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Abstract

We introduce a newsublinear spacedata structure—thecount-min sketch—for summarizing data
streams. Our sketch allows fundamental queries in data stream summarization such as poin
and inner product queries to be approximately answered very quickly; in addition, it can be a
to solve several important problems in data streams such as finding quantiles, frequent ite
The time and space bounds we show for using the CM sketch to solve these problems sign
improve those previously known—typically from 1/ε2 to 1/ε in factor.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

We consider a vectora, which is presented in an implicit, incremental fashion. T
vector has dimensionn, and its current state at timet isa(t) = [a1(t), . . . , ai(t), . . . , an(t)].
Initially, a is the zero vector,ai(0) = 0 for all i. Updates to individual entries of th
vector are presented as a stream of pairs. Thet th update is(it , ct ), meaning thatait (t) =
ait (t − 1) + ct , andai′(t) = ai′(t − 1) for all i′ �= it . At any time t , a query calls for
computing certain functions of interest ona(t).

This setup is thedata streamscenario that has emerged recently. Algorithms
computing functions within the data stream context need to satisfy the following desid
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First, the space used by the algorithm should be small, at most polylogarithmic inn, the
space required to representa explicitly. Since the space is sublinear in data and input s
the data structure used by the algorithms to represent the input data stream is m
summary—aka asketchor synopsis [17]—of it; because of this compression, almos
function that one needs to compute ona can be done precisely, so some approxima
is provably needed. Second, processing an update should be fast and simple; li
answering queries of a given type should be fast and have usable accuracy gua
Typically, accuracy guarantees will be made in terms of a pair of user specified param
ε and δ, meaning that the error in answering a query is within a factor ofε with
probability 1− δ. The space and update time will consequently depend onε andδ; our
goal will be limit this dependence as much as is possible.

Many applications that deal with massive data, such as Internet traffic analysis and
itoring contents of massive databases, motivate this one-pass data stream setup. T
been a frenzy of activity recently in the Algorithm, Database and Networking comm
ties on such data stream problems, with multiple surveys, tutorials, workshops and re
papers. See [3,12,28] for detailed description of the motivations driving this area.

In recent years, several different sketches have been proposed in the data stream
that allow a number of simple aggregation functions to be approximated. Quantiti
which efficient sketches have been designed include theL1 and L2 norms of vectors
[2,14,23], the number of distinct items in a sequence (i.e., number of non-zero e
in a(t)) [6,15,18], join and self-join sizes of relations (representable as inner-produ
vectorsa(t),b(t)) [1,2], item and range sum queries [5,20]. These sketches are of in
not simply because they can be used to directly approximate quantities of interest, b
because they have been used considerably as “black box” devices in order to co
more sophisticated aggregates and complex quantities: quantiles [21], wavelet
histograms [19,29], database aggregates and multi-way join sizes [10], etc. Sk
thus far designed are typically linear functions of their input, and can be represen
projections of an underlying vector representing the data with certain randomly c
projection matrices. This means that it is easy to compute certain functions on da
is distributed over sites, by casting them as computations on their sketches. So, th
suited for distributed applications too.

While sketches have proved powerful, they have the following drawbacks.

• Although sketches use small space, the space used typically has aΩ(1/ε2) multi-
plicative factor. This is discouraging becauseε = 0.1 or 0.01 is quite reasonable an
already, this factor proves expensive in space, and consequently, often, in per-
processing and function computation times as well.

• Many sketch constructions require time linear in the size of the sketch to proces
update to the underlying data [2,21]. Sketches are typically a few kilobytes up
megabyte or so, and processing this much data for every update severely lim
update speed.

• Sketches are typically constructed using hash functions with strong indepen
guarantees, such asp-wise independence [2], which can be complicated to evalu
particularly for a hardware implementation. One of the fundamental questions

what extent such sophisticated independence properties are needed.



60 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58–75

cified
nitors

pes of

tation.

ance
tream
se of

e call

t;
nd

ounds

eam
r

itters

airwise
ations.
e that

oretical

of
idual
r
tions

proves
• Many sketches described in the literature are good for one single, pre-spe
aggregate computation. Given that in data stream applications one typically mo
multiple aggregates on the same stream, this calls for using many different ty
sketches, which is a prohibitive overhead.

• Known analyses of sketches hide large multiplicative constants inside big-Oh no

Given that the area of data streams is being motivated by extremely high perform
monitoring applications—e.g., see [12] for response time requirements for data s
algorithms that monitor IP packet streams—these drawbacks ultimately limit the u
many known data stream algorithms within suitable applications.

We will address all these issues by proposing a new sketch construction, which w
thecount-min, or CM, sketch. This sketch has the advantages that:

(1) space used is proportional to 1/ε;
(2) the update time is significantly sublinear in the size of the sketch;
(3) it requires only pairwise independent hash functions that are simple to construc
(4) this sketch can be used for several different queries and multiple applications; a
(5) all the constants are made explicit and are small.

