwide?! (Jan.23)

* China: 20,0 billion USD
 EU: 7,2 billion USD
* Germany: 6,4 billion USD
* USA: 3,7 billion USD
* UK: 2,5 billion USD
* France: 2,3 billion USD
e Japan: 1,8 billion USD
* Canada: 1,6 billion USD
* India 1,1 billion USD

* Germany: recently announced additional 3 billion Euros?

Thttps://www.forbes.com/sites/gilpress/2023/01/31/new-funding-for-quantum-computing-accelerates-worldwide/
2 https://thequantuminsider.com/2023/05/03/germany-announces-3-billion-euro-action-plan-for-a-universal-quantum-computer/

https://www.forbes.com/sites/gilpress/2023/01/31/new-funding-for-quantum-computing-accelerates-worldwide/
https://thequantuminsider.com/2023/05/03/germany-announces-3-billion-euro-action-plan-for-a-universal-quantum-computer/

Golden Age of Quantum Computing ?

* Exponential growth
in number of qubits

104

103

10%

10" 4

‘E‘#Qubits

2/3

Supported #qubits in
quantum computer:
olBM
o Google
x Intel
+Rigetti
+ Quantum Brilliance
s USTC
. Xanadu Quantum
Technologies
. D-Wave
(Quantum Annealing)

201

2

2

01

4 2016 2018 2020 2022 20

2

Golden Age of Quantum Computing ? 3/3

. 10* T #Qubits/#P o .
* Exponential growth | #Qubits/#Papers) . #papers, quantum
. ! computing’ in title:
in number of Papers Il - nature.com
* Research contributions ‘ #pap[;fs”,’quantum .
1 3 1 * O) -
dqmmated by natpral 107 ; chine learning’ in title:
sciences Communlty i ¢ - nature.com
. W 1 DBLP
e encour age . | B Supported #qubits in
computer scientists 102 17 - quantum computer:
(especially from the | S 0 IBM
' | o * Google
database community) | ; © o |g
to consider quantum | g, O : F:‘igeem
computing for their 10" ¢ . . ¢+ Quantum Brilliance
research! | o a0 . ~ USTC
| _ Xanadu Quantum
Technologies
: : : — 8 : : : Yelar’ . D-Wave
2012 2014 2016 2018 2020 2022 2024 2026 2028 | (Quantum Annealing)

Quantum mechanics from computational
perspective

Nature isn't classical, dammit,

Simulating Physics with Computers and if you want to make a
_ simulation of nature, you'd better
Richard P. Feynman make it quantum mechanical, and
Department of Physics, California Institute of Technology, Pasadena, California 91107 by golly it's a wonderful problem,

’ I
Received May 7, 1981 because it doesn't look so easy.

— Richard Feynman

Quantum
advantage
and hype

BLOG

Quantum Supremacy Using a Programmable
Superconducting Processor

WEDNESDAY, OCTOBER 23, 2019
Posted by John Martinis, Chief Scientist Quantum Hardware and Sergio Boixo, Chief Scientist Quantum Computing
Theory, Google Al Quantum

Physicists have been talking about the power of quantum computing for over 30 years, but the questions have always
been: will it ever do something useful and is it worth investing in? For such large-scale endeavors it is good engineering
practice to formulate decisive short-term goals that demonstrate whether the designs are going in the right direction
So, we devised an experiment as an important milestone to help answer these questions. This experiment, referred to
as a quantum supremacy experiment, provided direction for our team to overcome the many technical challenges
inherent in quantum systems engineering to make a computer that is both programmable and powerful. To test the
total system performance we selected a sensitive computational benchmark that fails if just a single component of the
computer is not good enough

Today we published the results of this quantum supremacy experiment in the Nature article, “Quantum Supremacy
Using a Programmable Superconducting Processor”. We developed a new 54-qubit processor, named “Sycamore”, that
is comprised of fast, high-fidelity quantum logic gates, in order to perform the benchmark testing. Our machine
performed the target computation in 200 seconds, and from measurements in our experiment we determined that it
would take the world's fastest supercomputer 10,000 years to produce a similar output.

Left: Artist’s rendition of the Sycamore processor mounted in the cryostat. (Full Res Version; Forest Stearns, Google Al Quantum
Artist in Residence) Right: Photograph of the Sycamore processor. (Full Res Version; Erik Lucero, Research Scientist and Lead
Production Quantum Hardware)

Article | Open Access | Published: 01 June 2022

Quantum computational advantage witha
programmable photonic processor

Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F.

