
Efficient Merging and Filtering Algorithms for
Approximate String Searches

Chen Li, Jiaheng Lu, Yiming Lu

Department of Computer Science, University of California, Irvine, CA 92697, USA
chenli@ics.uci.edu, {jiahengl,yimingl}@uci.edu

Abstract— We study the following problem: how to efficiently
find in a collection of strings those similar to a given query
string? Various similarity functions can be used, such as edit
distance, Jaccard similarity, and cosine similarity. This problem
is of great interests to a variety of applications that need a high
real-time performance, such as data cleaning, query relaxation,
and spellchecking. Several algorithms have been proposed based
on the idea of merging inverted lists of grams generated from
the strings. In this paper we make two contributions. First,
we develop several algorithms that can greatly improve the
performance of existing algorithms. Second, we study how to
integrate existing filtering techniques with these algorithms, and
show that they should be used together judiciously, since the way
to do the integration can greatly affect the performance. We have
conducted experiments on several real data sets to evaluate the
proposed techniques.

I. INTRODUCTION

Text data is ubiquitous. Management of string data in
databases and information systems has taken on particular
importance recently. In this paper, we study the following
problem: given a collection of strings, how to efficiently find
those in the collection that are similar to a query string? Such
a query is called an “approximate string search.” This problem
is of great interests to a variety of applications, as illustrated
by the following examples.

Spell Checking: Given an input document, a spellchecker
needs to find possibly mistyped words by searching in its
dictionary those words similar to the words. Thus, for each
word that is not in the dictionary, we need to find potentially
matched candidates to recommend.

Data Cleaning: Information from different data sources
often have various inconsistencies. The same real-world entity
could be represented in slightly different formats. There could
also be errors in the original data introduced in the data-
collection process. For these reasons, data cleaning needs to
find from a collection of entities those similar to a given entity.
A typical query is “find addresses similar to PO Box 23,
Main St.”, and an entity of “P.O. Box 23, Main St”
should be found and returned.

These applications require a high real-time performance for
each query to be answered, especially for those applications
adopting a Web-based service model. For instance, consider
a spellchecker such as those used by Gmail, Hotmail, or
Yahoo Mail. It needs to be invoked many times every second
since there can be millions of users of the service. Each
spellchecking request needs to be processed as fast as possible.

Although from an individual user’s perspective, there is not
much difference between a 20ms processing time and a 2ms
processing time, from the server’s perspective, the former
means 50 queries per second (QPS), while the latter means
500 queries per second. Clearly the latter processing time gives
the server more power to serve more user requests per second.
Thus it is very important to develop algorithms for answering
such queries as efficiently as possible.

Many algorithms have been proposed, such as [1], [2], [3],
[4], [5], [6], [7]. These techniques assume a given similarity
function to quantify the closeness between two strings. Differ-
ent string-similarity functions have been studied, such as edit
distance [8], cosine similarity [2], and Jaccard coefficient [9].
Many of these algorithms use the concept of gram, which
is a substring of a string to be used as a signature of the
string. These algorithms rely on inverted lists of grams to find
candidate strings, and utilize the fact that similar strings should
share enough common grams. Many algorithms [9], [2] mainly
focused on “join queries,” i.e., finding similar pairs from two
collections of strings. Approximate string search could be
treated as a special case of join queries. It is well understood
that the behavior of an algorithm for answering selection
queries could be very different from that for answering join
queries. We believe approximate string search is important
enough to deserve a separate investigation.

Our contributions: In this paper we make two main contri-
butions. First, we propose three efficient algorithms for an-
swering approximate string search queries, called ScanCount,
MergeSkip, and DivideSkip. Normally, the main operation
in answering such queries is to merge the inverted lists of
the grams produced from the query string. The ScanCount
algorithm adopts a simple idea of scanning the inverted lists
and counting candidate strings. Despite the fact that it is very
naive, when combined with various filtering techniques, this
algorithm can still achieve a high performance. The MergeSkip
algorithm exploits the value differences among the inverted
lists and the threshold on the number of common grams of
similar strings to skip many irrelevant candidates on the lists.
The DivideSkip algorithm combines the MergeSkip algorithm
and the idea in the MergeOpt algorithm proposed in [9] that
divides the lists into two groups. One group is for those long
lists, and the other group is for the remaining lists. We run the
MergeSkip algorithm to merge the short lists with a different
threshold, and use the long lists to verify the candidates. Our

experiments on three real data sets showed that the proposed
algorithms could significantly improve the performance of
existing algorithms.

Our second contribution is a study on how to integrate
various filtering techniques with the proposed merging algo-
rithms. Various filters have been proposed to eliminate strings
that cannot be similar enough to a given string. Surprisingly,
our experiments and analysis show that a naive solution of
adopting all available filtering techniques might not achieve
the best performance to merge inverted lists. Intuitively, filters
can segment inverted lists to relatively shorter lists, while
merging algorithms need to merge these lists. In addition,
the more filters we apply, the more groups of inverted lists
we need to merge, and more overhead we need to spend for
processing these groups before merging their lists. Thus filters
and merging algorithms need to be integrated judiciously by
considering this tradeoff. Based on this analysis, we classify
filters into two categories: single-signature filters and multi-
signature filters. We propose a strategy to selectively choose
proper filters to build an index structure and integrate them
with merging algorithms. Experiments show that our strategy
reduces the running time by as much as one to two orders
of magnitude over approaches without filtering techniques or
strategies that naively use all the filtering techniques.

In this paper we consider several string similarity functions,
including edit distance, Jaccard, Cosine, and Dice [2]. We
qualify the effectiveness and generalization capability of these
techniques by showing our new merging and filtering strategies
are efficient for those similarity functions.