Thus, for the applications we discuss, our constructions strictly improve the space b
of previous results from 1/ε2 to 1/ε and the time bounds from 1/ε2 to 1, which is
significant.

Recently, aΩ(1/ε2) space lower bound was shown for a number of data str
problems: approximating frequency momentsFk(t) = ∑

k(ai(t))
k , estimating the numbe

of distinct items, and computing the Hamming distance between two strings [30].3 It is an
interesting contrast that for a number of similar seeming problems (finding heavy h
and quantiles in the most general data stream model) we are able to give anO(1/ε) upper
bound. Conceptually, CM sketch also represents progress since it shows that p
independent hash functions suffice for many of the fundamental data stream applic
From a technical point of view, CM sketch and its analyses are quite simple. We believ
this approach moves some of the fundamental data stream algorithms from the the
realm to the practical.

Our results have some technical nuances:

• The accuracy estimates for individual queries depend on theL1 norm of a(t) in
contrast to the previous works that depend on theL2 norm. This is a consequence
working with simple counts. The resulting estimates are often not as tight on indiv
queries sinceL2 norm is never greater than theL1 norm. But nevertheless, ou
estimates for individual queries suffice to give improved bounds for the applica
here where it is desired to state results in terms ofL1.

3 This bound has virtually been met for distinct items by results in [4], where clever use of hashing im

previous bounds ofO((logn/ε2) log(1/δ)) to Õ((1/ε2 + logn) log(1/δ)).
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• Most prior sketch constructions relied on embedding into small dimensions to es
norms. For example, [2] relies on embedding inspired by the Johnson–Lindens
lemma [24] for estimatingL2 norms. But accurate estimation of theL2 norm of a
stream requiresΩ(1/ε2) space [30]. Currently, all data stream algorithms that rely
such methods that estimateLp norms useΩ(1/ε2) space. One of the observatio
that underlie our work is while embedding into small space is needed for small
algorithms, it is not necessary that the methods accurately estimateL2 or in fact any
Lp norm, for most queries and applications in data streams. Our CM sketch do
help estimateL2 norm of the input, however, it accurately estimates the queries
are needed, which suffices for our data stream applications.

• Most data stream algorithm analyses thus far have followed the outline from
where one uses Chebyshev and Chernoff bounds in succession to boost pro
of success as well as the accuracy. This process contributes to the complexity b
Our analysis is simpler, relying only on the Markov inequality. Perhaps surprisi
in this way we get tighter, cleaner bounds.

The remainder of this paper is as follows: in Section 2 we discuss the queries
interest. We describe our count-min sketch construction and how it answers que
interest in Sections 3 and 4 respectively, and apply it to a number of problems to im
the best known complexity in Section 5. In each case, we state our bounds and d
compare it with the best known previous results.

All previously known sketches have many similarities. Our CM sketch lies in the s
framework, and finds inspiration from these previous sketches. Section 6 compar
results to past work, and shows how all relevant sketches can be compared in term
small number of parameters. This should prove useful to readers in contrasting th
number of results that have emerged recently in this area. Conclusions are in Sectio

2. Preliminaries

We consider a vectora, which is presented in an implicit, incremental fashion. T
vector has dimensionn, and its current state at timet isa(t) = [a1(t), . . . , ai(t), . . . , an(t)].
For convenience, we shall usually dropt and refer only to the current state of the vec
Initially, a is the zero vector,0, soai(0) is 0 for all i. Updates to individual entries of th
vector are presented as a stream of pairs. Thet th update is(it , ct ), meaning that

ait (t) = ait (t − 1) + ct ,

ai′(t) = ai′(t − 1), i′ �= it .

In some cases,cts will be strictly positive, meaning that entries only increase; in o
cases,cts are allowed to be negative also. The former is known as thecash registercase
and the latter theturnstile case [28]. There are two important variations of the turns
case to consider: whetherais may become negative, or whether the application gener
the updates guarantees that this will never be the case. We refer to the first of th

the generalcase, and the second as thenon-negativecase. Many applications that use
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sketches to compute queries of interest—such as monitoring database contents, an
IP traffic seen in a network link—guarantee that counts will never be negative. How
the general case occurs in important scenarios too, for example in distributed settings
one considers the subtraction of one vector from another, say.

At any timet , aquerycalls for computing certain functions of interest ona(t). We focus
on approximating answers to three types of query based on vectorsa andb:

• A point query, denotedQ(i), is to return an approximation ofai .
• A range queryQ(l, r) is to return an approximation of

∑r
i=l ai .

• An inner product query, denotedQ(a,b) is to approximatea � b = ∑n
i=1 aibi .