Bulmer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, Adriana E. Lita, Thomas

Gerrits, Sae Woo Nam, Varun D. Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolds Quesada

& Jonathan Lavoie &1

Nature 606, 75-81 (2022) | Cite this article

107k Accesses | 104 Citations | 1282 Altmetric | Metrics

Science Bulletin
Volume 67, Issue 3, 15 February 2022, Pages 240-245

ELSEVIER

Article

Quantum computational advantage via 60-
qubit 24-cycle random circuit sampling

Qingling Zhu ® < Sirui Cao?®® ¢, Fusheng Chen * B ¢, Ming-Cheng Chen * 7 ¢, Xiawei Chen l’,
Tung-Hsun Chung ® 5 <, Hui Deng * %, Yajie Du 5, Daojin Fan ", Ming Gong*°*¢,
Cheng Guo * < Chu Guo * ° %, Shaojun Guo ® ¢, Lianchen Han * ® <, Linyin Hong ©,
He-liang Huang *” © %, Yong-Heng Huo * b <, um_nggb, Nali® b <, Shaowei Li ® be .

ian-Wei Pan * ©

Show mare

+ Addto Mendeley o2 Share 133 Cite

https:f/doi.org/10.1016/j.5¢ib.2021.10.017 ~ Get rights and content »

& | REPORT f ¥ in o« % =

Quantum computational advantage using photons

HAN-SEN ZHONG HUL

YU-HAQ DENG (). MING-CHENG CHEN) , LLCHAD PENG (). YLHANLUO (). JIAN QIN (). DIAN WU (). XING DING). [.-]

AND JIAY PAN +14 authors Authors Info & Affiliations

SCIENCE + 3Dec2020 + Vol 370, Issu

pp. 1460-1463 - BOL 10

& 12637 99 760 ‘ O =

A light approach to quantum advantage

Article | Open Access | Published: 14 June 2023

Evidence for the utility of quantum computing before
fault tolerance

Youngseok Kim &, Andrew Eddins 9 Sajant Anand, Ken Xuan Wei, Ewout van den Berg, Sami Rosenblatt

Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme & Abhinav Kandala

Nature 618, 500-505 (2023) ‘ Cite this article

217 Altmetric | Metrics

Basics of Quantum
Computing

Quantum computing is a computing
paradigm which utilizes quantum
What iS mechanical properties, such as

entanglement, superposition and
quantum interference, to perform

COmputing? computations.

HOW''S YOUR THE PROJECT EXISTS
QUANTUM COMPUTER IN A STIMULTANEOUS CAN I THATS
PROTOTYPE COMING STATE OF BEING BOTH OBSERVE A TRICKY

ALONG? TOTALLY SUCCESSFUL IT? QUESTION.
AND NOT EVEN

Outline of the basics

Gaining intuition about quantum computing
through ML and probabilistic computing

Introduction to quantum circuit model

Practical approach to qguantum computing

We are used to think probabilistically,
especially when developing ML models

Unclassified Machine learning
picture of a model trained to
cat or a dog identify cats and dogs

Classification output

Developing the previous probabilistic approach

Initial system ﬁrobabilistic bit \ State of the system after

classification

p = apo + bps
? where 0 < a,b <1 and
a+b=1.

o
Probabilistic functions

0.5 0.9 respect conditions
cat dog 0<a,b<1 and

po P1 ‘atb=1 -

Quantum circuit mode|

From probabilistic bits to quantum bits

Required changes:
 Computations (excluding measurements) must be

reversible
 Quantum bits comprise generalized probabilities over

complex numbers
* Mappings between quantum bits follow the dynamics

of guantum mechanics

Let’s define a computation model which satisfies the previous
properties!

Quantum computing follows the dynamics of
guantum mechanics

The postulates of quantum mechanics [Nielsen

& Chuang]:
1.State space of a single quantum bit system

2 .Evolution
3.State space of a composite system

4.Quantum measurement

Qubits form the basis for guantum computation

Classical computing is
based on bits O 1

Quantum computing is O> _ (1 1 > _
based on qubits 0

A state of a single qubit can be expressed as a
linear combination of the basis states

) = al0) + 51),

where 047/8 c O and |Oz|2 —+ |/8|2 = 1.

Superposition allows qubits to simultaneously exist in
multiple states.

Bloch sphere visualizes a single qubit

We can find an angle @ so that (Pythagorean identity)
| + |B]? = cos? (§) +sin® (5) = 1.

Thus, we can rewrite the state the following way

o) = al0) + B[1)

_ ¢ (cos (2) 0) + ¢ sin (‘9)).

The factor ¢*7 has no observable effects. Effectively,

o) = |0) + B]1) = cos (9> 0) + €'? sin (9) 1),

Bloch sphere visualizes a single qubit

Quantum computation evolves by applying
guantum logic gates to the states

Quantum logic gates are defined by complex-valued
unitary matrices U .

