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Code

• Python code for first
steps: 
quantum machine
learning optimizes
join orders
https://github.com/
TobiasWinker/QC4D
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Golden Age of Quantum Computing ? 1/3

• „Billion USD-race“ of funding quantum computing technologies between
nations, e.g.:
• more than 55 billion USD in state-sponsored research and development initiatives 

worldwide1 (Jan.’23)
• China: 20,0 billion USD
• EU: 7,2 billion USD
• Germany: 6,4 billion USD 
• USA: 3,7 billion USD
• UK: 2,5 billion USD
• France: 2,3 billion USD
• Japan: 1,8 billion USD
• Canada: 1,6 billion USD 
• India 1,1 billion USD

• Germany: recently announced additional 3 billion Euros2

1 https://www.forbes.com/sites/gilpress/2023/01/31/new-funding-for-quantum-computing-accelerates-worldwide/
2 https://thequantuminsider.com/2023/05/03/germany-announces-3-billion-euro-action-plan-for-a-universal-quantum-computer/

https://www.forbes.com/sites/gilpress/2023/01/31/new-funding-for-quantum-computing-accelerates-worldwide/
https://thequantuminsider.com/2023/05/03/germany-announces-3-billion-euro-action-plan-for-a-universal-quantum-computer/


Golden Age of Quantum Computing ? 2/3

• Exponential growth
in number of qubits



Golden Age of Quantum Computing ? 3/3

• Exponential growth
in number of papers

• Research contributions
dominated by natural
sciences community

• We encourage
computer scientists
(especially from the
database community) 
to consider quantum
computing for their
research!



Quantum mechanics from computational 
perspective

Nature isn't classical, dammit, 
and if you want to make a 
simulation of nature, you'd better 
make it quantum mechanical, and 
by golly it's a wonderful problem, 
because it doesn't look so easy.

– Richard Feynman



Quantum 
advantage 
and hype



Basics of Quantum 
Computing



What is 
quantum 
computing?

Quantum computing is a computing 
paradigm which utilizes quantum 
mechanical properties, such as 
entanglement, superposition and 
interference, to perform 
computations.



Outline of the basics

Gaining intuition about quantum computing 
through ML and probabilistic computing

Introduction to quantum circuit model

Practical approach to quantum computing



We are used to think probabilistically, 
especially when developing ML models

Unclassified 
picture of a 
cat or a dog

Machine learning 
model trained to 
identify cats and dogs

Classification output



Developing the previous probabilistic approach

cat dog

Initial system Probabilistic bit

andwhere

Probabilistic functions 
respect conditions

and

State of the system after 
classification



Quantum circuit model



From probabilistic bits to quantum bits

Required changes:
• Computations (excluding measurements) must be 

reversible
• Quantum bits comprise generalized probabilities over 

complex numbers
• Mappings between quantum bits follow the dynamics 

of quantum mechanics

Let’s define a computation model which satisfies the previous 
properties!



Quantum computing follows the dynamics of 
quantum mechanics

The postulates of quantum mechanics [Nielsen 
& Chuang]:

1.State space of a single quantum bit system
2.Evolution
3.State space of a composite system
4.Quantum measurement



Qubits form the basis for quantum computation

Classical computing is 
based on bits

Quantum computing is 
based on qubits



A state of a single qubit can be expressed as a 
linear combination of the basis states

where and

Superposition allows qubits to simultaneously exist in 
multiple states.



Bloch sphere visualizes a single qubit

We can find an angle so that (Pythagorean identity)

Thus, we can rewrite the state the following way

has no observable effects. Effectively,The factor



Bloch sphere visualizes a single qubit



Quantum computation evolves by applying 
quantum logic gates to the states 

Quantum logic gates are defined by complex-valued 
unitary matrices 

Matrix is unitary if its conjugate transpose is its inverse:

Conjugate transpose is the matrix which is obtained

and applying complex conjugate onby transposing

its each entry.



Quantum computation evolves by applying 
quantum logic gates to the states 

For example, the NOT gate’s unitary matrix is



Quantum computation evolves by applying 
quantum logic gates to the states 

For example, the Hadamard gate’s unitary matrix is



Example: Apply Hadamard-gate to the basis state



Parameterized gates are important in 
quantum machine learning



Bloch sphere can visualize how the rotation 
gates rotate the qubit on the sphere



The state space of a composite system is the tensor product 
of the state spaces of the component systems.

For example, the two-qubit quantum system has the 
basis states

State space of a composite system



Entanglement

Quantum entanglement means that the quantum state of 
each component system of the whole system cannot be 
described independently of the state of the others.

Controlled NOT i.e. CNOT-gate



Entanglement + superposition: Bell state



Parameterized gates have controlled versions 
which are important in quantum machine learning



Measurement collapses the state and produces a 
classical bit



Measurement formally

be the set of measurement outcomes thatLet

may occur in the experiment.

Quantum measurements are defined by a collection

of measurement operators.

The probability of measuring the outcome is given by



Measurement formally

The most important measurement is the measurement in 
the computational basis.

In the case of a single qubit, the collection of the 
measurement operators is given by



Measurement example

If then the probability to measure 0 is



Measurement from the Bloch sphere perspective



Summary on the quantum circuit model



Modern quantum computing in practice: Noisy 
Intermediate Scale Quantum (NISQ) hardware

METHOD Superconducting Ion traps Photonic Topological

Company 
support

Google, IBM, 
IQM, Rigetti

IonQ, 
Quantinuum

Xanadu Microsoft

METHOD Silicon Diamond Annealing Classical simulators

Company 
support

Intel Quantum
Brilliance

D-Wave IBM, Amazon,
NVIDIA, Fujitsu



Modern quantum computing in practice:
Software libraries and platforms for quantum computing 

IBM Quantum

Xanadu Cloud

Q#

Microsoft Azure Quantum



Introduction materials

• A practical introduction to quantum computing: from qubits to quantum 
machine learning and beyond by Elias Fernandez-Combarro Alvarez
(Universidad de Oviedo (ES))

• Quantum Computing by Prof. Dr. Sven Groppe
• Nielsen, M. A., Chuang, I. L. (2000). Quantum Computation and Quantum 

Information. India: Cambridge University Press.
• Quantum Algorithm Zoo: https://quantumalgorithmzoo.org/

Learn to code quantum algorithms:
• Xanadu’s Quantum Codebook. https://codebook.xanadu.ai/
• Qiskit Tutorials. https://qiskit.org/documentation/tutorials.html
• IQM Academy. https://www.iqmacademy.com/

https://codebook.xanadu.ai/
https://qiskit.org/documentation/tutorials.html
https://www.iqmacademy.com/


Quantum Machine Learning



Overview

1. Motivation

2. (Classical) Machine learning

3. Optimization

4. Hybrid algorithms

5. Variational quantum circuits
▶ Structure
▶ Encoding
▶ Decoding



Machine learning
Function approximation

Problem

x : Input data

y : Desired output

g : An unknown function mapping y = g(x)

Goal
A model f which approximates g

Solution
Use parameterized function f (x , θ) to approximate g(x)
Find θo for which f (x , θo) is best approximation of g(x)



Machine learning
Methods

Supervised learning

Learning from data:

▶ Input: x

▶ Desired Output: y

▶ Error function: E (f (x , θ), y)

Goal: argmin
θ

E (f (x , θ), y)

Training data
x0 y0
x1 y1
x2 y2
x3 y3

↓

Model f (x , θ)

↓

xnew f (xnew , θ)



Machine learning
Methods

Reinforcement Learning

Agent with environment:

▶ Initial state x0
▶ Policy f (xn)

▶ Reward R(xn, f (xn, θ))

▶ Next state
xn+1 = P(xn, f (xn))