These queries are related: a range query is a sum of point queries; both point an
queries are specific inner product queries. However, in terms of approximations to
queries, results will vary. These are the queries that are fundamental to many applica
data stream algorithms, and have been extensively studied. In addition, they are of
in a non-data stream context. For example, in databases, the point and range que
of interest in summarizing the data distribution approximately; and inner-product qu
allow approximation of join size of relations. Fuller discussion of these aspects c
found in [16,28].

We will also study use of these queries to compute more complex functions on
streams. As examples, we will focus on the two following problems. Recall that‖a‖1 =∑n

i=1 |ai(t)|; more generally,||a||p = (
∑n

i=1 |ai(t)|p)1/p.

• (φ-quantiles) Theφ-quantiles of the cardinality‖a‖1 multiset of (integer) values eac
in the range 1. . . n consist of those items with rankkφ‖a‖1 for k = 0 . . .1/φ after
sorting the values. Approximation comes by accepting any integer that is betwe
item with rank(kφ − ε)‖a‖1 and the one with rank(kφ + ε)‖a‖1 for some specified
ε < φ.

• (heavy hitters) Theφ-heavy hitters of a multiset of‖a‖1 (integer) values each in th
range 1. . . n, consist of those items whose multiplicity exceeds the fractionφ of the
total cardinality, i.e.,ai � φ‖a‖1. There can be between 0 and 1/φ heavy hitters
in any given sequence of items. Approximation comes by accepting anyi such that
ai � (φ − ε)‖a‖1 for some specifiedε < φ.

We will assume the RAM model, where each machine word can store integers
max{‖a‖1, n}. Standard word operations take constant time and so we count space in
of number of words and we count time in terms of the number of word operations.
one estimates our space and time bounds in terms of number ofbits instead, a multiplicative
factor logmax{‖a‖1, n} is needed. Our goal is to solve the queries and the prob
above using a sketch data structure, that is using space and time significantly subl
polylogarithmic—in input sizen and‖a‖1. All our algorithms will be approximate an
probabilistic; they need two parameters,ε and δ, meaning that the error in answering
query is within a factor ofε with probabilityδ. Both these parameters will affect the spa

and time needed by our solutions. Each of these queries and problems has a rich history of
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work in the data stream area. We refer the readers to surveys [3,28], tutorials [16], a
as the general literature.

3. Count-min sketches

We now introduce our data structure, the count-min, or CM, sketch. It is named
the two basic operations used to answer point queries, counting first and comput
minimum next. We usee to denote the base of the natural logarithm function, ln.

3.1. Data structure

A count-min(CM) sketchwith parameters(ε, δ) is represented by a two-dimension
array counts with widthw and depthd : count[1,1] . . .count[d,w]. Given parameter
(ε, δ), set w = �e/ε� and d = �ln(1/δ)�. Each entry of the array is initially zero
Additionally, d hash functions

h1 . . . hd : {1 . . . n} → {1 . . .w}
are chosen uniformly at random from a pairwise-independent family.

3.2. Update procedure

When an update(it , ct ) arrives, meaning that itemait is updated by a quantity ofct ,
thenct is added to one count in each row; the counter is determined byhj . Formally, set
∀1� j � d ,

count
[
j,hj (it )

] ← count
[
j,hj (it )

] + ct .

This procedure is illustrated in Fig. 1.
The space used by count-min sketches is the array ofwd counts, which takeswd words,

andd hash functions, each of which can be stored using 2 words when using the pa
functions described in [27].

Fig. 1. Each itemi is mapped to one cell in each row of the array of counts: when an update ofct to item it

arrives,ct is added to each of these cells.
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4. Approximate query answering using CM sketches

For each of the three queries introduced in Section 2: point, range, and inner p
queries, we show how they can be answered using count-min sketches.

4.1. Point query

We first show the analysis for point queries for the non-negative case.

Estimation procedure
The answer toQ(i) is given byâi = minj count[j,hj (i)].

Theorem 1. The estimatêai has the following guarantees: ai � âi; and, with probability
at least1− δ,

âi � ai + ε‖a‖1.

Proof. We introduce indicator variablesIi,j,k , which are 1 if(i �= k) ∧ (hj (i) = hj (k)),
and 0 otherwise. By pairwise independence of the hash functions, then

E(Ii,j,k) = Pr
[
hj (i) = hj (k)

]
� 1

range(hj )
= ε

e
.

Define the variableXi,j (random over the choices ofhi ) to be Xi,j = ∑n
k=1 Ii,j,kak.

