Available online at www.sciencedirect.com

SCIENCE@DIRECT” Jou_rnal Of
Algorithms

b

ELS ER Journal of Algorithms 55 (2005) 58-75 B
www.elsevier.com/locate/jalgor

An improved data stream summary:
the count-min sketch and its applications

Graham Cormod&-!, S. Muthukrishnaf?

a Center for Discrete Mathematics and Computer Science (DIMACS), Rutgers University, Piscataway, NJ, USA
b Division of Computer and Information Systems, Rutgers University and AT&T Research, USA

Received 6 June 2003
Available online 4 February 2004

Abstract

We introduce a newublinear spacelata structure—theount-min sketch-for summarizing data
streams. Our sketch allows fundamental queries in data stream summarization such as point, range,
and inner product queries to be approximately answered very quickly; in addition, it can be applied
to solve several important problems in data streams such as finding quantiles, frequent items, etc.
The time and space bounds we show for using the CM sketch to solve these problems significantly
improve those previously known—typically frorr;(sl2 to 1/¢ in factor.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

We consider a vectat, which is presented in an implicit, incremental fashion. This
vector has dimensiom, and its current state attimés a(t) = [a1(?), ..., a; (1), ..., a,()].
Initially, a is the zero vectorg;(0) = 0 for all ;. Updates to individual entries of the
vector are presented as a stream of pairs. /ilneipdate is(i;, ¢;), meaning that;, () =
aj,(t —1) + ¢;, anday (1) = ap(r — 1) for all i’ # i;. At any time¢, a query calls for
computing certain functions of interest a(y).

This setup is thedata streamscenario that has emerged recently. Algorithms for
computing functions within the data stream context need to satisfy the following desiderata.

* Corresponding author.

E-mail addresseggraham@dimacs.rutgers.edu (G. Cormode), muthu@cs.rutgers.edu (S. Muthukrishnan).
1 supported by NSF ITR 0220280 and NSF EIA 02-05116.
2 supported by NSF CCR 0087022, NSF ITR 0220280 and NSF EIA 02-05116.

0196-6774/% — see front mattét 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2003.12.001

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 59

First, the space used by the algorithm should be small, at most polylogarithmjdhe

space required to represenexplicitly. Since the space is sublinear in data and input size,
the data structure used by the algorithms to represent the input data stream is merely a
summary—aka a&ketchor synopsis [17]—of it; because of this compression, almost no
function that one needs to compute @rcan be done precisely, so some approximation

is provably needed. Second, processing an update should be fast and simple; likewise,
answering queries of a given type should be fast and have usable accuracy guarantees.
Typically, accuracy guarantees will be made in terms of a pair of user specified parameters,
¢ and §, meaning that the error in answering a query is within a factoe ofith
probability 1— §. The space and update time will consequently depene ands; our

goal will be limit this dependence as much as is possible.

Many applications that deal with massive data, such as Internet traffic analysis and mon-
itoring contents of massive databases, motivate this one-pass data stream setup. There has
been a frenzy of activity recently in the Algorithm, Database and Networking communi-
ties on such data stream problems, with multiple surveys, tutorials, workshops and research
papers. See [3,12,28] for detailed description of the motivations driving this area.

In recent years, several different sketches have been proposed in the data stream context
that allow a number of simple aggregation functions to be approximated. Quantities for
which efficient sketches have been designed includelth@nd L, norms of vectors
[2,14,23], the number of distinct items in a sequence (i.e., number of non-zero entries
in a(z)) [6,15,18], join and self-join sizes of relations (representable as inner-products of
vectorsa(t), b(t)) [1,2], item and range sum queries [5,20]. These sketches are of interest
not simply because they can be used to directly approximate quantities of interest, but also
because they have been used considerably as “black box” devices in order to compute
more sophisticated aggregates and complex quantities: quantiles [21], wavelets [20],
histograms [19,29], database aggregates and multi-way join sizes [10], etc. Sketches
thus far designed are typically linear functions of their input, and can be represented as
projections of an underlying vector representing the data with certain randomly chosen
projection matrices. This means that it is easy to compute certain functions on data that
is distributed over sites, by casting them as computations on their sketches. So, they are
suited for distributed applications too.