Goal: argmax
θ

∑inf
n=0 P(f (xn, θ)) Agent

Enviroment

Action StateReward



Optimizer
Gradient descent

Use gradient of loss function to determine parameter change

▶ Loss function has to be differentiable

▶ Problem of barren plateau



Optimizer
Evolutionary algorithm

Inspired by natural evolution

▶ Parameter vectors are members of a population

▶ New members are created by mutation and crossover

▶ Best members are selected by a fitness function

▶ Any fitness function is possible

▶ Many variants



Hybrid Algorithm
Quantum machine learning

Problem
Limited number of qubits and circuit depth for NISQ and
simulators

Solution
Use QC as subroutine in a classical algorithm

▶ Utilization of quantum computers, without a full quantum
algorithms

▶ Circuits are smaller and shorter better suited for NISQ era

▶ Measurement required ⇒ Alters quantum state ⇒ No
continues interaction ⇒ QC as function

▶ Quantum model in machine learning



Hybrid Algorithm

QC

Quantum Circuit

Encoding

Decoding

Quantum state

Quantum state

Classical Algorithm

Classical data

Classical data

Parameters

Optimized



VQC
Variational quantum circuits

▶ Quantum circuit with parameters
▶ 3 Components:

▶ Encoding
▶ Processing
▶ Measurement

▶ Proven universal approximator

▶ Possible machine learning model

|0⟩

Encoding
Ue(x)

Processing
U(θ)

|0⟩

|0⟩

|0⟩



VQC
Processing Layer

Turns quantum state representing the input into quantum state
representing the output

Required:

▶ Parameterized operation e.g. Rotation gates

▶ Entanglement operation e.g. controlled Pauli gates

Common:

▶ Alternating entanglement and rotation layers

▶ Repetition of the same layer

Optional:

▶ Re-uploading



VQC
Processing Layer

|0⟩

Encoding
Ue(x)

Processing
U(θ)

|0⟩

|0⟩

|0⟩

U(θ0..11) U(θ12..23) U(θ24..35)

Rx(θ0) Ry(θ1) Rz(θ2)

X Rx(θ3) Ry(θ4) Rz(θ5)

X Rx(θ6) Ry(θ7) Rz(θ8)

X Rx(θ9) Ry(θ10) Rz(θ11)

Entanglement Rotation



Processing Layer
Entanglement

Entanglement effects depth of layer as rotation part is constant
length. Entanglement layout:

▶ Linear

▶ Circle

▶ Full

▶ Tree

▶ Pairwise

▶ Shifted-circular-alternating (SCA)



Processing Layer
Structures www.advancedsciencenews.com www.advquantumtech.com

Figure 2. A set of circuit templates considered in the study, each labeled with a circuit ID. The dashed box indicates a single circuit layer, denoted by L in
the text, that can be repeated. Gates RX, RY, and RZ are parameterized. Several circuit templates are from or inspired by past studies. Circuit diagrams
were generated using qpic.[43]

Adv. Quantum Technol. 2019, 2, 1900070 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900070 (7 of 15)
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Figure: Expressibility and Entangling Capability of Parameterized
Quantum Circuits for Hybrid Quantum-Classical Algorithms
by Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik



Processing layer
Reuploading

Reapply encoding layer

▶ Possible because encoding is unitary operation and not setting
values

▶ Increases effect of input

▶ Allows universality

U(θ0..11) Ue(x) U(θ12..23) Ue(x) U(θ24..35)



Encoding
Making our data quantum

Goal:
We require a quantum state |φ⟩ representing our classical data x

Solution:
Use a unitary Ue operator depending on x

|φ⟩ = Ue(x) |0⟩

Choice of Ue affects

▶ Possible data values

▶ Number of qubits

▶ Depth of encoding circuit



Encoding Methods
Basis encoding

Turn a classical bit into a qubit

Ue(0) |0⟩ = |0⟩ ,Ue(1) |0⟩ = |1⟩

▶ Only allows binary data

▶ One qubit per classical bit

▶ Depth: 1 gate

Encoding 0110 using X gate:

|0⟩ |0⟩

|0⟩ X |1⟩

|0⟩ X |1⟩

|0⟩ |0⟩



Encoding Methods
Angle encoding

Use rotation gates to encode one value into one bit

Ue(xi ) |0⟩ = cos(xi/2) |0⟩+ sin(xi/2) |1⟩

▶ Allows encoding of real value

▶ One qubit per classical value

▶ Depth: 1 gate

▶ Values in interval [0, 4π) for injective encoding

Encoding of 4 values using Rx gates:

|0⟩ Rx(x0)

|0⟩ Rx(x1)

|0⟩ Rx(x2)

|0⟩ Rx(x3)



Encoding Methods
Amplitude encoding

Encode values into amplitudes of quantum state

Ue(x) |0⟩ =
1

n

n−1∑
i=0

xi

▶ Allows encoding of real value with sum of 1

▶ log2(n) qubits for n values

▶ Depth: O(n)

▶ Requires a complex circuit to create

▶ Values encoded in total state not a single qubit



Encoding Methods
Comparison

▶ Amplitude encoding densest, but highest depth

▶ Angle and amplitude encoding require scaling of data

▶ Angle encoding often a good compromise

▶ Hybrid methods

Method Data Qubits Depth

Basis encoding String of n bits O(n) O(1)
Angle encoding n real values O(n) O(1)

Amplitude encoding n real values O(log(n)) O(n)



Output decoding
Receiving a classical result

Option 1 Use measurement as binary string
▶ Returns one basis state of the superposition
▶ Result is string of n bit
▶ Probabilistic

Option 2 Use probabilities
▶ 2n continues values in interval [0, 1] with sum of 1
▶ Probability easily acquired on simulator
▶ Require repeat execution to approximate on real quantum

computers



Optimizer

Parameters of a VQC are adjusted by a classical optimizer

▶ Gradient based (SGD, Adam)

▶ Evolutionary algorithms

Parameter shift rule
Calculation of gradients

▶ Run two copies with one parameter slightly shifted

▶ Requires 2n runs for n parameters
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Ready to Leap (by Co-Design)?
Join Order Optimisation on�antum Hardware

MANUEL SCHÖNBERGER, Technical University of Applied Sciences Regensburg, Germany
STEFANIE SCHERZINGER, University of Passau, Germany
WOLFGANG MAUERER, Technical University of Applied Sciences Regensburg and Siemens AG,
Corporate Research, Germany

The prospect of achieving computational speedups by exploiting quantum phenomena makes the use of
quantum processing units (QPUs) attractive for many algorithmic database problems. Query optimisation,
which concerns problems that typically need to explore large search spaces, seems like an ideal match for
quantum algorithms. We present the �rst quantum implementation of join ordering, one of the most in-
vestigated and fundamental query optimisation problems, based on a reformulation to quadratic binary
unconstrained optimisation problems. We empirically characterise our method on two state-of-the-art ap-
proaches (gate-based quantum computing and quantum annealing), and identify speed-ups compared to the
best know classical join ordering approaches for input sizes conforming to current quantum annealers. Yet,
we also con�rm that limits of early-stage technology are quickly reached.

Current QPUs are classi�ed as noisy, intermediate scale quantum computers (NISQ), and are restricted by a
variety of limitations that reduce their capabilities as compared to ideal future QPUs, which prevents us from
scaling up problem dimensions and reaching practical utility. To overcome these challenges, our formulation
accounts for speci�c QPU properties and limitations, and allows us to trade between achievable solution
quality and problem size.

In contrast to all prior work on quantum computing for query optimisation and database-related challenges,
we go beyond currently available QPUs, and explicitly target the scalability limitations: Using insights gained
from numerical simulations and our experimental analysis, we identify key criteria for co-designing QPUs
to improve their usefulness for join ordering, and show how even relatively minor physical architectural
improvements can result in substantial enhancements. Finally, we outline a path towards practical utility of
custom-designed QPUs.

CCS Concepts: • Hardware! Quantum computation; • Information systems! Join algorithms.