Since allai are non-negative in this case,Xi,j is a non-negative variable. By constructio
count[j,hj (i)] = ai + Xi,j . So, clearly, mincount[j,hj (i)] � ai . For the other direction
observe that

E(Xi,j ) = E

(
n∑

k=1

Ii,j,kak

)
�

n∑
k=1

akE(Ii,j,k) � ε

e
‖a‖1

by pairwise independence ofhj , and linearity of expectation. By the Markov inequality

Pr
[
âi > ai + ε‖a‖1

] = Pr
[∀j .count

[
j,hj (i)

]
> ai + ε‖a‖1

]
= Pr

[∀j . ai + Xi,j > ai + ε‖a‖1
]

= Pr
[∀j .Xi,j > eE(Xi,j )

]
< e−d � δ. �

The time to produce the estimate isO(ln(1/δ)) since finding the minimum count can b
done in linear time; the same time bound holds for updates. The constante is used here to
minimize the space used: more generally, we can setw = ε/b andd = logb(1/δ) for any
b > 1 to get the same accuracy guarantee. Choosingb = e minimizes the space used, sin
this solves d(wd)/db = 0, giving a cost of(2+ e/ε) ln(1/δ) words. For implementations
it may be preferable to use other (integer) values ofb for simpler computations or faste
updates. Note that for values ofai that are large relative to‖a‖1, the bound in terms

of ε‖a‖1 can be translated into a relative error in terms ofai . This has implications for
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certain applications which rely on retrieving large values, such as large wavelet or F
coefficients.

The best known previous result using sketches was in [5]: there sketches
used to approximate point queries. Results were stated in terms of the frequen
individual items. For arbitrary distributions, the space used isO((1/ε2) log(1/δ)), and the
dependency onε is 1/ε2 in every case considered. A significant difference between
sketches and previous work comes in the analysis:

• All prior analyses of sketch structures compute the variance of their estimato
order to apply the Chebyshev inequality, which brings the dependency onε2. Directly
applying the Markov inequality yields a more direct analysis which depends onlyε.
Practitioners may have discovered that less thanO(1/ε2) space is needed in practic
here, we give proof of why this is so and the tighter bound.

• Because only positive quantities are added to the counters then it is possible to t
minimum instead of the median for the estimate. This allows a simple calculation
failure probability, without recourse to Chernoff bounds. This significantly impro
the constants involved: in [5], for example, the constant factors within the big
notation is at least 256; here, the constant factor is less than 3.

• The error bound here is one-sided, as opposed to all previous constructions whic
two-sided errors. This brings benefits for many applications which use sketches

In Section 6 we show how all existing sketch constructions can be viewed as vari
of a common procedure. This emphasizes the importance of our attempt to find the s
sketch construction which has the best guarantees and smallest constants. A simila
holds when entries of the implicit vectora may be negative, which is the general case.

Estimation procedure for general case
This timeQ(i) is answered witĥai = medianj count[j,hj (i)].

Theorem 2. With probability1− δ1/4,

ai − 3ε‖a‖1 � âi � ai + 3ε‖a‖1.

Proof. Observe thatE(|count[j,hj (i)] − ai |) � ε‖a‖1/e, and so the probability that an
count is off by more than 3ε‖a‖1 is less than 1/8. Applying Chernoff bounds tells us th
the probability of the median of ln(1/δ) copies of this procedure being wrong is less th
δ1/4. �

The time to produce the estimate isO(ln(1/δ)) and the space used is(2+ e/ε) ln(1/δ)

words. The best prior result for this problem was the method of [5]. Again, the depen
on ε here is improved from 1/ε2 to 1/ε. By avoiding analyzing the variance of th
estimator, again the analysis is simplified, and the constants are significantly small

in previous works.
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4.2. Inner product query

Estimation procedure
Set (â � b)j = ∑w

k=1 counta[j, k] ∗ countb[j, k]. Our estimation ofQ(a,b) for non-

negative vectorsa andb is â � b = minj (â � b)j .

Theorem 3. a � b � â � b and, with probability1− δ, â � b � a � b + ε‖a‖1‖b‖1.

Proof.(
â � b

)
j

=
n∑

i=1

aibi +
∑
p �=q

hj (p)=hj (q)

apbq.

Clearly,a � b � â � bj for non-negative vectors. By pairwise independence ofh,

E
(
â � bj − a � b

) =
∑
p �=q

Pr
[
hj (p) = hj (q)

]
apbq �

∑
p �=q

εapbq

e
� ε‖a‖1‖b‖1

e
.

So, by the Markov inequality,Pr[â � b − a � b > ε‖a‖1‖b‖1] � δ, as required. �
The space and time to produce the estimate isO((1/ε) log(1/δ)). Updates are

performed in timeO(log(1/δ)).
Note that in the special case wherebi = 1, andb is zero at all other locations, the

this procedure is identical to the above procedure for point estimation, and gives the
error guarantee (since‖b‖1 = 1). A similar result holds in the general case, where vec
may have negative entries. Taking the median of(â � b)j would give a guaranteed goo
quality approximation; however, we do not know of any application which makes u
inner products of such vectors, so we do not give the full details here. We next co
the application of inner-product computation to Join size estimation, where the v
generated have non-negative entries.