Matrix {J is unitary if its conjugate transpose is its inverse:
UUT=UTU = 1.
Conjugate transpose [JT is the matrix which is obtained

by transposing [/ and applying complex conjugate on
its each entry.

Quantum computation evolves by applying
guantum logic gates to the states

0) 1)

For example, the NOT gate’s unitary matrix is

X:G) é)

Quantum computation evolves by applying
guantum logic gates to the states

0

For example, the Hadamard gate’s unitary matrix is

()

Example: Apply Hadamard-gate to the basis state

=20 1) ()
(1)

(10) +11))

1
V2
1
V2

Parameterized gates are important in
guantum machine learning

- (cos(8/2) —isin(6/2)
R, (0) = (_7; sin(#/2) cos(0/2))

_ [cos(0/2) —sin(6/2)
R, (9) — (Sjn(9/2) cos(0/2))

(—10/2) 0
e
R.(0) = (0 62’9/2)

Bloch sphere can visualize how the rotation
gates rotate the qubit on the sphere

State space of a composite system

The state space of a composite system is the tensor product
of the state spaces of the component systems.

TR A
won=()e()-(W)

=, | = l00).
\""\o)) \o Ak

For example, the two-qubit quantum system has the
basis states |00), [10), |01), and |11).

O =R O =

Entanglement

Quantum entanglement means that the quantum state of
each component system of the whole system cannot be
described independently of the state of the others.

Controlled NOT i.e. CNOT-gate

0) 1) GL 1)
CNOT =
0) —— [0) [0)

o
~—
@

o O O -
o O = O
_— O O O

O = O O

Entanglement + superposition: Bell state

H|0) =

H

L
v

N

1

(10) +11))

100)+|11)

Parameterized gates have controlled versions
which are important in quantum machine learning

6(—i6’/2) 0
R.(0) = (0 6¢9/2) I, (9)
1 0 0 0 T
0 1 0 0
CRz(Q) — 0 0 6(—@9/2) O L RZ(Q) -
0 0 0 et0/2

Measurement collapses the state and produces a
classical bit

0

50% probability to measure 1

H|0) = —=(10) + 1))

50% probability to measure 0

L
v

Measurement formally

Let O ={m1,...,m,} be the set of measurement outcomes that

may occur in the experiment.

Quantum measurements are defined by a collection {M,, | m e O}

of measurement operators.

The probability of measuring the outcome m € O is given by

p(m) = (p| M}, My, |¢).

Measurement formally

The most important measurement is the measurement in
the computational basis.

In the case of a single qubit, the collection of the
measurement operators is given by

M= 10)0] = (5)
M1|1)<1(8 (D

Measurement example

If |90> — Oé|0> - 6|1>, then the probability to measure O is

p(0) = (| My Mo|p) = (| Mo|p) = |a|?.

Measurement from the Bloch sphere perspective

Summary on the quantum circuit model

R (m/4)

3

D
\V/

Ry (7/4)

3

Modern quantum computing in practice: Noisy
Intermediate Scale Quantum (NISQ) hardware

METHOD | Superconducting ww Topological

Company Google, IBM, lonQ, Xanadu Microsoft
support |QM, Rigetti Quantinuum

METHOD W Classical simulators

Company Intel Quantum D-Wave IBM, Amazon,
support Brilliance NVIDIA, Fujitsu

Modern quantum computing in practice:
Software libraries and platforms for quantum computing

1§ TensorFlow Quantum i

Amazon Braket

Microsoft Azure Quantum

@ QlSkIt IBM Quantum

7 PENNYLANE Xanadu Cloud (tk@t)

Introduction materials

e A practical introduction to quantum computing: from qubits to quantum
machine learning and beyond by Elias Fernandez-Combarro Alvarez
(Universidad de Oviedo (ES))

* Quantum Computing by Prof. Dr. Sven Groppe

* Nielsen, M. A., Chuang, I. L. (2000). Quantum Computation and Quantum
Information. India: Cambridge University Press.

* Quantum Algorithm Zoo: https://quantumalgorithmzoo.org/

Learn to code quantum algorithms:
e Xanadu’s Quantum Codebook. https://codebook.xanadu.ai/
* Qiskit Tutorials. https://giskit.org/documentation/tutorials.htm]
e |QM Academy. https://www.igmacademy.com/

https://codebook.xanadu.ai/
https://qiskit.org/documentation/tutorials.html
https://www.iqmacademy.com/

Quantum Machine Learning

Overview

ok W

Motivation

(Classical) Machine learning
Optimization

Hybrid algorithms

Variational quantum circuits

> Structure
» Encoding
» Decoding

Machine learning

Function approximation

Problem
x : Input data
y : Desired output
g : An unknown function mapping y = g(x)