While sketches have proved powerful, they have the following drawbacks.

o Although sketches use small space, the space used typically fa4/a%) multi-
plicative factor. This is discouraging because 0.1 or 001 is quite reasonable and
already, this factor proves expensive in space, and consequently, often, in per-update
processing and function computation times as well.

e Many sketch constructions require time linear in the size of the sketch to process each
update to the underlying data [2,21]. Sketches are typically a few kilobytes up to a
megabyte or so, and processing this much data for every update severely limits the
update speed.

e Sketches are typically constructed using hash functions with strong independence
guarantees, such gswise independence [2], which can be complicated to evaluate,
particularly for a hardware implementation. One of the fundamental questions is to
what extent such sophisticated independence properties are needed.

60 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75

e Many sketches described in the literature are good for one single, pre-specified
aggregate computation. Given that in data stream applications one typically monitors
multiple aggregates on the same stream, this calls for using many different types of
sketches, which is a prohibitive overhead.

o Known analyses of sketches hide large multiplicative constants inside big-Oh notation.

Given that the area of data streams is being motivated by extremely high performance
monitoring applications—e.g., see [12] for response time requirements for data stream
algorithms that monitor IP packet streams—these drawbacks ultimately limit the use of
many known data stream algorithms within suitable applications.

We will address all these issues by proposing a new sketch construction, which we call
the count-min or CM, sketch. This sketch has the advantages that:

(1) space used is proportional tgel

(2) the update time is significantly sublinear in the size of the sketch;

(3) it requires only pairwise independent hash functions that are simple to construct;
(4) this sketch can be used for several different queries and multiple applications; and
(5) all the constants are made explicit and are small.

Thus, for the applications we discuss, our constructions strictly improve the space bounds
of previous results from /k2 to 1/¢ and the time bounds from/&2 to 1, which is
significant.

Recently, as2(1/¢%) space lower bound was shown for a number of data stream
problems: approximating frequency momenjss) = >, (a; (1))¥, estimating the number
of distinct items, and computing the Hamming distance between two string3 [88]an
interesting contrast that for a number of similar seeming problems (finding heavy hitters
and quantiles in the most general data stream model) we are able to givg A+ upper
bound. Conceptually, CM sketch also represents progress since it shows that pairwise
independent hash functions suffice for many of the fundamental data stream applications.
From a technical point of view, CM sketch and its analyses are quite simple. We believe that
this approach moves some of the fundamental data stream algorithms from the theoretical
realm to the practical.

Our results have some technical nuances:

e The accuracy estimates for individual queries depend onLth@orm of a(z) in
contrast to the previous works that depend onithenorm. This is a consequence of
working with simple counts. The resulting estimates are often not as tight on individual
queries sinceL, norm is never greater than thie; norm. But nevertheless, our
estimates for individual queries suffice to give improved bounds for the applications
here where it is desired to state results in terms of

3 This bound has virtually been met for distinct items by results in [4], where clever use of hashing improves
previous bounds 00((|Ogn/£2) log(1/6)) to 0((1/82 + logn)log(1/$)).

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 61

e Most prior sketch constructions relied on embedding into small dimensions to estimate
norms. For example, [2] relies on embedding inspired by the Johnson—Lindenstrauss
lemma [24] for estimating., norms. But accurate estimation of tiie norm of a
stream requires2 (1/¢2) space [30]. Currently, all data stream algorithms that rely on
such methods that estimalg, norms use2(1/¢2) space. One of the observations
that underlie our work is while embedding into small space is needed for small space
algorithms, it is not necessary that the methods accurately estitpaiein fact any
L, norm, for most queries and applications in data streams. Our CM sketch does not
help estimate., norm of the input, however, it accurately estimates the queries that
are needed, which suffices for our data stream applications.

e Most data stream algorithm analyses thus far have followed the outline from [2]
where one uses Chebyshev and Chernoff bounds in succession to boost probability
of success as well as the accuracy. This process contributes to the complexity bounds.
Our analysis is simpler, relying only on the Markov inequality. Perhaps surprisingly,
in this way we get tighter, cleaner bounds.

The remainder of this paper is as follows: in Section 2 we discuss the queries of our
interest. We describe our count-min sketch construction and how it answers queries of
interest in Sections 3 and 4 respectively, and apply it to a number of problems to improve
the best known complexity in Section 5. In each case, we state our bounds and directly
compare it with the best known previous results.

All previously known sketches have many similarities. Our CM sketch lies in the same
framework, and finds inspiration from these previous sketches. Section 6 compares our
results to past work, and shows how all relevant sketches can be compared in terms of a
small number of parameters. This should prove useful to readers in contrasting the vast
number of results that have emerged recently in this area. Conclusions are in Section 7.