Join size estimation is important in database query planners in order to determ
best order in which to evaluate queries. Thejoin size of two database relations on
particular attribute is the number of items in the cartesian product of the two rela
which agree the value of that attribute. We assume without loss of generality that at
values in the relation are integers in the range 1. . . n. We represent the relations bei
joined as vectorsa andb so that the valuesai represents the number of tuples which ha
valuei in the first relation, andbi similarly for the second relation. Then clearlya�b is the
join size of the two relations. Using sketches allows estimates to be made in the pr
of items being inserted to and deleted from relations. The following corollary follows
the above theorem.

Corollary 1. The join size of two relations on a particular attribute can be approxima

up toε‖a‖1‖b‖1 with probability1− δ, by keeping spaceO((1/ε) log(1/δ)).



G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58–75 67

care is
rms of
t
an
hen
er, and
re, the
be

length

s
s for
plexity

opt the

h

of
hen,

ly
m of the

-

Previous results have used the “tug-of-war” sketches [1]. However, here some
needed in the comparison of the two methods: the prior work gives guarantees in te
theL2 norm of the underlying vectors, with additive error ofε‖a‖2‖b‖2; here, the resul
is in terms of theL1 norm. In some cases, theL2 norm can be quadratically smaller th
theL1 norm. However, when the distribution of items is non-uniform, for example w
certain items contribute a large amount to the join size, then the two norms are clos
the guarantees of the CM sketch method is closer to the existing method. As befo
space cost of previous methods wasΩ(1/ε2), so there is a significant space saving to
had with CM sketches.

4.3. Range query

Defineχ(l, r) to be the vector of dimensionn such thatχ(l, r)i = 1 ⇔ l � i � r , and
0 otherwise. ThenQ(l, r) can straightforwardly be re-posed asQ(a,χ(l, r)). However,
this method has two drawbacks: first, the error guarantee is in terms of‖a‖1‖χ(l, r)‖1 and
therefore large range sums have an error guarantee which increases linearly with the
of the range; and second, the time cost to directly compute the sketch forχ(l, r) depends
linearly in the length of the range,r − l + 1. In fact, it is clear that computing range sum
in this way using our sketches is not much different to simply computing point querie
each item in the range, and summing the estimates. One way to avoid the time com
is to use range-sum random variables from [20] to quickly determine a sketch ofχ(l, r),
but that is expensive and still does not overcome the first drawback. Instead, we ad
use ofdyadic rangesfrom [21]: a dyadic range is a range of the form[x2y +1 . . . (x +1)2y]
for parametersx andy.

Estimation procedure
Keep log2 n CM sketches, in order to answer range queriesQ(l, r) approximately. Any

range query can be reduced to at most 2 log2 n dyadic rangequeries, which in turn can eac
be reduced to a single point query. Each point in the range[1 . . . n] is a member of log2 n

dyadic ranges, one for eachy in the range 0. . . log2 n − 1. A sketch is kept for each set
dyadic ranges of length 2y , and update each of these for every update that arrives. T
given a range queryQ(l, r), compute the at most 2 log2 n dyadic ranges which canonical
cover the range, and pose that many point queries to the sketches, returning the su
queries as the estimate.

Example 1. For n = 256, the range[48,107] is canonically covered by the non
overlapping dyadic ranges[48. . .48], [49. . .64], [65. . .96], [97. . .104], [105. . .106],
[107. . .107].

Let a[l, r] = ∑r
i=l ai be the answer to the queryQ(l, r) and letâ[l, r] be the estimate

using the procedure above.

Theorem 4. a[l, r] � â[l, r] and with probability at least1− δ,
â[l, r] � a[l, r] + 2ε logn‖a‖1.
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Proof. Applying the inequality of Theorem 1, thena[l, r] � â[l, r]. Consider each
estimator used to form̂a[l, r]; the expectation of the additive error for any of these
2 logn(ε/e)‖a‖1, by linearity of expectation of the errors of each point estimate. Apply
the same Markov inequality argument as before, the probability that this additive
is more than 2ε logn‖a‖1 for any estimator is less than 1/e; hence, for all of them the
probability is at mostδ. �

The time to compute the estimate or to make an update isO(logn log(1/δ)). The space
used isO((logn/ε) log(1/δ)).

The above theorem states the bound for the standard CM sketch size. The gu
will be more useful when stated without terms of logn in the approximation bound. Th
can be changed by increasing the size of the sketch, which is equivalent to rescaε.
In particular, if we want to estimate a range sum correct up toε′‖a‖1 with probability
1 − δ then setε = ε′/(2 logn). The space used isO((log2 n/ε′) log(1/δ)). An obvious
improvement of this technique in practice is to keep exact counts for the first few
of the hierarchy, where there are only a small number of dyadic ranges. This improv
space, time and accuracy of the algorithm in practice, although the asymptotic boun
unaffected.