Additional Key Words and Phrases: quantum computing, query optimisation, join ordering

ACM Reference Format:
Manuel Schönberger, Stefanie Scherzinger, and Wolfgang Mauerer. 2023. Ready to Leap (by Co-Design)? Join
Order Optimisation on Quantum Hardware. Proc. ACM Manag. Data 1, 1, Article 92 (May 2023), 27 pages.
https://doi.org/10.1145/3588946

1 INTRODUCTION
In recent years, quantum computing has attracted substantial attention in many �elds of research,
driven by the desire to bene�t from quantum advantage in complex computations. While quantum
computing has been studied for decades, the increase in interest aligns with the accelerating

Authors’ addresses: Manuel Schönberger, Technical University of Applied Sciences Regensburg, Regensburg, Germany,
manuel.schoenberger@othr.de; Stefanie Scherzinger, University of Passau, Passau, Germany, stefanie.scherzinger@uni-
passau.de; Wolfgang Mauerer, Technical University of Applied Sciences Regensburg and and Siemens AG, Corporate
Research, Regensburg/Munich, Germany, wolfgang.mauerer@othr.de.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike Interna-
tional 4.0 License.

© 2023 Copyright held by the owner/author(s).
2836-6573/2023/5-ART92
https://doi.org/10.1145/3588946

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

SQL2Circuits: Estimating Metrics for SQL
Queries with A Quantum Natural Language

Processing Method

Valter Uotila

University of Helsinki

Abstract

Quantum computing has developed significantly in recent years.
Developing algorithms to estimate various metrics for SQL queries
has been an important research question in database research since
the estimations a↵ect query optimization and database performance.
This work represents a quantum natural language processing (QNLP)
-inspired approach for constructing a quantummachine learning model
which can classify SQL queries with respect to their execution times
and cardinalities. From the quantum machine learning perspective,
we compare our model and results to the previous research in QNLP
and conclude that our model reaches similar accuracy as the QNLP
model in the classification tasks. This indicates that the QNLP model
is a promising method even when applied to problems that are not
in QNLP. We study the developed quantum machine learning model
by calculating its expressibility and entangling capability histograms.
The results show that the model has favorable properties to be express-
ible but also not too complex to be executed on quantum hardware.

1 Introduction

Predicting and estimating metrics for SQL queries has been a well-researched
and important problem in the database area. These estimations can be used
to optimize database performance and query processing. Admission con-
trol, query scheduling, progress monitoring, and system sizing are examples
of applications for execution time estimations. Cardinality estimations are
utilized, for example, in join order selection. Since strong correlations in a
database and complex queries make estimations hard to make [27], we study
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Synergy between Quantum Computers and Databases
Valter Uotila

supervised by Prof. Jiaheng Lu and Prof. Jukka K. Nurminen
University of Helsinki, Finland

Abstract
Academia, industry, and societies are showing increasing interest in the possibilities of quantum computing. The research
in the intersection of quantum computing and databases is still in its initial steps. This work represents several crucial
data management and query processing problems that will benefit from quantum computing. We outline how quantum
computing will tackle these challenges and what kind of outcomes and speed-ups we expect. We discuss the position of
quantum computing in data management and raise awareness of possible security threats in encryption. We aim to be realistic
and point out technical difficulties that currently restrict implementations.

1. Introduction
There are multiple different computing paradigms be-
sides conventional CPU-based computing. Nowadays,
the most exciting computing paradigm is quantum com-
puting. It is based on quantum mechanics [1] although
the modern quantum computing software [2, 3] can be
used with almost no knowledge of quantum physics.

The quantum computers differ in their hardware. The
most common hardware implementations are super-
conducting (IBM, Google, Rigetti), photonic (Xanadu),
trapped ion (IonQ, Honeywell), adiabatic (D-wave), and
silicon spin qubits (Intel, HRL). Amazon Braket, IBM
Quantum, Xanadu, and D-wave Leap offer access to quan-
tum computers and simulators in the cloud. The wide
variety of hardware types shows that none of the types
has yet become standard, and the competition between
the quantum hardware companies is still going on. The
future will show which quantum computing hardware
type will become dominant.
Quantum computers will not take over classical com-

puting. Instead, they will be computing units, like GPU
processors or supercomputers, along with classical com-
puters and databases. We can send them specific and
computationally complex problems. Thus the hybrid
approach will be the most realistic option for practical
quantum computing.

1.1. Related work
There is relatively little research that applies quantum
computing to databases and data management. Recent
database research has applied quantum computing in
transaction scheduling [4], and multiple query optimiza-

PhD Workshop of the 48th International Conference on Very Large
Databases (VLDB 2022)
Envelope-Open valter.uotila@helsinki (V. Uotila)

© 2022 Proceedings of the VLDB 2022 PhDWorkshop, September 5, 2022. Sydney,
Australia. Copyright (C) 2022 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

tion [5]. The applicability of quantum computing on
database query optimization is shortly outlined in [6].

Most of the discussion considers security issues [7, 8]
which are also the most urgent questions. The National
Institute of Standards and Technology (NIST) has started
the post-quantum cryptography standardization process
[9] because quantum computers will break RSA public-
key cryptosystem in the future.

The future collapse of RSA and other classical encryp-
tion methods should also concern the database commu-
nity. Databases and cloud infrastructures will need to
implement quantum-safe encryption methods. Never-
theless, that does not mean that future security systems
must be built on quantum computers. NIST evaluates
encryption methods based on mathematical construc-
tions considered too hard to be solved even on quantum
computers.

2. Universal quantum circuit
model and quantum annealing

We can roughly divide the quantum computing field into
two parts depending on the hardware. These are NISQ
(Noisy Intermediate-Scale Quantum) era hardware and
quantum annealers. Algorithms for NISQ devices are
implemented with the universal quantum circuit model.
The classical introduction to quantum circuit model-

based quantum computing is [1]. Classical computing is
based on bits, 0 and 1, whereas quantum computing is
based on qubits

𝜑 = 𝛼|0⟩ + 𝛽|1⟩,

where 𝛼, 𝛽 ∈ C are complex numbers whose norms sat-
isfy |𝛼 |2 + |𝛽|2 = 1. The numbers 𝛼 and 𝛽 are called
probability amplitudes. The requirement |𝛼 |2 + |𝛽|2 = 1
can be interpreted probabilistic way: the outcome |0⟩ is
determined by the amplitude 𝛼 so that the probability of
measuring |0⟩ is |𝛼 |2. The probability of obtaining either
|0⟩ or |1⟩ must be 1.

Multiple Query Optimization on the D-Wave 2X Adiabatic

Quantum Computer

Immanuel Trummer and Christoph Koch
{firstname}.{lastname}@epfl.ch

École Polytechnique Fédérale de Lausanne

ABSTRACT
The D-Wave adiabatic quantum annealer solves hard combi-
natorial optimization problems leveraging quantum physics.
The newest version features over 1000 qubits and was re-
leased in August 2015. We were given access to such a ma-
chine, currently hosted at NASA Ames Research Center in
California, to explore the potential for hard optimization
problems that arise in the context of databases.

In this paper, we tackle the problem of multiple query
optimization (MQO). We show how an MQO problem in-
stance can be transformed into a mathematical formula that
complies with the restrictive input format accepted by the
quantum annealer. This formula is translated into weights
on and between qubits such that the configuration mini-
mizing the input formula can be found via a process called
adiabatic quantum annealing. We analyze the asymptotic
growth rate of the number of required qubits in the MQO
problem dimensions as the number of qubits is currently
the main factor restricting applicability. We experimentally
compare the performance of the quantum annealer against
other MQO algorithms executed on a traditional computer.
While the problem sizes that can be treated are currently
limited, we already find a class of problem instances where
the quantum annealer is three orders of magnitude faster
than other approaches.