2. Preliminaries

We consider a vectae, which is presented in an implicit, incremental fashion. This
vector has dimensiom, and its current state attimés a(t) = [a1(?), ..., a; (1), ..., a,(1)].
For convenience, we shall usually dropnd refer only to the current state of the vector.
Initially, a is the zero vecto, soq;(0) is O for alli. Updates to individual entries of the
vector are presented as a stream of pairs.rTthepdate igi;, ¢;), meaning that

a;,(t) =a;,(t = 1) + ¢,
ap(t)y=ap(t—1), i #i.

In some cases; s will be strictly positive, meaning that entries only increase; in other
casesc;s are allowed to be negative also. The former is known agdkh registercase

and the latter theurnstile case [28]. There are two important variations of the turnstile
case to consider: whethers may become negative, or whether the application generating
the updates guarantees that this will never be the case. We refer to the first of these as
the generalcase, and the second as then-negativecase. Many applications that use

62 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75

sketches to compute queries of interest—such as monitoring database contents, analyzing
IP traffic seen in a network link—guarantee that counts will never be negative. However,
the general case occurs in important scenarios too, for example in distributed settings where
one considers the subtraction of one vector from another, say.

At any timer, aquerycalls for computing certain functions of interestom). We focus
on approximating answers to three types of query based on vectordb:

e A point query denotedQ(i), is to return an approximation af.
e Arange queryQ(/, r) is to return an approximation of;_; a;.
e Aninner product querydenotedQ(a, b) is to approximatee © b =Y ; a;b;.

These queries are related: a range query is a sum of point queries; both point and range
gueries are specific inner product queries. However, in terms of approximations to these
queries, results will vary. These are the queries that are fundamental to many applications in
data stream algorithms, and have been extensively studied. In addition, they are of interest
in a non-data stream context. For example, in databases, the point and range queries are
of interest in summarizing the data distribution approximately; and inner-product queries
allow approximation of join size of relations. Fuller discussion of these aspects can be
found in [16,28].

We will also study use of these queries to compute more complex functions on data
streams. As examples, we will focus on the two following problems. Recall|that=

1 lai(0)]; more generallyjlal|, = (31, la; (1)1P)V/P.

o (¢p-quantiled The ¢-quantiles of the cardinalitja|1 multiset of (integer) values each
in the range 1..n consist of those items with rankp||al||1 for k =0...1/¢ after
sorting the values. Approximation comes by accepting any integer that is between the
item with rank(k¢ — ¢)|la||1 and the one with rankk¢ + ¢)|la||1 for some specified
e <o.

o (heavy hittery The ¢-heavy hitters of a multiset dfa||1 (integer) values each in the
range 1..n, consist of those items whose multiplicity exceeds the fractiof the
total cardinality, i.e.,a; > ¢|la||1. There can be between 0 andglheavy hitters
in any given sequence of items. Approximation comes by accepting angh that
a; > (¢ — ¢)||la||1 for some specified < ¢.

We will assume the RAM model, where each machine word can store integers up to
max{||la||1, n}. Standard word operations take constant time and so we count space in terms
of number of words and we count time in terms of the number of word operations. So, if
one estimates our space and time bounds in terms of numbis bfstead, a multiplicative
factor logmax|a||1, n} is needed. Our goal is to solve the queries and the problems
above using a sketch data structure, that is using space and time significantly sublinear—
polylogarithmic—in input sizex and ||a||1. All our algorithms will be approximate and
probabilistic; they need two parametessand s, meaning that the error in answering a
query is within a factor o with probabilitys. Both these parameters will affect the space
and time needed by our solutions. Each of these queries and problems has a rich history of

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 63

work in the data stream area. We refer the readers to surveys [3,28], tutorials [16], as well
as the general literature.

3. Count-min sketches

We now introduce our data structure, the count-min, or CM, sketch. It is named after
the two basic operations used to answer point queries, counting first and computing the
minimum next. We use to denote the base of the natural logarithm function, In.