For smaller ranges, ranges that are powers of 2, or more generally, any range
endpoints can be expressed in binary using a small number of 1s, then improved
are possible; we have given the worst case bounds above.

One way to compute approximate range sums is via approximate quantiles: u
algorithm such as [22,25] to find theε quantiles of the stream, and then count how m
quantiles fall within the range of interest to give anO(ε) approximation of the range quer
Such an approach has several disadvantages:

(1) Existing approximate quantile methods work in the cash register model, rathe
the more general turnstile model that our solutions work in.

(2) The time cost to update the data structure can be high, sometimes linear in the
the structure.

(3) Existing algorithms assume single items arriving one by one, so they do not h
fractional values or large values being added, which can be easily handled by s
based approaches.

(4) The worst case space bound depends onO((1/ε) log(‖a‖1/ε)), which can grow
indefinitely. The sketch based solution works in fixed space that is independ
‖a‖1.

The best previous bounds for this problem in the turnstile model are given in [21], w
range queries are answered by keepingO(logn) sketches, each of sizeO((1/ε′2) logn ×
log(logn/δ)) to give approximations with additive errorε‖a‖1 with probability 1− δ′.
Thus the space used there isO((log2 n/ε′2) log(logn/δ)) and the time for updates is line
in the space used. The CM sketch improves the space and time bounds; it impro
constant factors as well as the asymptotic behavior. The time to process an up
significantly improved, since only a few entries in the sketch are modified, rather

a linear number.
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5. Applications of count-min sketches

By using CM sketches, we show how to improve best known time and space boun
the two problems from Section 2.

5.1. Quantiles in the turnstile model

In [21] the authors showed that finding the approximateφ-quantiles of the data subje
to insertions and deletions can be reduced to the problem of computing range sum
simply, the algorithm is to do binary searches for ranges 1. . . r whose range suma[1, r] is
kφ‖a‖1 for 0 � k � 1/φ. The method of [21] usesrandom subset sumsto compute range
sums. By replacing this structure with count-min sketches, the improved results f
immediately. By keeping logn sketches, one for each dyadic range and setting the acc
parameter for each to beε/ logn and the probability guarantee toδφ/ logn, the overall
probability guarantee for all 1/φ quantiles is achieved.

Theorem 5. ε-approximateφ-quantiles can be found with probability at least1 − δ by
keeping a data structure with spaceO((1/ε) log2 n log(logn/(φδ))). The time for each
insert or delete operation isO(logn log(logn/(φδ))), and the time to find each quanti
on demand isO(logn log(logn/(φδ))).

Choosing CM sketches over random subset sums improves both the query time
update time fromO((1/ε2) log2 n log(logn/(εδ))), by a factor of more than(34/ε2) logn.
The space requirements are also improved by a factor of at least 34/ε.

It is illustrative to contrast our bounds with those for the problem in the we
cash register model where items are only inserted (recall that in our stronger tu
model, items are deleted as well). The previously best known space bounds for fi
approximate quantiles isO((1/ε)(log2(1/ε) + log2 log(1/δ))) space for a randomize
sampling solution [25] andO((1/ε) log(ε‖a‖1)) space for a deterministic solution [22
These bounds are not completely comparable, but our result is the first on the
powerful turnstile model to be comparable to the cash register model bounds in the l
1/ε term.

5.2. Heavy hitters

We consider this problem in both the cash register model (meaning that all upda
positive) and the more challenging turnstile model (where updates are both positiv
negative, with the restriction that count of any item is never less than zero, i.e.,ai(t) � 0).

Cash register case
It is possible to maintain the current value of‖a‖1 throughout, since‖a(t)‖1 = ∑t

i=1 ci .
On receiving item(it , ct ), update the sketch as before and pose point queryQ(it ): if
estimateâit is above the threshold ofφ‖a(t)‖1, it is added to a heap. The heap is k

small by checking that the current estimated count for the item with lowest count is above
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threshold; if not, it is deleted from the heap as in [5]. At the end of the input, the he
scanned, and all items in the heap whose estimated count is still aboveφ‖a‖1 are output.

Theorem 6. The heavy hitters can be found from an inserts only sequence of length‖a‖1,
by using CM sketches with spaceO((1/ε) log(‖a‖1/δ)), and timeO(log(‖a‖1/δ)) per
item. Every item which occurs with count more thanφ‖a‖1 time is output, and with
probability 1− δ, no item whose count is less than(φ − ε)‖a‖1 is output.