1. INTRODUCTION
The database area has motivated a multitude of hard op-

timization problems that probably cannot be solved in poly-
nomial time. Those optimization problems become harder
as data processing systems become more complex. This
makes it interesting to explore also unconventional opti-
mization approaches. In this paper, we explore the poten-
tial of quantum computing for a classical database-related
optimization problem, the problem of multiple query opti-
mization (MQO) [37]. We were granted a limited amount
of computation time on a D-Wave 2X adiabatic quantum
annealer, currently hosted at NASA Ames Research Center

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 9
Copyright 2016 VLDB Endowment 2150-8097/16/05.

in California. This device is claimed to exploit the laws of
quantum physics [6] in the hope to solve NP-hard optimiza-
tion problems faster than traditional approaches. The ma-
chine supports a very restrictive class of optimization prob-
lems while it is for instance not capable of running Shor’s
algorithm [40] for factoring large numbers1. We will show
how instances of the multiple query optimization problem
can be brought into a representation that is suitable as in-
put to the quantum annealer. We also report results of an
experimental evaluation that compares the time it takes to
solve MQO problems on the quantum annealer to the time
taken by algorithms that run on a traditional computer. We
believe that this is the first paper featuring an experimen-
tal evaluation on a quantum computer ever published in the
database community.

The quantum annealer, produced by the Canadian com-
pany D-Wave2, uses qubits instead of bits. While bits have
a deterministic value (either 0 or 1) at each point in time
during a computation, a qubit may be put into a superposi-
tion of states (0 and 1) that would be considered mutually
exclusive according to the laws of classical physics. Work-
ing with qubits instead of bits could in principle allow faster
optimization than on a classical computer [1]. Thinking of
qubit superposition as a specific form of parallelization is
certainly simplifying but still gives a first intuition for why
this is possible. We provide more explanations on quantum
computing and on the quantum annealer in Section 2.

The quantum annealer that we were experimenting with
has a net worth of around 15 million US dollars. This price
might make main stream adoption seem illusory in the near-
term future. However, the company D-Wave is currently
considering flexible provisioning models allowing users to
buy computation time instead of the hardware3. In this
scenario, users would use the machine remotely, in a similar
way as we did in our experiments. As near-optimal solutions
to hard problems can usually be found within milliseconds
(see Section 7), this provisioning model might allow opti-
mization at an a↵ordable rate per instance. Those are some
of the factors that encourage us to explore the potential of
quantum computing already at this point in time.

The D-Wave adiabatic quantum annealer has been the
subject of controversial discussions in the scientific com-
munity. Those discussions have focused on two questions:

1http://www.dwavesys.com/blog/2014/11/
response-worlds-first-quantum-computer-buyers-guide
2http://www.dwavesys.com/
3http://spectrum.ieee.org/podcast/computing/hardware/
dwave-aims-to-bring-quantum-computing-to-the-cloud
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Quantum Annealing Method for Dynamic Virtual
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Abstract—Cloud infrastructures and data centers consume a
remarkable amount of natural resources. Previous research has
optimized virtual machine allocation to physical machines with
respect to power consumption and the number of migrations.
Still, power is just a single factor of the total carbon footprint that
the data centers produce. In this work, we extend the previous
approaches and represent a framework where allocations are
based on a sustainability metric. We formalize the task and
virtual machine allocation problem as a quadratic unconstrained
binary optimization problem that can be solved on D-wave’s
quantum annealer.

I. INTRODUCTION

Cloud infrastructures [1] have become increasingly popular.
Modern cloud computing environments offer a huge variety of
services which are usually divided into at least three classes:
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). Depending on the
user’s requirements, the services are developed so that the
user needs minimum effort to start using them. In reality, the
services consist of complex and interconnected computational
tasks. The services are often modeled as computational tasks
assigned to virtual machines allocated to physical machines
in cloud service providers’ data centers. Virtualization and
servers are the responsibility of the cloud service provider.

Sustainability is becoming an increasingly important value
in the actions and decisions we make in our lives. We are
aware of the environmental impact on the planet that we
will leave for future generations. Moving the workloads and
operations to cloud infrastructures has led to a situation where
cloud environments consume a huge amount of energy, water
[2], and other natural resources [3], [4]. Thus we want to
emphasize that sustainability is a very important topic also in
cloud infrastructures and computing. Besides, we argue that
sustainability can be measured and task and virtual machine
allocation can be optimized with respect to sustainability
metrics. In this work, the sustainability metric is especially
inspired by Google’s Carbon Footprint tool [5] although also
other cloud service providers calculate similar metrics.

The key problem of this work is to find an optimal task
and virtual machine allocation to physical machines. The
optimality depends on the user’s requirements. Conventionally
the users prefer to execute their workloads as fast as possible
and with minimum cost. Hopefully, an increasing number
of users also aim to minimize the carbon footprint of the

computations. Sustainability as an important value together
with the current technical possibilities of estimating carbon
footprint motivates us to integrate a sustainability metric into
the optimization process of the task and virtual machine
allocation.

This work represents the following contributions:
• Because it is technically possible to estimate the sustain-

ability of cloud computing, we develop a framework that,
besides conventional time and computational resource
metrics, optimizes task and virtual machine allocation
with respect to a sustainability metric.

• We formulate the task and virtual machine allocation
problems as quadratic binary optimization problems. In-
stead of relying on classical computing, we solve the opti-
mization problems on D-wave’s quantum annealers which
have become feasible quantum computing frameworks for
solving binary optimization problems.

• We represent a demonstration of how quantum computing
and our optimization framework can be integrated into
a real-life cloud computing optimization workflow. The
demonstration of the workflow is based on the CloudSim
simulator’s PlanetLab workloads.

A. Related research
To demonstrate the framework we utilize CloudSim cloud

simulator [6] which is a framework for modeling and sim-
ulating cloud computing infrastructures and services. The
simulator implements multiple state-of-the-art optimization
algorithms [7], and it provides PlanetLab workloads that can
be used for simulations and benchmarking. CloudSim is able
to simulate various cloud infrastructure properties such as
power consumption [8] and parallel execution [9].

Virtual machine consolidation and task scheduling are com-
prehensively researched topics. Surveys to the topics are [10]–
[12]. Certain aspects of sustainability in cloud computing have
been researched previously in [13].

Quantum annealing is a promising and relatively scalable
quantum computing paradigm with many industry-level ap-
plications [14]–[21]. Considering applications on data engi-
neering, quantum annealing has been applied on scheduling
transactions [22], [23], multiple query optimization [24] and
join order optimization [25]. In this context, scalability means
that the quantum annealer is able to accept problems with a
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ABSTRACT
The join order is one of the most important factors that impact
the speed of query processing. Its optimization is known to be
NP-hard, such that it is worth investigating the bene�ts of utiliz-
ing quantum computers for optimizing join orders. Hence in this
paper, we propose to model the join order problem as quadratic
unconstrained binary optimization (QUBO) problem to be solved
with various quantum approaches like QAOA, VQE, simulated an-
nealing and quantum annealing. In this paper, we will show the
enhanced performance using our QUBO formulation to �nd valid
and optimal shots for real-world queries joining three, four and
�ve relations on D-Wave quantum annealer. The highlight of this
study will demonstrate that we were able to generate valid and
optimal join orders for �ve relations using the D-Wave quantum
annealer, with values of about 12% and 0.27% respectively and we
were able to �nd the optimal bushy join trees. Experiments for the
gate-based simulations were able to produce optimized join order
for three and four relations including bushy trees using QAOA and
VQE algorithms.
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1 INTRODUCTION
Choosing the optimal query plan during query optimization mini-
mizes the cost of query processing in Database Management Sys-
tems (DBMS). Join order optimization (JOO) is one of the most
crucial tasks of query optimization. However, constructing optimal
bushy join tress is known to be NP-hard [35], which might bene�t
from accelerating the optimization problem using quantum com-
puters [4]. In this paper, we propose to formulate the JOO problem
as quadratic unconstrained binary optimization (QUBO) problem,
which can be solved on quantum annealers [23] and gate-based
quantum computers using approaches like the variational quantum
eigensolver (VQE) [9] and the quantum approximation optimiza-
tion algorithm (QAOA) [15]. In contrast to a previous approach [37]
to �nd the best solution among the left-deep join trees by solving
QUBO problems, our approach supports the more general bushy
join trees and hence �nds the optimal solution among all possible
join trees1.