Goal

A model f which approximates g

Solution
Use parameterized function f(x,) to approximate g(x)
Find 6, for which f(x,0,) is best approximation of g(x)

Machine learning
Methods

Training data

. _ X0 | Yo
Supervised learning X1 |y
Learning from data: X2 | y2
» Input: x X3 | y3
» Desired Output: y !
» Error function: E(f(x,6),y)
Model f(x, 0
Goal: argmin E(f(x,0),y) be0)
0 {

’ Xnew ‘ f(XneW’e) ‘

Machine learning
Methods

Reinforcement Learning

Agent with environment:
» [nitial state xg Enviroment
» Policy f(x,)

» Reward R(xn, f(xn,6))
» Next state
Xpt1 = P(Xn, F(xn))

Goal: argmax " P(f (xn, 0)) Agent
0

Action Reward State

Optimizer

Gradient descent

» Loss function has to be differentiable

Use gradient of loss function to determine parameter change
» Problem of barren plateau

Landscape with Barren Plateau

Landscape without Barren Plateau

Optimizer

Evolutionary algorithm

Inspired by natural evolution
» Parameter vectors are members of a population
» New members are created by mutation and crossover
> Best members are selected by a fitness function
» Any fitness function is possible
>

Many variants

Hybrid Algorithm

Quantum machine learning

Problem
Limited number of qubits and circuit depth for NISQ and
simulators

Solution
Use QC as subroutine in a classical algorithm

» Utilization of quantum computers, without a full quantum
algorithms
» Circuits are smaller and shorter better suited for NISQ era

> Measurement required = Alters quantum state = No
continues interaction = QC as function

» Quantum model in machine learning

Hybrid Algorithm

Classical data

Encoding

Quantum state

Quantum Circuit

Optimized

Parameters

Quantum state

Decoding

QC

Classical data

Classical Algorithm

VQC

Variational quantum circuits

» Quantum circuit with parameters
» 3 Components:

» Encoding
» Processing
P> Measurement

» Proven universal approximator

» Possible machine learning model

0) —]
0) — Encoding [| Processing
0y — Uelx) |+ U(0)

>]

|0

NHETS

VQC

Processing Layer

Turns quantum state representing the input into quantum state
representing the output

Required:

P> Parameterized operation e.g. Rotation gates

» Entanglement operation e.g. controlled Pauli gates
Common:

> Alternating entanglement and rotation layers

P> Repetition of the same layer
Optional:

» Re-uploading

VQC

Processing Layer

Entanglement Rotation

—43Ij T R (85) | R, (0a) |—| R-(65) 1

1 X | l—T—| Ry (06) — Ry(07) —— R.(0s)

D H—H £ 00) | By 020) | R-00) H

: U(0o..11) : U(612..23) : U(624..35) :

o
0) — Encoding [| Processing
0y — Uelx) | UO)
oL

Processing Layer

Entanglement

Entanglement effects depth of layer as rotation part is constant
length. Entanglement layout:

» Linear
» Circle

> Full

> Tree

> Pairwise

» Shifted-circular-alternating (SCA)

Processing Layer

Structures

10 {Av

10|

o {m}
Circuit 12
T Eh g .
-) fo}——
Circuit 13 Circuit 14

Figure: Expressibility and Entangling Capability of Parameterized
Quantum Circuits for Hybrid Quantum-Classical Algorithms
by Sukin Sim, Peter D. Johnson, and Aldn Aspuru-Guzik,

Processing layer
Reuploading

Reapply encoding layer

» Possible because encoding is unitary operation and not setting
values

» Increases effect of input

» Allows universality

U(fo.11) | |Ue(x)| [U(f12.23)| |Ue(x)| |U(624.35)

Encoding

Making our data quantum

Goal:

We require a quantum state |p) representing our classical data x

Solution:
Use a unitary U, operator depending on x

) = Ue(x) [0)

Choice of U, affects
» Possible data values
» Number of qubits
» Depth of encoding circuit

Encoding Methods

Basis encoding

Turn a classical bit into a qubit

Ue(0)[0) = 10) , Ue(1) 0) = 1)

» Only allows binary data
» One qubit per classical bit
> Depth: 1 gate

Encoding 0110 using X gate: 0

Encoding Methods

Angle encoding

Use rotation gates to encode one value into one bit

Ue(x;) |0) = cos(x;/2)10) + sin(x;/2) |1)

» Allows encoding of real value
» One qubit per classical value
» Depth: 1 gate

» Values in interval [0,47) for injective encoding

Encoding of 4 values using Ry gates:

0

(=]