Proof. This procedure relies on the fact that the threshold value increases monoton
therefore, if an item did not pass the threshold in the past, it cannot do so in the
without its count increasing. By checking the estimated value every time an items
increases, no heavy hitters will be omitted. By the one-sided error guarantee of sk
every heavy hitter is included in the output, but there is some possibility of including
heavy hitters in the output. To do this, the parameterδ is scaled to ensure that over all‖a‖1

queries posed to the sketch, the probability of mistakenly outputting an infrequent i
bounded by 1− δ, using the union bound.�

We can compare our results to the best known previous work. The algorithm
solves this problem using Count sketches in worst case spaceO((1/ε2) log(‖a‖1/δ)),
which we strictly improve here. A randomized algorithm given in [26] hasexpectedspace
costO((1/ε) log(1/(φδ))), slightly better than our worst case space usage. Meanw
a deterministic algorithm in the same paper solves the problem in worst case
O((1/ε) log(‖a‖1/ε)). However, for both algorithms in [26] the time cost of process
each insertion can be high (Ω(1/ε)): periodically, there are operations with cost linear
the space used. For high speed applications, our worst case time bound may be pre

Turnstile case
We adopt the solution given in [8], which describes a divide and conquer proc

to find the heavy hitters. This keeps sketches for computing range sums: logn different
sketches, one for each different dyadic range. When an update(it , ct ) arrives, then eac
of these is updated as before. In order to find all the heavy hitters, a parallel b
search is performed, descending one level of the hierarchy at each step. Nodes
hierarchy (corresponding to dyadic ranges) whose estimated weight exceeds the th
of (φ + ε)‖a‖1 are split into two ranges, and investigated recursively. All single it
found in this way whose approximated count exceeds the threshold are output.

We instead must limit the number of items output whose true frequency is less
the fractionφ. This is achieved by setting the probability of failure for each sketch t
δφ/(2 logn). This is because, at each level there are at most 1/φ items with frequency
more thanφ. At most twice this number of queries are made at each level, for all o
logn levels. By scalingδ like this and applying the union bound ensures that, over al
queries, the total probability that any one (or more) of them overestimated by more
a fractionε is bounded byδ, and so the probability that every query succeeds is 1− δ. It

follows that
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Theorem 7. The algorithm uses spaceO((1/ε) logn log(2 logn/(δφ))) and timeO(logn ×
log(2 logn/(δφ))) per update. Every item with frequency at least(φ + ε)‖a‖1 is output,
and with probability1− δ no item whose frequency is less thanφ‖a‖1 is output.

The previous best known bound appears in [8], where a non-adaptive group t
approach was described. Here, the space bounds agree asymptotically but ha
improved in constant factors; a further improvement is in the nature of the guar
previous methods gave probabilistic guarantees about outputting the heavy hitters
there is absolute certainty that this procedure will find and output every heavy
because the CM sketches never underestimate counts, and strong guarantees are g
no non-heavy hitters will be output. This is often desirable.

In some situations in practice, it is vital that updates are as fast as possible, an
update time can be played off against search time: ranges based on powers of two
replaced with an arbitrary branching factork, which reduces the number of levels to logk n,
at the expense of costlier queries and weaker guarantees on outputting non-heavy

Hierarchical heavy hitters. A generalization of this problem is finding hierarchical hea
hitters [7], which assumes that the items are leaves in a hierarchy of depthh. Here the
goal is to find all nodes in the hierarchy which are heavy hitters,after discounting the
contribution of any descendant heavy hitter nodes. Using our CM sketch, the cost of th
solution given in [7] for the turnstile model can be improved fromO((h/ε2) log(1/δ))

space and time per update toO((h/ε) log(1/δ)) space andO(h log(1/δ)) time per update

6. Comparison of sketch techniques

We give a common framework to summarize known sketch constructions, and co
the time and space requirements for each of the fundamental queries—point, ran
inner products—using them.

Here is a brief summary of known sketch constructions. The first sketch constru
was that of Alon, Matias and Szegedy [2], whosetug-of-warsketches are computed usi
4-wise random hash functionsgj mapping items to{+1,−1}. Thej th entry of the sketch
which is a vector of lengthO((1/ε2) log(1/δ)), is defined to be

∑
ai ∗ gj (i), which is

easy to maintain under updates. This structure was applied to finding inner produ
[1,20] where, in our notation, it was shown that it is possible to compute inner pro
with additive error±ε‖a‖2‖b‖2. In [20], the authors use these sketches to compute
wavelet coefficients. In particular, they show how the structure allows point queries
computed up to additive error of±ε‖a‖2. They also compute range sumsQ(l, r): here
range-summable random variables are used to compute the sums efficiently, but this
a factor ofO(logn) additional time and space to compute these. Also note that her
error guarantees are much worse for large ranges:ε(r − l + 1)‖a‖1.