Our main contributions are:

(1) Optimizing the join order by solving a QUBO problem sup-
porting also bushy join trees,

(2) a comprehensive evaluation using real-world queries of ap-
plying various approaches like simulated annealing, quan-
tum annealing, VQE and QAOA on quantum hardware and
simulators, and

(3) an experimental comparison of the number of valid and op-
timal join trees up to 7 relations for real-world queries using
simulated annealing and the various mentioned quantum
approaches.

In Section 2, we introduce the fundamentals of quantum me-
chanics and quantum computing, with a focus on the methods
for solving QUBO problems. We de�ne the problem of join order
optimization and describe how to model it as QUBO problem in
Section 3. We describe the experimental evaluation of approaches
like simulated annealing, quantum annealing, VQE and QAOA on
quantum hardware and simulators in Section 4. Finally, we conclude
by summarizing the main ideas of the paper in Section 5.

1with reference to cost estimations like cardinality or I/O cost estimations
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ABSTRACT
The optimization of queries speeds up query processing in databases.
One of the most time-consuming tasks in query processing is the
join operation, where the order of the joins plays a crucial role in
determining the number of tuples to be processed for intermediate
results, and hence, the overall processing costs. In this paper, we
use a variational quantum circuit (VQC) to create a hybrid classical-
quantummachine learning algorithm to predict e�cient join orders
by learning from past join orders. We develop an encoding of the
join order problem using a low number of qubits. We show that
VQCs with �ltering of cross joins outperform the classical dynamic
programming optimizer of PostgreSQL with a 2.7% faster execution
time.

CCS CONCEPTS
• Hardware ! Quantum computation; • Computing method-
ologies! Machine learning; • Information systems! Query
optimization.
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1 INTRODUCTION
Query optimization is a crucial component of every relational data-
base management system since the prototype System R [26]. The
join operation is generally the most demanding operation for a
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query, so it is very important to determine the optimal join or-
ders of the database tables when optimizing queries. The original
method proposed to solve the join order optimization problem com-
bines dynamic programming with some heuristics [31]. However,
the size of the problem required researchers to seek more e�cient
methods to solve it. Various machine learning approaches were
proposed to accomplish that task, some of which are cited below. In
this paper, to further extend these studies, we propose a quantum
machine learning approach for join order optimization.

One use of machine learning is to estimate the runtime of a query
or its cardinality [2, 10, 16] using Support Vector Machines [12],
PQR Trees [11] or neural networks [41]. The query optimizer can
use this to choose the best query execution plan. Machine learning
for cardinality estimation was implemented in PostgreSQL [37].
Another approach is to predict the optimal join order directly using
reinforcement learning [4, 13, 20, 35, 38], which has the bene�t of
a short runtime of the query optimizer, while achieving good join
orders.

Quantum approaches for query optimization exist, which model
the join order problem as a quadratic unconstrained binary opti-
mization (QUBO) problem [8, 22, 29, 34]. There are also many works
on quantum machine learning [3, 15, 27]. Quantum Support Vector
Machines can provide an exponential speedup over classical Sup-
port Vector Machines [27]. Quantummachine learning methods can
potentially learn on fewer data points than classical methods alone
[3]. The authors of [15] identify the properties of data sets that
have a potential quantum advantage in learning tasks. A common
approach for quantum machine learning is variational quantum
circuits (VQC) [5, 6, 33] which were developed for problems like
the Cart-Pole problem [5] and Blackjack [18]. VQC can achieve the
same results as neural networks with fewer parameters [7].

In this paper, we develop a quantum machine learning approach
using VQC for join order optimization. We then experimentally
compare it with classical machine learning for SQL queries using
PostgreSQL. The experimental results show the superiority of our
approach using quantum machine learning for join order optimiza-
tion.

Our main contributions are the following:

• A method for encoding a join order problem into a quantum
state and decoding a join order from a quantum state.

• An improvement of this approach by eliminating cross joins
with di�erent methods.
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ABSTRACT
Quantum computers are known to be e�cient for solving com-
binatorial problems like �nding optimal schedules for processing
transactions in parallel without blocking. We show how Grover’s
search algorithm for quantum computers can be applied for �nding
an optimal transaction schedule via generating code from the prob-
lem instance. We compare our approach with existing approaches
for traditional computers and quantum annealers in terms of prepro-
cessing, runtime, space and code length complexity. Furthermore,
we show by experiments the expected number of optimal solu-
tions of this problem as well as suboptimal ones. With the help of
an estimator of the number of solutions, we further speed up our
optimizer for optimal and suboptimal transaction schedules.
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1 INTRODUCTION
For the universal quantum computer, Grover [14] developed an
algorithm for �nding (with a high probability) the input to a black
box function with a particular result to be searched for. In compari-
son to traditional computing, Grover’s search algorithm achieves
a quadratic speedup, which is to be optimal among all possible
quantum algorithms [3, 14].

Grover’s search often serves as basis for algorithms solving com-
binatorial optimization problems [2] by
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• encoding candidates of the solution as an integer number, which
is the input of the black box function of Grover’s search, and

• using a function to check if a candidate solution has costs below
a given threshold as black box function for Grover’s search.
We analyze this pattern of solving combinatorial optimization

problems on quantum computers with the optimizing transaction
schedules problem [5, 6]. The optimizing transaction schedules
problem is a variant of the job shop scheduling problems (JSSP),
where jobs are assigned to machines (i.e., cores of a multi-core CPU
in the domain of parallel computing jobs) with the optimization
goal to minimize the overall processing time. For the optimizing
transaction schedules problem, the jobs are transactions, which
might block each other because of accessing at least one same data
object, and con�icting transactions are scheduled to not run in
parallel avoiding blocking of these transactions.

We propose to optimize the transaction schedule of batches by
utilizing quantum computers as hardware accelerators [11–13]. By
using pipelining we can optimize the transaction schedule already
of the next batch during the processing of the current batch of
transactions (see Figure 1). In this way, the quantum computer is
run in parallel to the transaction processing on traditional CPUs in
order to minimize waiting times and to maximize throughput.

Grover’s search needs to call its black box function with candi-
date solutions in superposition. Only a limited set of operations can
be applied to qubits in superposition, such that not all algorithms of
traditional computing have corresponding counterparts in quantum
computing. As a consequence for many combinatorial optimization
problems and also for the optimizing transaction schedules problem,
the code (i.e., the combination and orchestration of the quantum
logic gates) of the black box function needs to be generated for the
speci�c instance of the considered problem. We will show how to
generate the code of the black box function for an instance of the
optimizing transaction schedules problem.

Whenever the black box function doesn’t need constant time, but
its runtime depends on the instance of the considered problem, the
overall runtime complexity of solving the considered combinatorial
optimization problem is higher than the runtime complexity of
the pure Grover’s search. Hence, we will analyze the runtime com-
plexity of solving the optimizing transaction schedules problem.
Additionally, we analyze the preprocessing time (needed for gener-
ating the black box function), space requirements (i.e., number of
qubits) and code length, and compare these results with the naive
implementation on traditional computers (enumerating and testing
all candidate solutions) and a recent solution [5, 6] on quantum
annealers (specialized quantum computers for solving quadratic
unconstrained binary optimization (QUBO) problems).
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Demonstration

Quantum Machine Learning for Join Ordering
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Join Ordering
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1. Create the Variational Quantum Circuit (VQC)
2. Load the Data
3. Create the Quantum Neural Network
4. Train the Model
5. Evaluate the Model
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Demo Overview
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Python Frameworks



Live Demo

https://github.com/TobiasWinker/QC4DB_VQC_Tutorial
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(Quantum) Machine Learning in Databases

Problem DB Tasks

Knob Tuning
Index/View SelectionOffline
Partition/-key Selection
Query Rewrite

NP Optimisation

Online Plan Enumeration
Cost/Cardinality Estimation
Index/View Benefit EstimationRegression
Lateny Estimation
Trend ForecastPrediction Workload Prediction & Scheduling