Paper Outline: Section II gives the preliminaries. Section III
presents our new algorithms. Section IV discusses how to
judiciously integrate filtering techniques with merging algo-
rithms. Section V shows how the results on edit distance can
be extended to other similarity functions. Section VI discusses
related work, and Section VII concludes this paper.

II. PRELIMINARIES

Let Σ be an alphabet. For a string s of the characters in
Σ, we use “|s|” to denote the length of s, “s[i]” to denote the
i-th character of s (starting from 1), and “s[i, j]” to denote the
substring from its i-th character to its j-th character.

Q-Grams: We introduce two characters α and β not in Σ.
Given a string s and a positive integer q, we extend s to a new
string s′ by prefixing q − 1 copies of α and suffixing q − 1
copies of β. A positional q-gram of s is a pair (i, g), where
g is the q-gram of s′ starting at the i-th character of s′, i.e.,
g = s′[i, i+q−1]. The set of positional q-grams of s, denoted
by G(s, q) (or simply G(s) when the q value is clear in the
context) is obtained by sliding a window of length q over the
characters of string s′. There are |s|+q−1 positional q-grams
in G(s, q). For instance, suppose α = #, β = $, q = 3, and
s = “smith”, then G(s, q) = {(1, ##s), (2, #sm), (3, smi),
(4, mit), (5, ith), (6, th$), (7, h$$)}. Our discussion in this
paper is also valid when strings are not extended using the
special characters.

Approximate String Search: Given a collection of strings
S, a query string Q, and a threshold δ, we want to find
all s ∈ S such that the similarity between s and Q is
no less than δ. Various similarity functions can be used,
such as edit distance, Jaccard similarity, cosine similarity, and
dice similarity. In this paper, we first focus on edit distance,
then generalize our techniques to other similarity functions.
The edit distance (a.k.a. Levenshtein distance) between two
strings s1 and s2 is the minimum number of edit operations
of single characters that are needed to transform s1 to s2.
Edit operations include insertion, deletion, and substitution.
We denote the edit distance between two strings s1 and
s2 as ed(s1, s2). For example, ed(“Steven Spielburg”,
“Steve Spielberg”) = 2. When using this function, our
problem becomes finding all s ∈ S such that ed(s, Q) ≤ k
for a given threshold k.

III. MERGING ALGORITHMS

Several existing algorithms assume an index of inverted lists
for the grams of the strings in the collection S to answer
approximate string queries on S. In the index, for each gram g
of the strings in S, we have a list lg of the ids of the strings that
include this gram, possibly with the corresponding positional
information of the gram in the strings. It is observed in [9] that
the search problem based on several string-similarity functions
can be solved by solving the following generalized problem:

T -occurrence Problem: Let Q be a query, and
G(Q, q) be its corresponding set of q-grams for a
constant q. Find the set of string ids that appear at
least T times on the inverted lists of the grams in
G(Q, q), where T is a constant.

For instance, it is known that if the edit distance be-
tween two strings s1 and s2 is no greater than k, then they
should share at least the following number of q-grams: T =
max{|s1|, |s2|} + q − 1 − k · q. If this threshold is zero or
negative, then we need to scan the entire data set in order to
compute the answers. Various filters can help us reduce the
number of strings that need to be scanned (Section IV).

The result of generalized problem is a set of candidate
strings. We then need to eliminate the false positives in the
candidates by applying the similarity function on the candi-
dates and the query string. Existing algorithms for solving
this problem focus on reducing the running time to merge
the record-id (RID) lists of the grams of the query string.
An established optimization is to sort the record ids on each
inverted list in an ascending order. We briefly describe two
existing algorithms as follows [9].

Heap algorithm: When merging the lists, we maintain the
frontiers of the lists as a heap. At each step, we pop the
top from the heap, and increment the count of the record id
corresponding to the popped frontier record. We remove this
record id from this list, and reinsert the next record id on the
list (if any) to the heap. We report a record id whenever its
count is at least the threshold T . Let N = |G(Q, q)| denote
the number of lists corresponding to the grams from the query

string, and M denote the total size of these N lists. This
algorithm requires O(MlogN) time and O(N) storage space
(not including the size of the inverted lists) for storing the
heap of the frontiers of the lists.

MergeOpt algorithm: It treats the T − 1 longest inverted
lists of G(Q, q) separately. For the remaining N − (T − 1)
relatively short inverted lists, we use the Heap algorithm to
merge them with a lower threshold, i.e., 1. For each candidate
string, we do a binary search on each of the T −1 long lists to
verify if the string appears on at least T times among all the
lists. This algorithm is based on the observation that a record
in the answer must appear on at least one of the short lists.
Experiments have shown that the algorithm is significantly
more efficient than the Heap algorithm.

We now present three new merging algorithms.

A. Algorithm: ScanCount

This algorithm improves the Heap algorithm by eliminating
the heap data structure and the corresponding operations on
the heap. Instead, we just maintain an array of counts for
all the string ids in S. We scan the N inverted lists one by
one. For each string id on each list, we increment the count
corresponding to the string by 1. We report the string ids that
appear at least T times on the lists. The algorithm is formally
descried in Figure 1.

Input: set of RID lists and a threshold T ;
Output: record ids that appear at least T times on the lists.
1. Initialize the array C of |S| counters to 0’s;
2. Initialize a result set R to be empty;
3. FOR (each record id r on each given list) {
4. Increment the value of C[r] by 1;
5. IF (C[r] == T)
6. Add r to R;
7. }
8. RETURN R;

Fig. 1. ScanCount Algorithm.