For point queries only, then pairwise independence suffices for tug-of-war sketch
observed by [5]. These authors additionally used a second hash set of hash functiohj ,
to spread out the effect of high frequency items in theircount sketch. For point queries, this

gives the same space bounds, but an improved time bound toO(log(1/δ)) for updating the
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Table 1
Comparison of different space and time requirements of sketching methods

Method Ref. Query Space Update Query Randomn
time time needed

Tug-of-war [1] Inner-product 1/ε2 1/ε2 1/ε2 4-wise

Tug-of-war [20] Point logn/ε2 logn/ε2 logn/ε2 4-wise

Range logn/ε2 logn/ε2 logn/ε2 4-wise

Random subset-sums [21] Range log2 n/ε2 log2 n/ε2 log2 n/ε2 Pairwise

Count sketches [5] Point 1/ε2 1 1 Pairwise

Count-min sketches (this paper) Point 1/ε 1 1 Pairwise

Inner-product 1/ε 1 1/ε Pairwise

Range logn/ε logn logn/ε Pairwise

The dependency onε andn is shown, a factor ofO(log(1/δ)) applies to each entry and is omitted.

sketch.4 Random subset sumswere introduced in [21] in order to compute point quer
and range sums. Here, 2-universal hash functions5 hj map items to{0,1}, and thej th entry
of the sketch is maintained as

∑n
i=1 ai ∗ hj (i). The asymptotic space and time bounds

different techniques in terms of their dependence on epsilon are summarized in Tab
All of the above sketching techniques, and the one which we propose in this pap

all be described in a common way. Firstly, they can all be viewed as linear projectio
the vectora with appropriately chosen random vectors, but more than this, the compu
of these linear projections is very similar between all methods. Define a sketch to
two dimensional array of dimensionw by d . Let h1 . . . hd be pairwise independent ha
functions mapping from{1 . . . n} to {1 . . .w}, and letg1 . . . gd be another hash functio
whose range and randomness varies from construction to construction. The(j, k)th entry
of the sketch is defined to be∑

i: hk(i)=j

ai ∗ gk(i).

The contents of the sketch for each of the above techniques is specified by the para
w, d , and g; methods of answering queries using the sketch vary from techniqu
technique. The update time for each sketch isO(d) computations ofg and h, and the
space requirement is dominated by theO(wd) counters, provided that the hash functio
can be stored efficiently.

• Tug of war sketches havew = 1, d = O((1/ε2) log(1/δ)), g(i) is {+1,−1} with
4-wise independence.

• Count sketches havew = O(1/ε2), d = O(log(1/δ)), g(i) is {+1,−1} with 2-wise
independence.

4 We observe that the same idea, of replacing the averaging ofO(1/ε2) copies of an estimator with
2-universal hash function distributing toO(1/ε2) buckets can also reduce the update time for “tug-of-w
sketches and similar constructions toO(log(1/δ)).

5 In [21] the authors use a 3-wise independent hash function onto{0,1}, chosen because it is easy to compu

but pairwise suffices.
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• Random subset sums havew = 2, d = (24/ε2) log(1/δ), g(i) is 1.
• Count-min sketches havew = e/ε, d = ln(1/δ), g(i) = 1.

We briefly mention some other well-known sketch constructions, and explain why
are not appropriate for the queries we study here. [14] gave a sketch construct
computing theL1 difference between vectors. It extends the tug-of-war construction
technical contribution being a demonstration of how to compute range sums of 4
random variables efficiently. Indyk [23] pioneered the use of stable distributions in s
computations, again in order to computeLp norms of vectors presented as a sequenc
updates. However, all these norm computations do not directly answer the three quer
we consider here. Lastly, we note that our count-min sketches appear similar in out
both the uniscan algorithm due to Fang et al. [13] and the parallel multistage filters of
and Varghese [11]. Our construction differs for the following reasons:

(1) the structures from prior work are not sketches: they do not approximate any
but instead return only a binary answer about whether an item has exceeded a
numeric threshold;

(2) the algorithms used require updates to be only positive; and
(3) the analysis does not consider any limited independence needed for the hash fu

in contrast to CM sketches, which require only pairwise independence.

The methods in [11,13] as such seem to use fully independent hash functions w
prohibitive in principle.

7. Conclusions

We have introduced the count-min sketch, and shown how to estimate fundam
queries such as point, range or inner product queries as well as solve more sophi
problems such as quantiles and heavy hitters. The space and/or time bounds of our s
improve previously best known bounds for these problems. Typically the improvem
from 1/ε2 factor to 1/ε which is significant in real applications. Our CM sketch is qu
simple, and is likely to find many applications, including in hardware solutions for t
problems.

We have recently applied these ideas to the problem of change detection o
streams [9], and we also believe that it can be applied to improve the time and space
for constructing approximate wavelet and histogram representations of data stream
Also, the CM sketch can also be naturally extended to solve problems on stream
describe multidimensional arrays rather than the unidimensional array problems w
discussed so far.

Our CM sketch is not effective when one wants to compute the norms of data s
inputs. These have applications to computing correlations between data stream
tracking the number of distinct elements in streams, both of which are of great inter
is an open problem to design extremely simple, practical sketches such as our CM

for estimating such correlations and more complex data stream applications.
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