Table © G. Li, X. Zhou, L. Cao: Machine Learning for Databases, Slides, VLDB (2021)
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From the Database Perspective
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Classical Neural Network Variational Quantum Circuit
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Quantum supremacy using a programmable 
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1, 
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,  
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1, 
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13, 
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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Evidence for the utility of quantum 
computing before fault tolerance

Youngseok Kim1,6 ✉, Andrew Eddins2,6 ✉, Sajant Anand3, Ken Xuan Wei1, Ewout van den Berg1, 
Sami Rosenblatt1, Hasan Nayfeh1, Yantao Wu3,4, Michael Zaletel3,5, Kristan Temme1 & 
Abhinav Kandala1 ✉

Quantum computing promises to o!er substantial speed-ups over its classical 
counterpart for certain problems. However, the greatest impediment to realizing its 
full potential is noise that is inherent to these systems. The widely accepted solution 
to this challenge is the implementation of fault-tolerant quantum circuits, which is 
out of reach for current processors. Here we report experiments on a noisy 127-qubit 
processor and demonstrate the measurement of accurate expectation values for 
circuit volumes at a scale beyond brute-force classical computation. We argue that this 
represents evidence for the utility of quantum computing in a pre-fault-tolerant era. 
These experimental results are enabled by advances in the coherence and calibration 
of a superconducting processor at this scale and the ability to characterize1 and 
controllably manipulate noise across such a large device. We establish the accuracy  
of the measured expectation values by comparing them with the output of exactly 
veri"able circuits. In the regime of strong entanglement, the quantum computer 
provides correct results for which leading classical approximations such as pure-state- 
based 1D (matrix product states, MPS) and 2D (isometric tensor network states, 
isoTNS) tensor network methods2,3 break down. These experiments demonstrate a 
foundational tool for the realization of near-term quantum applications4,5.
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It is almost universally accepted that advanced quantum algorithms 
such as factoring6 or phase estimation7 will require quantum error cor-
rection. However, it is acutely debated whether processors available at 
present can be made sufficiently reliable to run other, shorter-depth 
quantum circuits at a scale that could provide an advantage for prac-
tical problems. At this point, the conventional expectation is that the 
implementation of even simple quantum circuits with the potential 
to exceed classical capabilities will have to wait until more advanced, 
fault-tolerant processors arrive. Despite the tremendous progress 
of quantum hardware in recent years, simple fidelity bounds8 sup-
port this bleak forecast; one estimates that a quantum circuit 100 
qubits wide by 100 gate-layers deep executed with 0.1% gate error 
yields a state fidelity less than 5 × 10−4. Nonetheless, the question 
remains whether properties of the ideal state can be accessed even 
with such low fidelities. The error-mitigation9,10 approach to near-term 
quantum advantage on noisy devices exactly addresses this ques-
tion, that is, that one can produce accurate expectation values from 
several different runs of the noisy quantum circuit using classical  
post-processing.

Quantum advantage can be approached in two steps: first, by dem-
onstrating the ability of existing devices to perform accurate computa-
tions at a scale that lies beyond brute-force classical simulation, and 
second by finding problems with associated quantum circuits that 
derive an advantage from these devices. Here we focus on taking the 

first step and do not aim to implement quantum circuits for problems 
with proven speed-ups.

We use a superconducting quantum processor with 127 qubits to 
run quantum circuits with up to 60 layers of two-qubit gates, a total of 
2,880 CNOT gates. General quantum circuits of this size lie beyond what 
is feasible with brute-force classical methods. We thus first focus on 
specific test cases of the circuits permitting exact classical verification 
of the measured expectation values. We then turn to circuit regimes 
and observables in which classical simulation becomes challenging 
and compare with results from state-of-the-art approximate classical 
methods.

Our benchmark circuit is the Trotterized time evolution of a 2D 
transverse-field Ising model, sharing the topology of the qubit proces-
sor (Fig. 1a). The Ising model appears extensively across several areas in 
physics and has found creative extensions in recent simulations explor-
ing quantum many-body phenomena, such as time crystals11,12, quan-
tum scars13 and Majorana edge modes14. As a test of utility of quantum 
computation, however, the time evolution of the 2D transverse-field 
Ising model is most relevant in the limit of large entanglement growth 
in which scalable classical approximations struggle.

In particular, we consider time dynamics of the Hamiltonian,

∑ ∑H J Z Z h X= − + , (1)
i j

i j
i
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Many applications of quantum computing in the near term rely on variational quantum circuits
(VQCs). They have been showcased as a promising model for reaching a quantum advantage
in machine learning with current noisy intermediate scale quantum computers (NISQ). It is often
believed that the power of VQCs relies on their exponentially large feature space, and extensive works
have explored the expressiveness and trainability of VQCs in that regard. In our work, we propose
a classical sampling method that may closely approximate a VQC with Hamiltonian encoding,
given only the description of its architecture. It uses the seminal proposal of Random Fourier
Features (RFF) and the fact that VQCs can be seen as large Fourier series. We provide general
theoretical bounds for classically approximating models built from exponentially large quantum
feature space by sampling a few frequencies to build an equivalent low dimensional kernel, and we
show experimentally that this approximation is e�cient for several encoding strategies. Precisely, we
show that the number of required samples grows favorably with the size of the quantum spectrum.
This tool therefore questions the hope for quantum advantage from VQCs in many cases, but
conversely helps to narrow the conditions for their potential success. We expect VQCs with various
and complex encoding Hamiltonians, or with large input dimension, to become more robust to
classical approximations.

INTRODUCTION

Many applications of quantum computing in the near
term rely on variational quantum circuits (VQCs) [1, 2],
and in particular for solving machine learning (ML)
tasks. VQCs are trained using classical optimization of
their gates’ parameters, a method borrowed from clas-
sical neural networks. Many early works have shown
promising results, both empirically and in theory [3–5].
However, whether these variational methods can provide
a quantum advantage in the general case with a scaling
number of qubits has not been proven.

What would make VQCs advantageous compared to
classical algorithms for machine learning on classical
data? The most common and intuitive answer is the
formation of a large feature space, due to the projection
of data points in an exponentially large Hilbert space.
Understanding what is happening in this Hilbert space
[6], and most importantly, knowing how we can exploit its
size is an important question for this field. When it comes
to trainability, it has been shown that these exponential
spaces are in fact drawbacks [7]. Regarding expressivity,
it is crucial to understand what kind of functions VQCs
can learn better than a classical algorithm.

One of the biggest challenges we face while trying to
answer these questions is to find the fair comparison be-
tween VQCs and classical ML algorithms. Recent works
[6, 8, 9] have shown equivalence between VQCs and both
Fourier series and kernel methods. In fact, VQCs are ex-
tremely powerful Fourier series: the functions they can
learn are predetermined by a set of frequencies which can

become numerous with the dimension of the input, and
the number and complexity of the quantum gates used.

In this work, we adapt Random Fourier Features
(RFF) [10], a successful classical sampling algorithm
aimed at e�ciently approximating some large classical
kernel methods. We designed three di↵erent RFF strate-
gies to approximate VQCs. For each one, we analyze
its e�ciency in reproducing results obtained by a VQC.
To do so, we have studied in details the expressivity of
VQCs, understood where their power could come from,
and compared it each time with RFF.

Our method consists in analyzing the encoding gates
of the VQC to extract the final frequencies of its model
and sample from them. Notably, if the VQCs possesses
simple encoding gates such as Pauli gates, we show that
the large quantum feature space is not fully exploited,
making RFF even more e�cient. If the number of fre-
quencies in the VQC grows exponentially, the number of
samples required by RFF grows only linearly. Finally, we
have empirically compared VQCs and RFF on real and
artificial use cases. On these, RFF were able to match
the VQC’s answer, and sometimes outperform it. Some
hope resides for VQCs with non-diagonalizable encoding
Hamiltonians, preventing the use of usual RFF. However,
even in this case, we provide an alternative RFF strategy,
along with theoretical approximation bounds.