0

>_
>_
>_
>_

Encoding Methods

Amplitude encoding

Encode values into amplitudes of quantum state
Ue(x)10) = Zx,

> Allows encoding of real value with sum of 1
» log,(n) qubits for n values

» Depth: O(n)

> Requires a complex circuit to create

» Values encoded in total state not a single qubit

Encoding Methods

Comparison

» Amplitude encoding densest, but highest depth

> Angle and amplitude encoding require scaling of data

> Angle encoding often a good compromise

» Hybrid methods

Method Data Qubits Depth

Basis encoding String of n bits O(n) O(1)
Angle encoding n real values O(n) O(1)
Amplitude encoding | n real values | O(log(n)) | O(n)

Output decoding

Receiving a classical result

Option 1 Use measurement as binary string
P Returns one basis state of the superposition
» Result is string of n bit
> Probabilistic

Option 2 Use probabilities
> 2" continues values in interval [0, 1] with sum of 1
» Probability easily acquired on simulator
» Require repeat execution to approximate on real quantum
computers

Optimizer

Parameters of a VQC are adjusted by a classical optimizer
» Gradient based (SGD, Adam)

» Evolutionary algorithms

Parameter shift rule
Calculation of gradients

» Run two copies with one parameter slightly shifted

» Requires 2n runs for n parameters

Quantum-DB work so far

v

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023 1/12

Demonstration

Quantum Machine Learning for Join Ordering

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023

2/12

Join Ordering

SELECT ... FROM A,B,C,D WHERE ...

20 X

/ \
4000 X D
/ \ 10 Costs
C

400 M C =400 + 4000 + 20 = 4420

/ \ 10000
A LB

100 40

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023 3/12

Join Ordering

SELECT ...
20 X
400 M M 100
A J_B 4 _C |} D |
100 40 10000 10

FROM A,B,C,D WHERE ...

C =400 + 100 + 20 = 520

M. Franz, W. Mauerer, et al.

QML for DB June 22, 2023 3/12

ILFD

®s1
SERSIT,

=
"UNIVERSITY OF HELSINKI.

Demo Overview

O s W N -

Create the Variational Quantum Circuit (VQC)
Load the Data

Create the Quantum Neural Network

Train the Model

Evaluate the Model

M. Franz, W. Mauerer, et al. QML for DB

June 22, 2023

4/12

Python Frameworks

& Qiskit JorenConnector’ ¢ pyTorch
CircuitQNN Reward »| Prediction Normalisation
10y —] || Prediction *
: Ue(2) U(®) : Loss Calculation
10) — — T
A y\ Gradients
Input —»| Optimiser
T |
Parameter
Quantum g Classical
SELECT ...
FROM A,B,C,D

WHERE ...

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023 5/12

ILFD

OTl- .
e W

=
UNIVERSITY OF HELSINKI

Live Demo

https://github.com/TobiasWinker/QC4DB VQC Tutorial

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023 6/12

https://github.com/TobiasWinker/QC4DB_VQC_Tutorial

Outlook

Open Challenges and Future Work

M. Franz, W. Mauerer, et al.

QML for DB

June 22, 2023

7/12

=
"UNIVERSITY OF HELSINKI.

From the Database Perspective

(Quantum) Machine Learning in Databases

Problem

DB Tasks

Offline
NP Optimisation
Online

Regression

Prediction

Knob Tuning

Index/View Selection
Partition/-key Selection

Query Rewrite

Plan Enumeration
Cost/Cardinality Estimation
Index/View Benefit Estimation
Lateny Estimation

Trend Forecast

Workload Prediction & Scheduling

Table © G. Li, X. Zhou, L. Cao: Machine Learning for Databases, Slides, VLDB (2021)

M. Franz, W. Mauerer, et al. QML for DB

June 22, 2023

8/12

https://vldb.org/2021/files/slides/tutorial/tutorial1.pdf

LD Sampling Complexity
Variational Quantum Circuit
200 A
o
& i
5 150
=
5}
b -
100
-
©
5]
e i
S 50
O -

T T T T T T T T T T T T
0k 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k 50k
Step

M. Franz, L. Wolf, M. Periyasamy, Ch. Ufrecht, D. D. Scherer, A. Plinge, Ch. Mutschler, W. Mauerer: Uncovering Instabilities in Variational-Quantum Deep Q-Networks,
J. Franklin Institute (2022)

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023 9/12

https://arxiv.org/abs/2202.05195

State of Affairs

review articles

superconductingprocessor

Disentanglit
from Practicality:
On Realistically
Achieving
Quantum
Advantage

lype

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023 10/12

=
T W
IH g@
B

LD From the Quantum Perspective

=
"UNIVERSITY OF HELSINKI.

Open Research Questions

» What are potential advantages of QML?
» Can we achieve quantum advantage in the NISQ era?
» Can quantum hardware-software co-design help?