The time complexity of this algorithm is O(M) (compared
to O(MlogN) for the Heap algorithm). The space complexity
is O(|S|), where |S| is the size of the string collection, since
we need to keep a count for each string id. This higher space
complexity (compared to O(N) for the Heap algorithm) is not
a major concern, since this extra space tends to much smaller
than that of the inverted lists. This algorithm shows that the
T -occurrence problem is indeed different from the problem of
merging multiple sorted lists into one long sorted lists, since
we care more about finding those ids with enough occurrences,
rather than generating a sorted list.

One computational overhead in the algorithm is the step to
initialize the counter array to 0’s for each query (line 1). This
step can be eliminated by storing an additional query id for
each counter in the array. When the system first gets started,
we initialize the counters to 0’s, and their associated query ids
to be 0. When a new query arrives, we assign a unique id to the
query (incrementally from 0). Whenever we access the counter
for a string id from an inverted list, we first check if the query

id associated with the counter is the same as the current query
id. If so, we take the same actions as before. Otherwise, we
assign the new query id to this string id, and set its counter to
1. In this way, we do not need to initialize the array counters
for each query. The drawback of this new approach is that
in each iteration, we need to do an additional comparison of
the two query ids. Which approach is more efficient depends
on the total number of strings in the collection, the expected
number of strings whose counters need to be updated, and
whether we want to support multiple queries concurrently.

Despite its simplicity, this algorithm could still achieve
a good performance when combined with various filtering
techniques, if they can shorten the inverted lists to be merged,
as shown in our experimental results.

B. Algorithm: MergeSkip

This algorithm is formally described in Figure 2. Its main
idea is to skip on the lists those record ids that cannot be in
the answer to the query, by utilizing the threshold T . Similar
to Heap algorithm, we also maintain a heap for the frontiers of
these lists. A key difference is that, during each iteration, we
pop those records from the heap that have the same value as
the top record t on the heap. Let the number of popped records
be n. If there are at least T such records, we add t to the result
set (line 8 in the algorithm), and add their next records on the
lists to the heap. Otherwise, we are sure record t cannot be
in the answer. In addition to popping these n records, we pop
T−1−n additional records from the heap (line 12). Therefore,
in this case, we have popped T −1 records from the heap. Let
t′ be the current top record on the heap. For each of the T −1
popped lists, we locate its smallest record r such that r ≥ t′

(line 15). This locating step can be done efficiently using a
binary search. We then push r to the heap (line 16). Notice
that it is possible to reinsert the same record on the popped
lists back to the heap if it is equal to the new top record t′.
Also for those lists that do not have such a record r ≥ t′, we
do not insert any record from these lists to the heap.

As an example, consider the four RID lists shown in
Figure 3 and a threshold T = 3. At the beginning, we push
their frontier ids 1, 10, 50, and 100 to the heap. The current
top of the heap is id 1. There is only one record on the heap
with the value, and we pop this record from the heap (i.e.,
n = 1). Then we pop T − 1 − n = 3 − 1 − 1 = 1 smallest
record from the heap, which is the record id 10 (line 12 in
the algorithm). Now the top record on the heap is t′ = 50,
as shown on the right-hand side in the figure. For each of the
two popped lists, we locate the next record (using a binary
search) that is no greater than 50. In this way, we can skip
many records that cannot be in the answer. The next records
on these two lists both have the same value 50. In the next
iteration, we have three records with the current top-record
value 50, and we add this record to the result set.

C. Algorithm: DivideSkip

Its main idea is to combine MergeSkip and MergeOpt,
both of which try to skip irrelevant records on the lists,

Input: a set of RID lists and a threshold T ;
Output: record ids that appear at least T times on the lists.
1. Insert the frontier records of the lists to a heap H ;
2. Initialize a result set R to be empty;
3. WHILE (H is not empty) {
4. Let t be the top record on the heap;
5. Pop from H those records equal to t;
6. Let n be the number of popped records;
7. IF (n ≥ T) {
8. Add t to R;
9. Push next record (if any) on each popped list to H ;
10. }
11. ELSE {
12. Pop T − 1 − n smallest records from H ;
13. Let t′ be the current top record on H ;
14. FOR (each of the T − 1 popped lists) {
15. Locate its smallest record r ≥ t′ (if any);
16. Push this record to H ;
17. }
18. }
19. }
20. RETURN R;

Fig. 2. MergeSkip Algorithm.

Pop 1 ,10

100
50

50

1
2

50

10

100

50

Jump

200
100

Jump

1

100
10 50

Heap operation

Threshold = 3

List4List3List2List1

Fig. 3. Running MergeSkip algorithm.

but using different intuitions. MergeSkip exploits the value
differences among the records on the lists, while MergeOpt
exploits the size differences among the lists. Our new algorithm
DivideSkip uses both differences to further improve the search
performance.

Figure 4 formally describes the algorithm. Given a set of
RID lists, we first sort these lists based on their lengths. We
divide the lists into two groups. We group the L longest lists to
a set Llong , and the remaining short lists as another set Lshort.
(The choice of the parameter L will be discussed shortly.) We
use the MergeSkip algorithm on Lshort to find records r that
appear at least T − L times on the short lists. For each such
record r and each list llong in Llong , we check if r appears
on llong . This step can be done efficiently using O(logp) time
(where p is the length of llong) if the list is implemented as
an ordered list, or O(1) time if the list is implemented as an
unordered hash set. If the total number of occurrences of r
among all these lists is at least T , then we add it to the result
set R.