Our conclusion is that, despite the potentially expo-
nential number of frequencies in the functions that a
VQC can create, Random Fourier Features can be used
to approximate the same resulting function on a given
dataset, in many cases. This restrains the regime in
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OPERATING ON FUNDAMENTALLY different principles 
than conventional computers, quantum computers 
promise to solve a variety of important problems that 
seemed forever intractable on classical computers. 
Leveraging the quantum foundations of nature, the 
time to solve certain problems on quantum computers 
grows more slowly with the size of the problem than on 
classical computers—this is called quantum speedup. 
Going beyond quantum supremacy,2 which was the 
demonstration of a quantum computer outperforming 
a classical one for an artificial problem, an important 
question is finding meaningful applications (of 
academic or commercial interest) that can realistically 
be solved faster on a quantum computer than on 
a classical one. We call this a practical quantum 
advantage, or quantum practicality for short.

There is a maze of hard problems 
that have been suggested to profit 
from quantum acceleration: from 
cryptanalysis, chemistry and materi-
als science, to optimization, big data, 
machine learning, database search, 
drug design and protein folding, fluid 
dynamics and weather prediction. But 
which of these applications realisti-
cally offer a potential quantum advan-
tage in practice? For this, we cannot 
only rely on asymptotic speedups but 
must consider the constants involved. 
Being optimistic in our outlook for 
quantum computers, we identify clear 
guidelines for quantum practicality 
and use them to classify which of the 
many proposed applications for quan-
tum computing show promise and 
which ones would require significant 
algorithmic improvements to become 
practical and relevant.

To establish reliable guidelines, or 
lower bounds for the required speed-
up of a quantum computer, we err on 
the side of being optimistic for quan-
tum and overly pessimistic for clas-
sical computing. Despite our overly 
optimistic assumptions, our analysis 
shows a wide range of often-cited ap-
plications is unlikely to result in a 
practical quantum advantage without 
significant algorithmic improvements. 
We compare the performance of only 
a single classical chip fabricated like 
the one used in the NVIDIA A100 GPU 
that fits around 54 billion transistors15 
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What are the promising applications  
to realize quantum advantage?

BY TORSTEN HOEFLER, THOMAS HÄNER, AND MATTHIAS TROYER

 key insights

	˽ Most of today’s quantum algorithms may 
not achieve practical speedups. Material 
science and chemistry have a huge 
potential and we hope more practical 
algorithms will be invented based on our 
guidelines

	˽ Due to limitations of input and output 
bandwidth, quantum computers will be 
practical for “big compute” problems on 
small data, not big data problems.

	˽ Quadratic speedups delivered by 
algorithms such as Grover’s search 
are insufficient for practical quantum 
advantage without significant 
improvements across the entire software/
hardware stack.
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Open Research Questions
I What are potential advantages of QML?
I Can we achieve quantum advantage in the NISQ era?
I Can quantum hardware-software co-design help?
I How can we build on existing, classical approaches?
I Quantum computing + Large amounts of data = Bad idea?
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Optimizer
Gradient descent

Use gradient of loss function to determine parameter change

▶ Loss function has to be differentiable

▶ Problem of barren plateau

VQC
Processing Layer

|0⟩

Encoding
Ue(x)

Processing
U(θ)

|0⟩

|0⟩

|0⟩

U(θ0..11) U(θ12..23) U(θ24..35)

Rx(θ0) Ry(θ1) Rz(θ2)

X Rx(θ3) Ry(θ4) Rz(θ5)

X Rx(θ6) Ry(θ7) Rz(θ8)

X Rx(θ9) Ry(θ10) Rz(θ11)

Entanglement Rotation
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qc4jo

June 26, 2023

1 Quantum Machine Learning for Join Ordering
This notebook will demonstrate a simple example of using a variational quantum circuit (VQC) in
machine learning for join order optimization.

1.1 Imports

[1]: from math import pi
import csv
from collections import deque
import random
import numpy as np

# Qiskit Circuit imports
from qiskit.circuit import QuantumCircuit, QuantumRegister, Parameter,␣

↪ParameterVector, ParameterExpression

# Qiskit imports
import qiskit as qk
from qiskit.utils import QuantumInstance
from qiskit import Aer
from qiskit.visualization import plot_histogram

# Qiskit Machine Learning imports
from qiskit_machine_learning.neural_networks import CircuitQNN
from qiskit_machine_learning.connectors import TorchConnector

# PyTorch imports
import torch
from torch import Tensor
from torch.optim import Adam

# Imports for plotting
import matplotlib.pyplot as plt
%matplotlib inline
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1.2 Create the Variational Quantum Circuit (VQC)
1.2.1 Circuit Hyperparameters

[2]: num_qubits = 4 # Number of qubits
num_layers = 8 # Number of variational layers in the circuit

1.2.2 Encoding Layer (Quantum!)

[3]: # Create a quantum circuit
qc = qk.QuantumCircuit(num_qubits)

# Parameters for input
x = qk.circuit.ParameterVector('x', num_qubits)

# Add encoding layer
for i in range(num_qubits):

qc.rx(x[i], i)

[4]: # Draw the circuit
qc.draw("mpl")

[4]:

1.2.3 Variational Layers (Quantum!)

[5]: # Parameters for variational layers
thetas = [ qk.circuit.ParameterVector(f'th{l}_', 2*num_qubits) for l in␣

↪range(num_layers) ]
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# Add variational layers
for l in range(num_layers):

qc.barrier() # for nicer visualisation

# Variational part
for i in range(num_qubits):

qc.ry(thetas[l][2*i], i)
qc.rz(thetas[l][2*i+1], i)

# Entangling part
for i in range(num_qubits-1):

qc.cx(i, i+1)

[6]: # Draw the circuit
qc.draw("mpl")

[6]:

1.2.4 Example: Measure circuit (Quantum!)

[7]: # Generate dummy input
num_inputs = len(x)
dummy_inputs = np.zeros(num_inputs)
print("Inputs:", dummy_inputs)

# Extract the parameters to optimize
params = list(qc.parameters)[:-num_qubits]
num_params = len(params)

# Generate variational parameters randomly in [-pi,pi]
example_param_values = (2*pi*np.random.rand(num_params) - pi)
print("Thetas:", example_param_values)

Inputs: [0. 0. 0. 0.]
Thetas: [ 0.8047321 0.84461409 0.52073632 2.27864769 0.40968235 2.38381307

3



1.51294733 -0.59247587 -0.24629874 -0.45222476 -3.00878915 -2.53821096
-1.4269846 -2.69032619 -3.066019 -1.67401216 2.19921188 -1.37159388
0.35915278 2.79434358 0.86820776 -2.44810798 -0.31835762 0.73437947

-1.59116235 2.74549213 3.01434394 -2.44118782 -2.89071785 0.14483474
-2.40593158 -1.03328503 3.05864809 1.41733398 1.37110587 -2.95394907
-0.5847204 1.71285869 -1.69553621 1.41750492 -1.57686964 -1.30715746
2.8652324 1.2709511 1.86112803 2.22791797 0.59700137 -1.31149571

-2.72988115 0.29971856 2.95672039 0.84141833 1.25349395 -2.54771587
0.46743974 -2.88605872 -2.25172901 -1.06068193 -1.37973345 -2.73234196

-2.45691595 -1.12382803 2.02072863 0.25708527]

[8]: # Bind parameters
bound_qc = qc.assign_parameters({p: v for p, v in zip(x, dummy_inputs)})
bound_qc = bound_qc.assign_parameters({p: v for p, v in zip(params,␣

↪example_param_values)}) # variational parameters

# Tell Qiskit to measure all qubits
bound_qc.measure_all()

bound_qc.draw("mpl")
[8]:
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Run the quantum circuit
[9]: # Run the quantum circuit on a statevector simulator

backend = Aer.get_backend('aer_simulator_statevector')
shots = 1000
job = backend.run(bound_qc, shots=shots)

# Print result
result = job.result()
counts = result.get_counts()
print(counts)

{'1011': 5, '1001': 11, '0101': 61, '1110': 56, '1010': 126, '0000': 137,
'0010': 38, '0111': 60, '0011': 90, '1101': 186, '1000': 3, '0110': 76, '1111':
38, '0001': 70, '0100': 23, '1100': 20}

[10]: plot_histogram(counts)
[10]:
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[11]: # Calculate probabilities
probs = {v: count/shots for v, count in counts.items()}
print(probs)
plot_histogram(probs)

{'1011': 0.005, '1001': 0.011, '0101': 0.061, '1110': 0.056, '1010': 0.126,
'0000': 0.137, '0010': 0.038, '0111': 0.06, '0011': 0.09, '1101': 0.186, '1000':
0.003, '0110': 0.076, '1111': 0.038, '0001': 0.07, '0100': 0.023, '1100': 0.02}

[11]:

1.3 Load data (Classical!)

[12]: with open('data.csv', newline='') as csvfile:
data = list(csv.reader(csvfile, delimiter=',', quoting=csv.