3.1. Data structure

A count-min(CM) sketchwith parameterge, §) is represented by a two-dimensional
array counts with widthw and depthd: coun{l,1]...coun{d, w]. Given parameters
(¢,8), setw = [e/e] and d = [In(1/8)]. Each entry of the array is initially zero.
Additionally, d hash functions

hi...hg:{1...n}—{1...w}

are chosen uniformly at random from a pairwise-independent family.
3.2. Update procedure

When an updatéi,, ¢;) arrives, meaning that item, is updated by a quantity af,,
thenc; is added to one count in each row; the counter is determinggd; biformally, set
V1< j<d,

coun{j, hj(ip)] < coun{j, hj(i)] +c:.

This procedure is illustrated in Fig. 1.

The space used by count-min sketches is the array/afounts, which takesd words,
andd hash functions, each of which can be stored using 2 words when using the pairwise
functions described in [27].

> +ct

hl/

: 5///4' +Ct
hyT—| D . e +C

> +C

Fig. 1. Each item' is mapped to one cell in each row of the array of counts: when an updatetofitem i;
arrives,c; is added to each of these cells.

64 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75

4. Approximate query answering using CM sketches

For each of the three queries introduced in Section 2: point, range, and inner product
gueries, we show how they can be answered using count-min sketches.

4.1. Point query
We first show the analysis for point queries for the non-negative case.

Estimation procedure
The answer ta@(i) is given bya; = min; countj, 4 ;(i)].

Theorem 1. The estimatéi; has the following guarantees; < a;; and, with probability
at leastl — g,

a; < a; +¢llall1.

Proof. We introduce indicator variable ; i, which are 1 if(i # k) A (h; (i) = hj(k)),
and 0 otherwise. By pairwise independence of the hash functions, then

1 £

E(Li, j0) = Pr[hj () = h; (k)] < rangdh,) e’

Define the variableX; ; (random over the choices df;) to be X; j = >/ _4 I j kax.
Since alla; are non-negative in this cask; ; is a non-negative variable. By construction,
countj, h;(i)]=a; + X; ;. So, clearly, mirroun{j, 2 (i)] > a;. For the other direction,
observe that

n n
&
EXi) =E(Y lijuar) <Y axEUij0) < - lla
(l,./) (k_l i,j.k k)] k (l,j,k) e” ll1

by pairwise independence bf, and linearity of expectation. By the Markov inequality,

Pr[a; > a; +¢llall1] =Pr[V;.coun{j, h;(i)] > ai + ¢llall1]
=Pr[V¥;.a; + X; j > a; + ¢lal1]
=Pr[V¥;. X; ; > eE(X;)]
<ed <4. O

The time to produce the estimatedgIn(1/8)) since finding the minimum count can be
done in linear time; the same time bound holds for updates. The coadtansed here to
minimize the space used: more generally, we canwsete /b andd = log,,(1/8) for any
b > 1to get the same accuracy guarantee. Chodsiag minimizes the space used, since
this solves dwd)/db = 0, giving a cost 02 + ¢/¢) In(1/8) words. For implementations,
it may be preferable to use other (integer) values &r simpler computations or faster
updates. Note that for values of that are large relative tfia|/1, the bound in terms
of ¢|la||1 can be translated into a relative error in terms:af This has implications for

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 65

certain applications which rely on retrieving large values, such as large wavelet or Fourier
coefficients.

The best known previous result using sketches was in [5]: there sketches were
used to approximate point queries. Results were stated in terms of the frequencies of
individual items. For arbitrary distributions, the space usedi€l/£2) log(1/4)), and the
dependency oa is 1/¢? in every case considered. A significant difference between CM
sketches and previous work comes in the analysis:

o All prior analyses of sketch structures compute the variance of their estimators in
order to apply the Chebyshev inequality, which brings the dependency. @irectly
applying the Markov inequality yields a more direct analysis which depends only on
Practitioners may have discovered that less tah/s2) space is needed in practice:
here, we give proof of why this is so and the tighter bound.

e Because only positive quantities are added to the counters then it is possible to take the
minimum instead of the median for the estimate. This allows a simple calculation of the
failure probability, without recourse to Chernoff bounds. This significantly improves
the constants involved: in [5], for example, the constant factors within the big-Oh
notation is at least 256; here, the constant factor is less than 3.

e The error bound here is one-sided, as opposed to all previous constructions which gave
two-sided errors. This brings benefits for many applications which use sketches.

In Section 6 we show how all existing sketch constructions can be viewed as variations
of a common procedure. This emphasizes the importance of our attempt to find the simplest
sketch construction which has the best guarantees and smallest constants. A similar result
holds when entries of the implicit vectarmay be negative, which is the general case.