There are two main differences between MergeOpt and
DivideSkip. (1) The number of long lists in DivideSkip is a
tunable parameter L, which can greatly affect the performance
of the algorithm. In MergeOpt, L is fixed to a constant T −1.
(2) Unlike MergeOpt, which uses a heap-based algorithm

Input: set of RID lists and a threshold T ;
Output: record ids that appear at least T times on the lists.
1. Initialize a result set R to be empty;
2. Let Llong be the set of L longest lists among the lists;
3. Let Lshort be the remaining short lists;
4. Use MergeSkip on Lshort to find ids that appear at

least T − L times;
5. FOR (each record r found) {
6. FOR (each list in Llong)
7. Check if r appears on this list;
8. IF (r appears ≥ T times among all lists)
9. Add r to R;
10. }
11. RETURN R;

Fig. 4. DivideSkip Algorithm.

to process Lshort, the DivideSkip algorithm uses the more
efficient MergeSkip algorithm to process the short lists.

1) Choosing Parameter L in DivideSkip: The parameter L
affects the overall performance of the algorithm in two ways.
If we increase L, fewer lists are treated as short lists, which
need to be merged with a lower threshold T − L. The time
of accessing the short lists will decrease. On the other hand,
for each candidate after accessing the short lists, we need to
do more lookups on the long lists. A main issue is how to
choose a good L value for this algorithm. The best L value is
difficult to decide since it depends on the query and its inverted
lists. We propose a formula to calculate a good value for the
parameter L for a given query, which has been empirically
shown to be a close-to-optimal value.

Proposition 1: Given a set of inverted lists and a threshold
T , a good L value in DivideSkip can be estimated as:

Lgood =
T

µlogM + 1
, (1)

where M is the length of the longest inverted list of the grams
of the query, and µ is a coefficient dependent on the data set,
but independent from the query.

The following is the intuition behind this formula. Let L
denote the number of lists in Llong , and N denote the total
number of records in Lshort. The total time to access the short
lists can be estimated as:

C1 = φ · N, (2)

where φ is a constant. Let x denote the number of records
whose number of occurrences in Lshort is at least ≥ T − L.
We can estimate x as η·N

T−L , where η is a parameter dependent
on the data set S. For each candidate record from the short
lists, its lookup time in the long lists can be estimated as
L · logM . Hence, the total lookup time on the long lists is:

C2 =
η · N
T − L

· L · log M. (3)

The total running time is C1 +C2. There is a tradeoff between
C1 and C2. Assuming that the best performance is achieved
when C1 = C2, we can get Equation 1 by replacing η

φ by µ.
The parameter µ in the formula can be computed offline as

follows. We generate a workload of queries. For each query

qi, we try different L values and identify its optimal value for
this query. Using Equation 1 we compute a value µi for this
query. We set µ as the average of these µi values from the
queries.

Weighted Functions: The three new algorithms can be easily
extended to the case where different grams have different
weights. In ScanCount, we can record the cumulative weights
of each string id in the array C (line 4). In MergeSkip and
DivideSkip, we can replace the occurrence of a string id on
the inverted lists with the sum of their weights on the lists,
while the main idea and steps are the same as before.

D. Experiments

We evaluated the performance of the five merging algo-
rithms: Heap, MergeOpt, ScanCount, MergeSkip, and Di-
videSkip, on three real data sets.
• DBLP dataset: It includes paper titles downloaded from

the DBLP Bibliography site1. The raw data was in an XML
format, and we extracted 274,788 paper titles with a total
size 17.8MB. The average size of gram inverted lists for a
query was about 67, and the total number of distinct grams
was 59, 940.

• IMDB dataset: It consists of the actor names downloaded
from the IMDB website2. There were 1,199,299 names
with a total size of 22MB. The average number of gram
lists for a query was about 19, and the number of unique
grams was 34,737.

• WEB Corpus dataset: It is a collection of a sequence of
English words that appear on the Web. It came from the
LDC Corpus set (number LDC2006T13) at the University
of Pennsylvania. The raw data was around 30GB. We
randomly chose 2 million records with a size of 48.3MB.
The number of words on the sequences varied from 3 to
5. The average number of inverted lists for a query was
about 26, and the number of unique grams was 81,620.

We used edit distance as the similarity function. The gram
length q was 3 for the data sets. All the algorithms were
implemented using GNU C++ and run on a Dell PC with
2GB main memory, and a 2.13GHz Dual Core CPU running
a Ubuntu operating system. Index structures were assumed to
be in memory.

Query time: We ran 100 queries with an edit-distance thresh-
old of 2. We increased the number of records for each data
set. Figure 5 shows the average query time for each algorithm.
For all the data sets, the three new algorithms were faster than
the two existing algorithms. DivideSkip always achieved the
best performance. It improved the performance of the Heap
and MergeOpt algorithms 5 to 100 times. For example, for a
DBLP data set with 200, 000 strings, the Heap algorithm took
114.50ms for a query, the MergeOpt algorithm took 13.3ms,
while DivideSkip required just 1.34ms. This significant im-
provement can be explained using Figure 6, which shows the

1www.informatik.uni-trier.de/∼ley/db
2www.imdb.com

number of string ids visited during the merging phase of the
algorithms. Heap and ScanCount need to read and process all
the ids on the inverted lists of the grams in each query. Our
new algorithms can skip many irrelevant ids on the lists. The
number of ids visited in DivideSkip is the smallest, resulting
in a significant reduction in the running time.