» How can we build on existing, classical approaches?
>

Quantum computing + Large amounts of data = Bad idea?

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023 11/12

Thank you!

Publication Bloch sphere visualizes a single qubit

« Tobias Winker, Sven Groppe, Valter
Uotila, Zhengtong Yan, Jiaheng Lu, Maja
Franz, Wolfgang Mauerer.

Quantum Machine Learning:
Foundation, New Techniques, and
Opportunities for Database Research.
InC i i

Conference on Management of Data
(SIGMOD-Companion '23), June 18-23,
2023, Seattle, WA, USA.
hitps://doi.0rg/10.1145/3555041 3589404

Optimizer VQC

Gradient descent Processing Layer

Entanglement Rotation

Use gradient of loss function to determine parameter change
> Loss function has to be differentiable
»> Problem of barren plateau

Landscape with Barren Plateau ithout Barren Plateau

. ;

M. Franz, W. Mauerer, et al. QML for DB June 22, 2023 12/12

[1]:

qcdjo
June 26, 2023

1 Quantum Machine Learning for Join Ordering

This notebook will demonstrate a simple example of using a variational quantum circuit (VQC) in
machine learning for join order optimization.

1.1 Imports

from math import pi

import csv

from collections import deque
import random

import numpy as np

(iskit Circuit imports
from qiskit.circuit import QuantumCircuit, QuantumRegister, Parameter,,
~ParameterVector, ParameterExpression

(iskit imports

import qiskit as qk

from qiskit.utils import QuantumInstance

from qiskit import Aer

from qiskit.visualization import plot_histogram

(iskit Machine Learning imports
from qiskit_machine_learning.neural_networks import CircuitQNN
from qiskit_machine_learning.connectors import TorchConnector

PyTorch imports

import torch

from torch import Tensor
from torch.optim import Adam

Imports for plotting
import matplotlib.pyplot as plt
%matplotlib inline

1.2 Create the Variational Quantum Circuit (VQC)
1.2.1 Circuit Hyperparameters

[2]: num_qubits
num_layers

4 # Number of qubits
8 # Number of wariational layers in the circuit

1.2.2 Encoding Layer (Quantum!)

[3]: | # Create a quantum circuit
gc = gk.QuantumCircuit (num_qubits)

Parameters for input
X = gk.circuit.ParameterVector('x', num_qubits)

Add encoding layer
for i in range(num_qubits):
qc.rx(x[i], 1)

[4]: # Draw the circuit
gc.draw("mpl")

[4]:

q]__Rx_

1.2.3 Variational Layers (Quantum!)

[56]: # Parameters for wariational layers
thetas = [gk.circuit.ParameterVector(f'th{1}_', 2*num_qubits) for 1 in
wrange (num_layers)]

[6]:

[6]:

[7]:

Add variational layers
for 1 in range(num_layers):
qc.barrier() # for nicer visualisation

Vartational part

for i in range(num_qubits):
qc.ry(thetas[1][2*i], 1)
gc.rz(thetas[1] [2*i+1], 1)

Entangling part

for i in range(num_qubits-1):

qgc.cx(i, i+1)

Draw the circutt
qgc.draw("mpl")

o
o
o
o

qJo

1.2.4 Example: Measure circuit (Quantum!)

Generate dummy input

num_inputs =
dummy_inputs =

len(x)

np.zeros (num_inputs)

print ("Inputs:", dummy_inputs)

Extract the parameters to optimize
params = list(qc.parameters) [:-num_qubits]
num_params = len(params)

Generate variational parameters randomly in [-pi,pi]
example_param_values

= (2xpi*np.random.rand(num_params) - pi)

print("Thetas:", example_param_values)
Inputs: [0. 0. 0. 0.]
Thetas: [0.8047321 0.84461409 0.52073632 2.27864769 0.40968235 2.38381307

[8]:

[8]:

1.51294733 .59247587
.4269846 .69032619
0.35916278 2.79434358
.59116235 2.74549213
.40593158 .03328503
.5847204 1.71285869
2.8652324 1.2709511

.72988115 0.29971856
0.46743974 .88605872
.45691595 .12382803

Bind parameters

.24629874 -0.
.066019

.86820776
.01434394 -2.
.06864809 1.
.695563621 1.
.86112803 2.
.95672039 0.
.25172901
.02072863 0

-1

45222476

.67401216
-2.