Estimation procedure for general case
This time Q(i) is answered witld; = mediary countj, 1 (i)].

Theorem 2. With probabilityl — §1/4,

a; —3ellall1 < a; < a; + 3¢|lall1.

Proof. Observe thag(jcoun{j, #;(i)] — a;|) < ¢llall1/e, and so the probability that any
count is off by more thans3|a||1 is less than 18. Applying Chernoff bounds tells us that
the probability of the median of {1/8) copies of this procedure being wrong is less than
sY4. o

The time to produce the estimate@In(1/8)) and the space used(@-+ e¢/¢) In(1/8)
words. The best prior result for this problem was the method of [5]. Again, the dependence
on ¢ here is improved from /2 to 1/e. By avoiding analyzing the variance of the
estimator, again the analysis is simplified, and the constants are significantly smaller than
in previous works.

66 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75

4.2. Inner product query

Estimation procedure
Set(a ©®b); =Y }_;coung[), k] = coung[/, k]. Our estimation ofQ(a, b) for non-
negative vectora andbisa © b =min;(@a © b);.

Theorem3.a ® b < a/& and, with probabilityl — §, a/(ﬁ <a®b+c¢e|a|1lbl1.
Proof.
(a @b Za,b + Z apby.
P#q
hj(p)=h;(q)

Clearly,a © b < a/&)j for non-negative vectors. By pairwise independenck, of

E@ob; —a©b) = Y Pl (p) = hs@apby < 3 220 < 1P
P#q P#q

So, by the Markov inequalitﬁr[cz/é\l) —aQ®b>c¢|al1|lbll1] <3, as required. O

The space and time to produce the estimateOi§1/¢)log(1/8)). Updates are
performed in timeO (log(1/$)).

Note that in the special case where= 1, andb is zero at all other locations, then
this procedure is identical to the above procedure for point estimation, and gives the same
error guarantee (sindg||1 = 1). A similar result holds in the general case, where vectors
may have negative entries. Taking the mediam@) ; would give a guaranteed good
quality approximation; however, we do not know of any application which makes use of
inner products of such vectors, so we do not give the full details here. We next consider
the application of inner-product computation to Join size estimation, where the vectors
generated have non-negative entries.

Join size estimation is important in database query planners in order to determine the
best order in which to evaluate queries. Tjb@é size of two database relations on a
particular attribute is the number of items in the cartesian product of the two relations
which agree the value of that attribute. We assume without loss of generality that attribute
values in the relation are integers in the range.&. We represent the relations being
joined as vectora andb so that the values; represents the number of tuples which have
valuei in the first relation, and; similarly for the second relation. Then cleadp b is the
join size of the two relations. Using sketches allows estimates to be made in the presence
of items being inserted to and deleted from relations. The following corollary follows from
the above theorem.

Coroallary 1. The join size of two relations on a particular attribute can be approximated
up toellal|1||b|1 with probability 1 — §, by keeping spacé@ ((1/¢) log(1/8)).

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 67

Previous results have used the “tug-of-war” sketches [1]. However, here some care is
needed in the comparison of the two methods: the prior work gives guarantees in terms of
the Lo norm of the underlying vectors, with additive erroraifal2||b||2; here, the result
is in terms of theL 1 norm. In some cases, tHe norm can be quadratically smaller than
the L1 norm. However, when the distribution of items is non-uniform, for example when
certain items contribute a large amount to the join size, then the two norms are closer, and
the guarantees of the CM sketch method is closer to the existing method. As before, the
space cost of previous methods wasl/s2), so there is a significant space saving to be
had with CM sketches.

4.3. Range query

Define x (I, r) to be the vector of dimensiansuch thaty (I,r); =1< 1 <i <r, and
0 otherwise. TherQ(l, r) can straightforwardly be re-posed @%a, x(/,r)). However,
this method has two drawbacks: first, the error guarantee is in tertiasg|of x (/,)||1 and
therefore large range sums have an error guarantee which increases linearly with the length
of the range; and second, the time cost to directly compute the sketgti/for) depends
linearly in the length of the range,— / + 1. In fact, it is clear that computing range sums
in this way using our sketches is not much different to simply computing point queries for
each item in the range, and summing the estimates. One way to avoid the time complexity
is to use range-sum random variables from [20] to quickly determine a sketeli,of),
but that is expensive and still does not overcome the first drawback. Instead, we adopt the
use ofdyadic range$rom [21]: a dyadic range is a range of the fopa2” +1... (x +1)2”]
for parameters andy.