↪QUOTE_NONNUMERIC))

One data_row contains:

[13]: data_row = data[0]
print(data_row)

[0.2617993877991494, 3.141592653589793, 2.0943951023931953, 1.3089969389957472,
0.0, 0.7964358157055925, 0.8313672111312764, 0.0, 0.0, 0.0, 0.804596018735363,
0.9512026302128396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

6



1.3.1 data_row[0:4]

Representations of the four tables that should be joined and angle of the encoding rotation
gates. These values were created by turning each tablename into an id and mapping them to the
interval [0, 𝜋].
In this case: [0.2617993877991494, 3.141592653589793, 2.0943951023931953,
1.3089969389957472]

1.3.2 data_row[4:20]

Rewards for the corresponding join orders calculated from the execution times The reward
is defined as 𝑡best JO

𝑡chosen JO
,

where 𝑡 is the execution time (0 for cross joins).

In this case: [0.0, 0.7964358157055925, 0.8313672111312764, 0.0, 0.0, 0.0,
0.804596018735363, 0.9512026302128396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]

1.4 Create a Quantum Neural Network (Quantum!)

[14]: # Select a quantum backend to run the simulation of the quantum circuit
qi = QuantumInstance(qk.Aer.get_backend('aer_simulator_statevector'))

# Create a Quantum Neural Network
qnn = CircuitQNN(qc, input_params=x, weight_params=params,

quantum_instance = qi)

1.4.1 Connect to PyTorch (Classical!)

[15]: # Initialize random weights in [-pi,pi]
seed = 42 # Seed for random initialization
np.random.seed(seed)
initial_weights = (2*pi*np.random.rand(num_params) - pi)

# Create PyTorch VQC Wrapper
quantum_nn = TorchConnector(qnn, initial_weights)

1.4.2 Define layer which normalises the prediction (Classical!)

[16]: class NormLayer(torch.nn.Module):
def forward(self, x):

result = x/x.max()
return result

# Create a sequential model from the qantum network and the classical norm layer
model = torch.nn.Sequential(quantum_nn, NormLayer())
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1.5 Train the model
1. The model can be trained by predicting rewards for a corresponding join order defined in a

look-up table.
2. A loss is computed over all predicted rewards and the actual rewards stored in the data.
3. The VQCs parameters get updated via backpropagation with respect to the computed loss.

1.5.1 Hyperparameters for Training

[17]: # Use the adam optimizer
optimizer = Adam(model.parameters(), lr=0.005)

# Buffers to store the last 10 rewards and losses
rewards = deque(maxlen=10)
losses = deque(maxlen=10)

num_steps = 40 # number of training steps

random.seed(seed) # set seed for data selection

1.5.2 Run the Training

[18]: # save loss and reward for plotting
loss_log, reward_log = [], []

for episode in range(num_steps):

# Choose a random data entry
entry = random.choice(data)

# Predict rewards from the features
prediction = model(Tensor(entry[0:4])) # Quantum!

# Choose join order with highest predicted reward
selected = prediction.argmax()

# Real reward this selection would give
current_reward = entry[4+selected]

# Calculate loss as sum of the squared errors
loss = 0
for i in range(0, len(prediction)):

loss += (prediction[i] - entry[4+i])**2

# Show quality of current episode
print("Episode: {}, loss: {:.3f}, Reward : {:.3f}".format(episode, loss.

↪item(), current_reward), end="\n")
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# Store avg loss and reward over the last 10 steps for plotting
rewards.append(current_reward)
losses.append(loss.item())
reward_log.append(sum(rewards)/len(rewards))
loss_log.append(sum(losses)/len(losses))

# Optimize using backpropagation
optimizer.zero_grad()
loss.backward() # calculate gradients (partly Quantum!)
optimizer.step() # update parameters

Episode: 0, loss: 3.732, Reward : 0.000
Episode: 1, loss: 5.483, Reward : 0.000
Episode: 2, loss: 3.267, Reward : 0.905
Episode: 3, loss: 3.555, Reward : 0.000
Episode: 4, loss: 5.877, Reward : 0.000
Episode: 5, loss: 3.028, Reward : 0.576
Episode: 6, loss: 3.476, Reward : 0.639
Episode: 7, loss: 3.226, Reward : 0.550
Episode: 8, loss: 3.328, Reward : 0.514
Episode: 9, loss: 3.348, Reward : 0.957
Episode: 10, loss: 3.105, Reward : 0.000
Episode: 11, loss: 5.465, Reward : 0.000
Episode: 12, loss: 2.565, Reward : 1.000
Episode: 13, loss: 4.279, Reward : 0.000
Episode: 14, loss: 3.365, Reward : 0.617
Episode: 15, loss: 3.712, Reward : 0.000
Episode: 16, loss: 3.388, Reward : 0.000
Episode: 17, loss: 3.630, Reward : 0.000
Episode: 18, loss: 2.224, Reward : 0.579
Episode: 19, loss: 3.300, Reward : 0.000
Episode: 20, loss: 2.877, Reward : 0.905
Episode: 21, loss: 3.854, Reward : 0.898
Episode: 22, loss: 4.844, Reward : 0.000
Episode: 23, loss: 4.475, Reward : 0.000
Episode: 24, loss: 2.467, Reward : 0.000
Episode: 25, loss: 2.947, Reward : 0.488
Episode: 26, loss: 3.132, Reward : 0.957
Episode: 27, loss: 3.635, Reward : 0.000
Episode: 28, loss: 2.851, Reward : 0.000
Episode: 29, loss: 4.533, Reward : 0.000
Episode: 30, loss: 4.360, Reward : 0.000
Episode: 31, loss: 3.888, Reward : 0.738
Episode: 32, loss: 3.797, Reward : 0.000
Episode: 33, loss: 6.052, Reward : 0.000
Episode: 34, loss: 3.017, Reward : 0.869
Episode: 35, loss: 2.278, Reward : 1.000
Episode: 36, loss: 2.286, Reward : 1.000
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Episode: 37, loss: 3.843, Reward : 0.738
Episode: 38, loss: 3.891, Reward : 0.046
Episode: 39, loss: 2.492, Reward : 0.967

1.6 Show Training process

[19]: fig, (reward_plot, loss_plot) = plt.subplots(1, 2, figsize=(12, 5),␣
↪constrained_layout = True)

loss_plot.set_xlabel('step', fontsize = 16)
loss_plot.set_ylabel('loss', fontsize = 16)
loss_plot.plot(range(num_steps), loss_log, color="green")

reward_plot.set_xlabel('step', fontsize = 16)
reward_plot.set_ylabel('reward', fontsize = 16)
reward_plot.plot(range(num_steps), reward_log, color="blue");

1.7 Evaluate the model for all queries

[20]: rewardSum = 0
for entry in data:

# Predict rewards from the features
prediction = model(Tensor(entry[0:4]))
# Choose join order with highest predicted reward
selected = prediction.argmax()
# Store the real reward this selection would give
rewardSum += entry[4+selected]

print("Average reward over all queries: {:.3f}".format(rewardSum/len(data)))

Average reward over all queries: 0.383
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1.8 Save model parameters

[21]: torch.save(model.state_dict(), "vqc.model")
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