MergeSkip was more efficient than MergeOpt for all the
data sets. Although both algorithms try to exploit the threshold
to skip elements on the lists, MergeSkip often skipped more
irrelevant elements than MergeOpt. For example, for the
Web Corpus data set with 2 million strings, the number of
visited string ids was reduced from 1600K (MergeOpt) to
1090K (MergeSkip). As a consequence, MergeSkip reduced
the running time from 79ms to 42ms.

Choosing L for DivideSkip: We empirically evaluated the
trade-off between the merging time to access the short lists
and the lookup time for checking the candidates from the
short lists on the long lists in the DivideSkip algorithm with
various L values on the DBLP data set. Figure 7 shows the
results, which verified our analysis: increasing the L value
can reduce the merging time, but increase the lookup time. In
Figure 8, we report the total running time by varying the L
value. For comparison purposes, we also used an exhaustive
search approach for finding an optimal L value, which was
very close to the one computed by the formula. The results
verified that the formula in Equation 1 indeed provides us
a good optimal L value. For example, the running time was
26.40ms when L = T − 1, and it was reduced to 1.95ms
when L = T

µlogM+1 . The µ value was 0.0085. The figure does
not show the optimal L value found by the exhaustive search,
which is very close to the value computed by the formula.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(m

s)

of long lists L

Merging time for short lists
Lookup time for long lists

Fig. 7. Tradeoff between merging time and lookup time in DivideSkip
(DBLP).

IV. INTEGRATING FILTERING TECHNIQUES WITH

MERGING ALGORITHMS

Various filters have been proposed in the literature to elim-
inate strings that cannot be similar enough to a query string.
In this section, we investigate several filtering techniques,
and study how to integrate them with merging algorithms to
enhance the overall performance. A surprising observation is
that adopting all available filters might not achieve the best
performance, thus we need to do the integration judiciously.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

T
im

e
(m

s)

of strings in data set (K)

Heap
MergeOpt

ScanCount
MergeSkip
DivideSkip

(a) DBLP

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

T
im

e
(m

s)

of strings in dataset (K)

Heap
MergeOpt

ScanCount
MergeSkip
DivideSkip

(b) IMDB

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 500 1000 1500 2000

T
im

e
(m

s)

 # of strings in data set(K)

Heap
MergeOpt

ScanCount
MergeSkip
DivideSkip

(c) WebCorpus

Fig. 5. Average query time versus data set size.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200

of

 s
tr

in
g

id
s

vi
si

te
d

(K
)

of strings in data set (K)

Heap
MergeOpt

ScanCount
MergeSkip
DivideSkip

(a) DBLP

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000

of

 s
tr

in
g

id
s

vi
si

te
d

(K
)

of strings in data set (K)

Heap
MergeOpt

ScanCount
MergeSkip
DivideSkip

(b) IMDB

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000

of

 s
tr

in
g

id
s

vi
si

te
d

(K
)

of strings in data set (K)

Heap
MergeOpt

ScanCount
MergeSkip
DivideSkip

(c) WebCorpus

Fig. 6. Number of string ids visited by the algorithms.

 0

 10

 20

 30

L=1 L=T/2 L=T/(µlogM+1) L=T−2 L=T−1

M
er

gi
ng

 ti
m

e
(m

s)

Various parameter L

Fig. 8. Running time versus the L value.

For simplicity, in this section we mainly focus on the edit
distance function.

A. Classification of Filters

A filter generates a set of signatures for a string, such that
similar strings share similar signatures, and these signatures
can be used easily to build an index structure. These filters
can be classified into two categories. Single-signature filters
are those that generate a single signature (typically an integer
or a hash code) for a string. Multi-signature filters are those
that generate multiple signatures for a string. To illustrate these
two categories, we use three well-known filtering techniques:
length filter, position filter [4], and prefix filter [10], which
can be used for the edit distance function.

Length Filtering: If two strings s1 and s2 are within edit
distance k, the difference between their lengths cannot exceed

k. Thus, given a query string s1, we only need to consider
strings s2 in the data collection such that the difference
between |s1| and |s2| is no greater than k. This filter is a
single-signature filter, since it generates a single signature for
a string, which is the length of the string.

Position Filtering: If two strings s1 and s2 are within edit
distance k, then a q-gram in s1 cannot correspond to a q-gram
in the other string that differs by more than k positions. Thus,
given a positional gram (i1, g1) in the query string, we only
need to consider the other corresponding gram (i2, g2) in the
data set, such that |i1− i2| ≤ k. This filter is a multi-signature
filter, since it produces a set of positional grams as signatures
for a string.3

Prefix Filtering [10]: Given two q-gram sets G(s1) and
G(s2) for strings s1 and s2, we can fix an ordering O of the
universe from which all set elements are drawn. Let p(n, s)
denote the n-th prefix element in G(s) as per the ordering
O. For simplicity, p(1, s) is abbreviated as ps. An important
property is that, if |G(s1) ∩G(s2)| ≥ T , then ps2 ≤ p(n, s1),
where n = |s1| − T + 1. For instance, consider the gram set
G(s1) = {1, 2, 3, 4, 5} for a query string, where each gram
is represented as a unique integer. The first prefix of any set
G(s2) that shares at least 4 elements with G(s1) must be

3Notice that the formulated problem described in Section III can be viewed
as a generalization of the “count filter” described in [4] based on grams as
signatures (called thereafter “gram filter”). The position filter can be used
together with the count filter.

≤ p(2, s1) = 2. Thus, given a query string Q and an edit
distance threshold k, we only need to consider strings s in the
data set such that ps ≤ p(n, Q), where n = |G(s)| − T + 1,
and the threshold T = |s| + q − 1 − q · k. This filter is a
single-signature filter, since it produces a single signature for
each string s, which is ps.