Estimation procedure

Keep log n CM sketches, in order to answer range que@¥5 r) approximately. Any
range query can be reduced to at most 2 lodyadic rangegueries, which in turn can each
be reduced to a single point query. Each point in the rdfige n] is a member of logn
dyadic ranges, one for eagtin the range 0..log,n — 1. A sketch is kept for each set of
dyadic ranges of length’2and update each of these for every update that arrives. Then,
given a range quer@(l, r), compute the at most 2 lgg dyadic ranges which canonically
cover the range, and pose that many point queries to the sketches, returning the sum of the
gueries as the estimate.

Example 1. For n = 256, the range[48, 107] is canonically covered by the non-
overlapping dyadic range$48...48],[49...64], [65...96],[97...104],[105...106],
[107...107].

Letall,r] =) ;_,;a; be the answer to the que@(/, r) and leta[l, r] be the estimate
using the procedure above.

Theorem 4. a[l, r] < a[l, r] and with probability at least — §,

all,r1 < all, r] + 2¢logn|all1.

68 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75

Proof. Applying the inequality of Theorem 1, thea[/,r] < a[l,r]. Consider each
estimator used to formi[/, r]; the expectation of the additive error for any of these is
2logn(e/e)|lall1, by linearity of expectation of the errors of each point estimate. Applying
the same Markov inequality argument as before, the probability that this additive error
is more than 2logn|lal|1 for any estimator is less tharyd; hence, for all of them the
probability is at moss. O

The time to compute the estimate or to make an updatglisgn log(1/3)). The space
used isO((logn/¢e)log(1/$)).

The above theorem states the bound for the standard CM sketch size. The guarantee
will be more useful when stated without terms of lo@ the approximation bound. This
can be changed by increasing the size of the sketch, which is equivalent to regcaling
In particular, if we want to estimate a range sum correct up’fa|1 with probability
1 — & then sete = ¢//(2logn). The space used i®((log?n/¢’) log(1/8)). An obvious
improvement of this technique in practice is to keep exact counts for the first few levels
of the hierarchy, where there are only a small number of dyadic ranges. This improves the
space, time and accuracy of the algorithm in practice, although the asymptotic bounds are
unaffected.

For smaller ranges, ranges that are powers of 2, or more generally, any range whose
endpoints can be expressed in binary using a small number of 1s, then improved bounds
are possible; we have given the worst case bounds above.

One way to compute approximate range sums is via approximate quantiles: use an
algorithm such as [22,25] to find thequantiles of the stream, and then count how many
guantiles fall within the range of interest to give @e) approximation of the range query.
Such an approach has several disadvantages:

(1) Existing approximate quantile methods work in the cash register model, rather than
the more general turnstile model that our solutions work in.

(2) The time cost to update the data structure can be high, sometimes linear in the size of
the structure.

(3) Existing algorithms assume single items arriving one by one, so they do not handle
fractional values or large values being added, which can be easily handled by sketch-
based approaches.

(4) The worst case space bound dependsOqiil/e)log(|lall1/¢)), which can grow
indefinitely. The sketch based solution works in fixed space that is independent of
lallz.

The best previous bounds for this problem in the turnstile model are given in [21], where
range queries are answered by keepingogn) sketches, each of siz@((1/¢'2)logn x
log(logn/8)) to give approximations with additive errefa|; with probability 1— §'.

Thus the space used theradg(log? n/¢2) log(logn/8)) and the time for updates is linear

in the space used. The CM sketch improves the space and time bounds; it improves the
constant factors as well as the asymptotic behavior. The time to process an update is
significantly improved, since only a few entries in the sketch are modified, rather than
a linear number.

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 69

5. Applications of count-min sketches

By using CM sketches, we show how to improve best known time and space bounds for
the two problems from Section 2.

5.1. Quantiles in the turnstile model

In [21] the authors showed that finding the approximgatguantiles of the data subject
to insertions and deletions can be reduced to the problem of computing range sums. Put
simply, the algorithm is to do binary searches for rangesiAwhose range suma[1, r] is
kollall1 for 0 < k < 1/¢. The method of [21] usesmndom subset sunts compute range
sums. By replacing this structure with count-min sketches, the improved results follow
immediately. By keeping log sketches, one for each dyadic range and setting the accuracy
parameter for each to be/logn and the probability guarantee 8@ /logn, the overall
probability guarantee for all /% quantiles is achieved.