44810798
44118782
41733398
41750492
22791797
84141833

.06068193
.25708527]

.00878915
.19921188
.31835762 0.
.89071785 0.
.37110587
.57686964 -1.
.59700137
.25349395
.37973345

bound_qc =

.53821096
.37159388

73437947
14483474

.956394907

30715746

.31149571
.54771587
. 73234196

qc.assign_parameters({p: v for p, v in zip(x, dummy_inputs)})

bound_qc = bound_gc.assign_parameters({p: v for p, v in zip(params,
wexample_param_values)}) # wvartiational parameters

Tell @iskit to measure all qubits
bound_qgc.measure_all()

bound_qgc.draw("mpl")

Q
S

]
;

L1l

O —4

E

&

meas

Q
N
"' '

i

2 9
=
>

E

ﬂl
i

O —

as

meas

N

O
O—

[9]:

[10]:
[10]:

Run the quantum circuit

Run the quantum circuit on a statevector simulator
backend = Aer.get_backend('aer_simulator_statevector')
shots = 1000

job = backend.run(bound_qgc, shots=shots)

Print result

result = job.result()

counts = result.get_counts()
print(counts)

{'1011': 5, '1001': 11, '0101': 61, '1110': 56, '1010': 126, '0000': 137,
'0010': 38, '0111': 60, '0011': 90, '1101': 186, '1000': 3, '0110': 76, '1111':
38, '0001': 70, '0100': 23, '1100': 20}
plot_histogram(counts)
2004 B
LB e
126
e
5
8 1001 F 90
76
70
61
60 56
20T S B B e

[11]: # Calculate probabilities
probs = {v: count/shots for v, count in counts.items()}

print (probs)
plot_histogram(probs)

{'1011': 0.005, '1001': 0.011, '0101': 0.061, '1110': 0.056, '1010': 0.126,
'0000': 0.137, '0010': 0.038, '0O111': 0.06, '0011': 0.09, '1101': 0.186, '1000':
0.003, '0110': 0.076, '1111': 0.038, '0001': 0.07, '0100': 0.023, '1100': 0.02}

[11]:

0.20 -

0.15 1

Quasi-probability
o
[
o

0.051

1.3 Load data (Classical!)

[12]: with open('data.csv', newline='') as csvfile:
data = list(csv.reader(csvfile, delimiter=',', quoting=csv.

- QUOTE_NONNUMERIC))

One data_ row contains:

[13]: data_row = datal0]
print(data_row)

[0.2617993877991494, 3.141592653589793, 2.0943951023931953, 1.3089969389957472,
0.0, 0.7964358157055925, 0.8313672111312764, 0.0, 0.0, 0.0, 0.804596018735363,

0.9512026302128396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

1.3.1 data_row[0:4]

Representations of the four tables that should be joined and angle of the encoding rotation
gates. These values were created by turning each tablename into an id and mapping them to the
interval [0, 7].

In this case: [0.2617993877991494, 3.141592653589793, 2.0943951023931953,
1.3089969389957472]

1.3.2 data_row([4:20]

Rewards for the corresponding join orders calculated from the execution times The reward

is defined as

tbest JO
tchosen JO

)

where ¢ is the execution time (0 for cross joins).

In this case: [0.0, 0.7964358157055925, 0.8313672111312764, 0.0, 0.0, 0.0,
0.804596018735363, 0.9512026302128396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

1.4 Create a Quantum Neural Network (Quantum!)

[14]: # Select a quantum backend to rTun the simulation of the quantum circuit
gi = QuantumInstance(gk.Aer.get_backend('aer_simulator_statevector'))

Create a Quantum Neural Network
gnn = CircuitQNN(qc, input_params=x, weight_params=params,
quantum_instance = qi)

1.4.1 Connect to PyTorch (Classical!)

[15]: # Initialize random weights in [-pi,pi]
seed = 42 # Seed for random initialization
np.random. seed (seed)
initial_weights = (2*pi*np.random.rand(num_params) - pi)

Create PyTorch V{C Wrapper
quantum_nn = TorchConnector(qnn, initial_weights)

1.4.2 Define layer which normalises the prediction (Classical!)

[16]: class NormLayer (torch.nn.Module):
def forward(self, x):
result = x/x.max()
return result

Create a sequential model from the gqantum network and the classical norm layer
model = torch.nn.Sequential (quantum_nn, NormLayer())

1.5 Train the model

1. The model can be trained by predicting rewards for a corresponding join order defined in a
look-up table.

2. A loss is computed over all predicted rewards and the actual rewards stored in the data.

3. The VQCs parameters get updated via backpropagation with respect to the computed loss.

1.5.1 Hyperparameters for Training

[17]: # Use the adam optimizer
optimizer = Adam(model.parameters(), 1lr=0.005)

Buffers to store the last 10 rewards and losses
rewards = deque(maxlen=10)
losses = deque(maxlen=10)

num_steps = 40 # number of training steps

random.seed(seed) # set seed for data selection

1.5.2 Run the Training

[18]: | # save loss and reward for plotting
loss_log, reward_log = [1, []

for episode in range(num_steps):

Choose a random data entry
entry = random.choice(data)

Predict rewards from the features
prediction = model(Tensor(entry[0:4])) # Quantum!