B. Applying Filters before Merging Lists

Existing filters can be combined to improve the search
performance of merging algorithms. One way to combine them
is to build a tree structure, in which each level corresponds
to a filter. Such an indexing structure is called FilterTree. An
example is shown in Figure 9. The first level of the tree is
using a length filter. That is, we partition the strings based
on their lengths. The second level is using a gram filter; we
generate the grams for each string, and for each of its grams,
we add the string id to the subtree of the gram. The third level
is using a position filter; we further decide the child of each
gram to which the string id should be added to based on the
position of the gram in the string. Each leaf node in the filter
tree is an inverted list of string ids. In the tree in the figure,
the shown leaf node includes the inverted list of the ids of
strings that have a length of 2, and have a gram za at the
second position.

Root
1 2 n Length filter

aa ac za zz Gram filter

1 2 Position filter

5
12
17
28
44

Inverted list (e.g., ids of strings
that have length of 2 and a
gram “za” at position 2)

Fig. 9. A filter tree.

It is critical to decide which filters should be used on which
levels. In order to achieve a high performance, we should
first use those single-signature filters (close to the root of
the tree), such as the length filter and the prefix filter. The
reason is that, when constructing the tree, each string in the
data set will be inserted to a single path, instead of appearing
in multiple paths. During a search, for these filters we only
need to traverse those paths on which the candidate strings
can appear. After adding those single-signature filters, we add
those multi-signature ones, such as the gram filter and the
position filter. Using these filters, a string id could appear in
multiple leaf nodes.

To answer an approximate string query using the index
structure, we traverse the tree from the root. For the single-
signature filters such as the length filter and the prefix filter,
we only traverse those branches or paths with signatures that

are “close” to those of the query. For instance, if the length
of the query is 10, and the edit distance threshold is 3, for the
level of the length filter, we only need to traverse the branches
with a length between 7 and 13. After these levels, for each
candidate path, we use the multi-signature filters such as the
gram filter and the positional filter to identify the inverted
lists, and use an algorithm to merge these lists. Notice that
we run the algorithm for the inverted lists corresponding to
each candidate path after the single-signature filters, and take
the union of the results of the multiple calls of the merging
algorithm.

Example 1: Consider the filter tree in Figure 9. Suppose
we have a query that asks for strings whose edit distance to
the string smith is within 1. Since the first level is using
the length filter, and the length of the string is 5, we traverse
the tree to visit the first-level children with a length between
4 and 6. We generate the 2-grams from the query string. For
each of the three children, we use these grams to find the
corresponding children. (This step can be done by doing some
lookup within each of the three children.) For each of the
identified gram node, we use the position of the gram in the
query to identify the relevant leaf nodes using the position
filter. For all these inverted lists from the children of the gram
nodes, we run one of the merging algorithms. We call this
merging algorithm for each of the three first-level children
(with the length range between 4 and 6).

C. Experimental Results

We empirically evaluated various ways to integrate these
filters with merging algorithms on the three data sets. Figure 10
shows the average running time for a query with an edit
distance threshold 2, including the time to access the lists of
grams from the query (columns marked as “Merge”) and the
total running time (columns marked as “Total”). The total time
includes the time to merge the lists, the time to postprocess
the candidate strings after applying the filters, and other time
such that that of finding the inverted lists for grams. The
smallest running time for each data set is marked as bold face.
For instance, for the DBLP data set, the best performance
was achieved when we used just the length filter with the
DivideSkip algorithm. The total running time was 0.76ms, of
which 0.47ms was spent to merge the lists. Figure 11 shows
the number of lists and the total number of string ids on these
lists per merging-algorithm call for various filter combinations.
These numbers are independent from the merging algorithm.

We have the following observations from the results. First,
for all the cases, DivideSkip always achieved the best per-
formance among the merging algorithms, which is consistent
with the observations in Section III. Second, the length filter
reduced the running time significantly. Enabling prefix filtering
in conjunction with length filtering further reduces the number
of candidate strings.

The third observation is surprising: Adding more filters
does not always reduce the running time. For example, for
the DBLP data set, the best performance with all the filters
was 4.16ms, which was worse than just using the length

Time (ms) No filters Len Len+Pre Len+Pos Len+Pre+Pos
Merge Total Merge Total Merge Total Merge Total Merge Total

DBLP

Heap 114.53 115.42 11.67 11.98 7.69 8.83 2.77 3.64 2.62 5.69
MergeOpt 13.32 14.22 1.09 1.40 0.95 2.12 5.96 6.78 5.82 8.89
ScanCount 30.01 30.91 2.41 2.68 1.98 3.19 1.26 2.14 1.10 4.25
MergeSkip 9.22 10.12 0.79 1.09 1.04 2.19 1.79 2.65 1.70 4.77
DivideSkip 1.34 2.23 0.47 0.76 0.44 1.57 1.12 1.96 1.10 4.16

IMDB

Heap 115.32 113.7 58.78 58.91 26.07 26.54 24.19 24.58 24.29 25.32
MergeOpt 28.83 29.21 11.20 11.32 6.25 6.65 23.46 23.76 20.76 21.70
ScanCount 26.40 26.85 42.11 42.24 20.17 20.57 20.73 21.05 19.45 20.40
MergeSkip 10.89 11.26 4.42 4.55 3.43 3.82 11.6 11.92 11.12 12.08
DivideSkip 4.20 4.61 2.18 2.32 1.47 1.84 7.28 7.58 6.52 7.41