Theorem 5. g-approximateg-quantiles can be found with probability at leakt- § by
keeping a data structure with spa@((1/¢)log?n log(logn/(¢8))). The time for each
insert or delete operation i® (logr log(logn/(¢4))), and the time to find each quantile
on demand i© (logn log(logn /(¢6))).

Choosing CM sketches over random subset sums improves both the query time and the
update time fromO ((1/&2) |ngn log(logn/(£8))), by a factor of more tha(B4/¢2) logn.
The space requirements are also improved by a factor of at least 34

It is illustrative to contrast our bounds with those for the problem in the weaker
cash register model where items are only inserted (recall that in our stronger turnstile
model, items are deleted as well). The previously best known space bounds for finding
approximate quantiles i® ((1/¢)(log?(1/¢) + log?log(1/8))) space for a randomized
sampling solution [25] and ((1/¢) log(s||la|l1)) space for a deterministic solution [22].
These bounds are not completely comparable, but our result is the first on the more
powerful turnstile model to be comparable to the cash register model bounds in the leading
1/e term.

5.2. Heavy hitters

We consider this problem in both the cash register model (meaning that all updates are
positive) and the more challenging turnstile model (where updates are both positive and
negative, with the restriction that count of any item is never less than zerae; (1¢.> 0).

Cash register case

Itis possible to maintain the current valueljafi|1 throughout, sincéa(z)||1 = Z;Zl Ci
On receiving item(i;, ¢;), update the sketch as before and pose point q@#iy): if
estimateg;, is above the threshold af|la(¢)||1, i; is added to a heap. The heap is kept
small by checking that the current estimated count for the item with lowest count is above

70 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75

threshold; if not, it is deleted from the heap as in [5]. At the end of the input, the heap is
scanned, and all items in the heap whose estimated count is still aljeye are output.

Theorem 6. The heavy hitters can be found from an inserts only sequence of lgaiith
by using CM sketches with spac¥((1/¢)log(|lall1/8)), and time O (log(|lal|1/3)) per

item. Every item which occurs with count more thajw|1 time is output, and with
probability 1 — §, no item whose count is less thah— ¢)||a| 1 is output.

Proof. This procedure relies on the fact that the threshold value increases monotonically:
therefore, if an item did not pass the threshold in the past, it cannot do so in the future
without its count increasing. By checking the estimated value every time an items value
increases, no heavy hitters will be omitted. By the one-sided error guarantee of sketches,
every heavy hitter is included in the output, but there is some possibility of including non-
heavy hitters in the output. To do this, the paramétierscaled to ensure that over #d| 1
gueries posed to the sketch, the probability of mistakenly outputting an infrequent item is
bounded by 1 §, using the union bound. O

We can compare our results to the best known previous work. The algorithm in [5]
solves this problem using Count sketches in worst case spack/s2)log(|lal1/s)),
which we strictly improve here. A randomized algorithm given in [26] &gsectedpace
cost O((1/¢)log(1/(¢d))), slightly better than our worst case space usage. Meanwhile,
a deterministic algorithm in the same paper solves the problem in worst case space
O((1/¢)log(Jlall1/e)). However, for both algorithms in [26] the time cost of processing
each insertion can be higli2(1/¢)): periodically, there are operations with cost linear in
the space used. For high speed applications, our worst case time bound may be preferable.

Turnstile case

We adopt the solution given in [8], which describes a divide and conquer procedure
to find the heavy hitters. This keeps sketches for computing range sumsdifigrent
sketches, one for each different dyadic range. When an ugiate) arrives, then each
of these is updated as before. In order to find all the heavy hitters, a parallel binary
search is performed, descending one level of the hierarchy at each step. Nodes in the
hierarchy (corresponding to dyadic ranges) whose estimated weight exceeds the threshold
of (¢ + ¢)|la]1 are split into two ranges, and investigated recursively. All single items
found in this way whose approximated count exceeds the threshold are output.

We instead must limit the number of items output whose true frequency is less than
the fractiong. This is achieved by setting the probability of failure for each sketch to be
3¢ /(2logn). This is because, at each level there are at mggtitems with frequency
more thang. At most twice this number of queries are made at each level, for all of the
logn levels. By scaling like this and applying the union bound ensures that, over all the
gueries, the total probability that any one (or more) of them overestimated by more than
a fractione is bounded by, and so the probability that every query succeeds-iss1It
follows that

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 71

Theorem 7. The algorithm uses spae@((1/¢) logn log(2logn/(8¢))) and timeO (logn x
log(2logn/(8¢))) per update. Every item with frequency at leést+ ¢)| |1 is output,
and with probabilityl — § no item whose frequency is less thafu||1 is output.