Choose join order with highest predicted reward
selected = prediction.argmax()

Real reward this selection would give
current_reward = entry[4+selected]

Calculate loss as sum of the squared errors
loss = 0
for i in range(0, len(prediction)):

loss += (prediction[i] - entry[4+i])**2

Show quality of current episode
print("Episode: {}, loss: {:.3f}, Reward : {:.3f}".format(episode, loss.
~item(), current reward), end="\n")

Store avg loss and reward over the last 10 steps for plotting
rewards.append(current_reward)

losses.append(loss.item())

reward_log.append (sum(rewards) /len(rewards))
loss_log.append(sum(losses)/len(losses))

Optimize using backpropagation
optimizer.zero_grad()

loss.backward() # calculate gradients (partly Quantum!)

optimizer.step() # update parameters
Episode: 0, loss: 3.732, Reward : 0.000
Episode: 1, loss: 5.483, Reward : 0.000
Episode: 2, loss: 3.267, Reward : 0.905
Episode: 3, loss: 3.555, Reward : 0.000
Episode: 4, loss: 5.877, Reward : 0.000
Episode: 5, loss: 3.028, Reward : 0.576
Episode: 6, loss: 3.476, Reward : 0.639
Episode: 7, loss: 3.226, Reward : 0.550
Episode: 8, loss: 3.328, Reward : 0.514
Episode: 9, loss: 3.348, Reward : 0.957

Episode: 10, loss: 3.105, Reward : 0.000
Episode: 11, loss: 5.465, Reward : 0.000
Episode: 12, loss: 2.565, Reward : 1.000
Episode: 13, loss: 4.279, Reward : 0.000
Episode: 14, loss: 3.365, Reward : 0.617
Episode: 15, loss: 3.712, Reward : 0.000
Episode: 16, loss: 3.388, Reward : 0.000
Episode: 17, loss: 3.630, Reward : 0.000
Episode: 18, loss: 2.224, Reward : 0.579
Episode: 19, loss: 3.300, Reward : 0.000
Episode: 20, loss: 2.877, Reward : 0.905
Episode: 21, loss: 3.854, Reward : 0.898
Episode: 22, loss: 4.844, Reward : 0.000
Episode: 23, loss: 4.475, Reward : 0.000
Episode: 24, loss: 2.467, Reward : 0.000
Episode: 25, loss: 2.947, Reward : 0.488
Episode: 26, loss: 3.132, Reward : 0.957
Episode: 27, loss: 3.635, Reward : 0.000
Episode: 28, loss: 2.851, Reward : 0.000
Episode: 29, loss: 4.533, Reward : 0.000
Episode: 30, loss: 4.360, Reward : 0.000
Episode: 31, loss: 3.888, Reward : 0.738
Episode: 32, loss: 3.797, Reward : 0.000
Episode: 33, loss: 6.052, Reward : 0.000
Episode: 34, loss: 3.017, Reward : 0.869
Episode: 35, loss: 2.278, Reward : 1.000
Episode: 36, loss: 2.286, Reward : 1.000

Episode: 37, loss: 3.843, Reward : 0.738
Episode: 38, loss: 3.891, Reward : 0.046
Episode: 39, loss: 2.492, Reward : 0.967

1.6 Show Training process

[19]: fig, (reward_plot, loss_plot) = plt.subplots(l, 2, figsize=(12, 5),,
—constrained_layout = True)

loss_plot.set_xlabel('step', fontsize 16)
loss_plot.set_ylabel('loss', fontsize 16)
loss_plot.plot(range(num_steps), loss_log, color="green")

reward_plot.set_xlabel('step', fontsize = 16)
reward_plot.set_ylabel('reward', fontsize = 16)
reward_plot.plot(range(num_steps), reward_log, color="blue");

4.6
0.59

4.4

0.49
4.2 4

reward
loss

0.2 3.8 4

3.6
0.1

3.4+
0.04

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
step step

1.7 Evaluate the model for all queries

[20] : rewardSum = O
for entry in data:
Predict rewards from the features
prediction = model(Tensor(entry[0:4]))
Choose join order with highest predicted reward
selected = prediction.argmax()
Store the real reward this selection would give
rewardSum += entry[4+selected]

print("Average reward over all queries: {:.3f}".format(rewardSum/len(data)))

Average reward over all queries: 0.383

10

1.8 Save model parameters

[21]: torch.save(model.state_dict(), "vqgc.model")

11