Web

Heap 95.49 96.58 25.35 25.47 30.92 31.50 21.40 22.07 19.25 20.84
MergeOpt 58.83 59.52 14.24 14.35 12.16 12.67 28.42 28.92 26.64 28.08
ScanCount 77.44 78.21 24.03 24.15 25.37 25.88 17.79 18.29 17.95 19.45
MergeSkip 45.16 45.80 9.49 9.64 9.55 10.05 19.09 19.77 16.97 18.55
DivideSkip 10.98 11.66 4.98 5.11 3.92 4.42 9.20 9.71 8.29 9.72

Fig. 10. The average running time for a query using various filters and merging algorithms (“Len” = length filter, “Pre” = Prefix filter, “Pos” = Position
filter, edit distance threshold = 2, and 3-grams).

of lists # of string ids on the lists (in thousands)
None Len Len+Pre Len+Pos Len+Pre+Pos None Len Len+Pre Len+Pos Len+Pre+Pos

DBLP 65 64 32 191 951 2,448 24 12 9 5
IMDB 20 17 8 52 26 4,078 149 75 141 71
Web 27 27 14 89 47 1,591 87 45 56 29

Fig. 11. Number of lists and total number of string ids on the inverted lists per merging-algorithm call for various filter combinations.

filter (0.76ms). In other words, combining the position filter
and the prefix filter even increased the running time. The
same observation is also true for the other two data sets. As
another example, for the DBLP data set, adding the prefix filter
increased the running the time compared to the case where we
only use the length filter. For both the IMDB data set and the
Web Corpus data set, the best performance was achieved when
we used the length and prefix filters.

Now we analyze why adding one more filter may not
improve the performance. This additional filter can partition an
inverted list into multiple, relatively shorter lists. The benefits
of skipping irrelevant string ids on the shorter lists using
algorithms such as DivideSkip or MergeSkip could be reduced.
In addition, for each of the lists, we need to have an additional
overhead such as the time of finding the inverted list for a gram
(which is usually implemented as a lookup on a hash map).
As a consequence, the overall running time for a query can
be longer.

In order to further study the effect of the position filter,
we group several positions together to one branch on the tree.
For instance, inverted lists of grams with positions 7 to 10
can be grouped into one inverted list of a branch. Figures 12
and 13 show the results for the DBLP data set. Figure 12
shows how the running time changed as we increased the
number of positions in one group. We used an edit distance
threshold of 2 and the DivideSkip algorithm. Figure 13 shows
the total number of string ids on the lists for each call to the
merging algorithm. We find that as the number of positions
in each group increased, the total number of string ids also
increased, but the running time decreased. The results show

that the position filter may not improve the performance for
this data set.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 T

im
e

(m
s)

of positions as one group

Fig. 12. Total running time with different numbers of positions in one group.

Summary: To efficiently integrate filters with merging algo-
rithms, single-signature filters normally should be applied first
on the filter tree. The effect of multi-signature filters on the
overall performance needs to be carefully investigated before
being used, since they may reduce the performance. It is due
to the tradeoff between their filtering power and the additional
overhead on the merging algorithm.

V. EXTENSION TO OTHER SIMILARITY FUNCTIONS

Our discussion so far mainly focused on the edit distance
metric. In this section we generalize the results to the following
commonly used similarity measures: Jaccard coefficient, Co-
sine similarity, and Dice similarity. Formally, given two strings
s and t, let S and T denote the q-gram set of s and t (for a

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 10 20 30 40 50 60 70 80 90 100

of

 s
tr

in
g

id
s

of positions as one group

Fig. 13. Total number of string ids on inverted lists per merging-algorithm
call.

given constant q), the Jaccard, Cosine, and Dice similarities
are defined as belows.

• Jaccard(s, t) = |S∩T |
|S∪T | ;

• Cosine(s, t) = |S∩T |√
|S|·|T | ;

• Dice(s, t) = 2|S∩T |
|S|+|T | .

Table I and Table II show the formulas to calculate the
corresponding overlapping threshold T in the corresponding
“T -occurrence Problem.” and the range on the string length
using the length filter for each metric. In the tables, |R|
denotes the size of the gram set for a query, |Smin| denotes
the minimum size of the gram sets of the strings in the data
set, and f is the given similarity threshold for the query.
The prefix-filtering range for the metrics is the same as that
in Section IV-A, and the threshold T needs to be updated
correspondingly. The position filter is not applicable for these
functions since they do not consider the position of a gram in
a string.

TABLE I

LOWER BOUND ON THE NUMBER OF OCCURRENCES

Function Definition Merging threshold T

Jaccard |R∩S|
|R∪S| ≥ f max(f · |R|, |R|+|Smin|

1+1/f
)

Cosine |R∩S|√
|R|·|S| ≥ f f · √|R|√|Smin|

Dice 2|R∩S|
|R|+|S| ≥ f f · (|R| + |Smin|)/2

TABLE II

LENGTH RANGE.

Length range

Jaccard [f · |R| − q + 1 , |R|
f

− q + 1]

Cosine [f2 · |R| − q + 1, |R|
f2 − q + 1]

Dice [f ·|R|
2−f

− q + 1, (2−f)|R|
f

− q + 1]

We show how to derive the merging threshold for the
Jaccard function only. The analysis for the other two functions
is similar. For a query string, let R be its set of grams. Given
a threshold f , we want to find those strings s in the dataset
such that Jaccard(R, S) = |R∩S|

|R∪S| ≥ f , where S is the gram
set of the string s. Note that |R ∪ S| ≥ |R|. We have

|R ∩ S| ≥ f · |R ∪ S| ≥ f · |R|. (4)

On the other hand, |R∩S|
|R∪S| = |R∩S|

|R|+|S|−|R∩S| . Hence,

|R ∩ S| ≥ |R| + |S|
1 + 1/f

≥ |R| + |Smin|
1 + 1/f

. (5)

Combining Equations 4 and 5, we have:

|R ∩ S| ≥ max{f · |R|, |R| + |Smin|
1 + 1/f

}. (6)

A. Experiments

Figure 14 shows the performance of the DivideSkip al-
gorithm for the three similarity metrics on the DBLP data
set. (The experimental results on IMDB and WebCorpus are
similar.) Figure 14(a) shows the running time without filtering,
Figure 14(b) shows the results with length filtering, and
Figure 14(c) shows the results of using both the length filter
and the prefix filter. We have the following observations. (1)
The length filter is very effective improving the performance
for all the three metrics. It could improve the performance
of the case without using the filter five times. (2) The prefix
filter in conjunction with the length filter further reduced the
running time, and the average reduction was around 20%.

VI. RELATED WORK

In the literature “approximate string matching” also refers to
the problem of finding a pattern string approximately in a text.
There have been many studies on this problem. See [11] for an
excellent survey. The problem studied in this paper is different;
we want to search in a collection of strings those similar to a
single query string (“selection queries”). In this paper we use
“approximate string search” to refer to our problem.

Several algorithms (e.g., [3], [4]) have been proposed for
answering approximate string queries efficiently. Their main
strategy is to use various filtering techniques to improve the
performance. These filters can be adopted with slight modifi-
cations to be written as SQL queries inside a relational DBMS.
In this paper, we classify these filters into two categories, and
analyze their effects on efficient approximate string search.

There is a large amount of work in the information retrieval
(IR) community on designing efficient methods for indexing
and searching strings. Their primary focus is to efficiently
answer keyword queries using inverted indices. Our work is
also based on inverted lists of grams. Our contribution here is
in proposing several new merging algorithms for inverted lists
to support approximate queries. Note that our “T -occurrence
problem” is different from the problem of intersecting lists in
IR. The IR community proposed many techniques to compress
an in-memory inverted index, which would be useful in our
problem too.

Other related studies include [1], [2], [10], [9], [12], [13]
on similarity set joins. These algorithms find, given two
collections of sets, those pairs of sets that share enough
common elements. Similarity selections and similarity joins
are in essence different. The former could be treated as a
special case of the latter, but algorithms developed for the
latter might not be efficient for the former. Approximate string

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(m

s)

Similarity threshold

Jaccard
Cosine

Dice

(a) No filter.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(m

s)

Similarity threshold

Jaccard
Cosine

Dice

(b) Length filter.

 0

 5

 10

 15

 20

 25

 30

 35

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(m

s)

Similarity threshold

Jaccard
Cosine

Dice

(c) Length and prefix filters.

Fig. 14. Running time of DivideSkip using different similarity functions (DBLP data set).

search queries are important enough to deserve a separate
investigation, which is the focus of this paper.

Recently, Kim et al. [14] proposed a technique called “n-
Gram/2L” to improve space and time efficiency for inverted
index structures. Li et al. [5] proposed a new technique called
VGRAM to judiciously choose high-quality grams of variable
lengths from a collection of strings. Our research in this paper
is orthogonal to these studies and complementary to their work
on grams. Our merging algorithms are independent on the
indexing strategy, and can be easily used by those variant
techniques based on grams.

VII. CONCLUSION

In this paper we studied how to efficiently find in a
collection of strings those similar to a given string. We made
two contributions. First, we developed new algorithms that can
greatly improve the performance of existing algorithms. Sec-
ond, we studied how to integrate existing filtering techniques
with these algorithms, and showed that they should be used
together judiciously, since the way to do the integration can
greatly affect the performance. We reported the results of our
extensive experiments on several real data sets to evaluate the
proposed techniques.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-Similarity
Joins,” in VLDB, 2006, pp. 918–929.

[2] R. Bayardo, Y. Ma, and R. Srikant, “Scaling up all-pairs similarity
search,” in WWW Conference, 2007.

[3] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and
Efficient Fuzzy Match for Online Data Cleaning,” in SIGMOD, 2003,
pp. 313–324.

[4] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava, “Approximate string joins in a database (almost) for
free,” in VLDB, 2001, pp. 491–500.

[5] C. Li, B. Wang, and X. Yang, “VGRAM: Improving performance of
approximate queries on string collections using variable-length grams,”
in Very Large Data Bases, 2007.

[6] E. Sutinen and J. Tarhio, “On Using q-Grams Locations in Approximate
String Matching,” in ESA, 1995, pp. 327–340.

[7] E. Ukkonen, “Approximae String Matching with q-Grams and Maximal
Matching,” Theor. Comut. Sci., vol. 1, pp. 191–211, 1992.

[8] V. Levenshtein, “Binary Codes Capable of Correcting Spurious Inser-
tions and Deletions of Ones,” Profl. Inf. Transmission, vol. 1, pp. 8–17,
1965.

[9] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicate,”
in ACM SIGMOD, 2004.

[10] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in ICDE, 2006, pp. 5–16.

[11] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[12] K. Ramasamy, J. M. Patel, R. Kaushik, and J. F. Naughton, “Set
containment joins: The good, the bad and the ugly,” in VLDB, 2000.

[13] N. Koudas, S. Sarawagi, and D. Srivastava, “Record linkage: similarity
measures and algorithms,” in SIGMOD Tutorial, 2005, pp. 802–803.

[14] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee, “n-Gram/2L: A
space and time efficient two-level n-gram inverted index structure.” in
VLDB, 2005, pp. 325–336.