The previous best known bound appears in [8], where a non-adaptive group testing
approach was described. Here, the space bounds agree asymptotically but have been
improved in constant factors; a further improvement is in the nature of the guarantee:
previous methods gave probabilistic guarantees about outputting the heavy hitters. Here,
there is absolute certainty that this procedure will find and output every heavy hitter,
because the CM sketches never underestimate counts, and strong guarantees are given that
no non-heavy hitters will be output. This is often desirable.

In some situations in practice, it is vital that updates are as fast as possible, and here
update time can be played off against search time: ranges based on powers of two can be
replaced with an arbitrary branching factomhich reduces the number of levels to Jag
at the expense of costlier queries and weaker guarantees on outputting non-heavy hitters.

Hierarchical heavy hitters. A generalization of this problem is finding hierarchical heavy
hitters [7], which assumes that the items are leaves in a hierarchy of deptare the
goal is to find all nodes in the hierarchy which are heavy hittafter discounting the
contribution of any descendant heavy hitter noddsing our CM sketch, the cost of the
solution given in [7] for the turnstile model can be improved frani(h /) log(1/5))
space and time per update@y(h/¢) log(1/8)) space and (hlog(1/8)) time per update.

6. Comparison of sketch techniques

We give a common framework to summarize known sketch constructions, and compare
the time and space requirements for each of the fundamental queries—point, range and
inner products—using them.

Here is a brief summary of known sketch constructions. The first sketch construction
was that of Alon, Matias and Szegedy [2], whasg-of-warsketches are computed using
4-wise random hash functiogs mapping items td+1, —1}. The jth entry of the sketch,
which is a vector of lengtho((1/¢2)log(1/s)), is defined to be)_ a; * g (@), which is
easy to maintain under updates. This structure was applied to finding inner products in
[1,20] where, in our notation, it was shown that it is possible to compute inner products
with additive errorte|ja|2|lb||2. In [20], the authors use these sketches to compute large
wavelet coefficients. In particular, they show how the structure allows point queries to be
computed up to additive error afe|la|2. They also compute range sur@k/, r): here
range-summable random variables are used to compute the sums efficiently, but this incurs
a factor of O (logn) additional time and space to compute these. Also note that here the
error guarantees are much worse for large ranges= [+ 1)||a||1.

For point queries only, then pairwise independence suffices for tug-of-war sketches, as
observed by [5]. These authors additionally used a second hash set of hash funagtions,
to spread out the effect of high frequency items in teiunt sketchFor point queries, this
gives the same space bounds, but an improved time boufdog(1/§)) for updating the

72 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75

Table 1

Comparison of different space and time requirements of sketching methods

Method Ref. Query Space Update Query Randomness

time time needed

Tug-of-war [1] Inner-product ﬂsz 1/82 1/s2 4-wise

Tug-of-war [20] Point |Ogl/82 |Ogn/32 |Ogn/52 4-wise
Range Iogz/e2 IOgn/sz log n/a2 4-wise

Random subset-sums [21] Range %gsz |ngn/82 |Og2n/£2 Pairwise

Count sketches [5] Point /12 1 1 Pairwise

Count-min sketches (this paper) Point /el 1 1 Pairwise
Inner-product 1e 1 1/e Pairwise
Range log: /¢ logn logn/e Pairwise

The dependency onandn is shown, a factor 00 (log(1/5)) applies to each entry and is omitted.

sketch? Random subset surmgre introduced in [21] in order to compute point queries
and range sums. Here, 2-universal hash func?ihgisnap items td0, 1}, and thejth entry
of the sketch is maintained 3s;_, a; = h;(i). The asymptotic space and time bounds for
different techniques in terms of their dependence on epsilon are summarized in Table 1.
All of the above sketching techniques, and the one which we propose in this paper, can
all be described in a common way. Firstly, they can all be viewed as linear projections of
the vectowm with appropriately chosen random vectors, but more than this, the computation
of these linear projections is very similar between all methods. Define a sketch to be a
two dimensional array of dimensian by d. Let z1...h; be pairwise independent hash
functions mapping from{1...n} to {1...w}, and letg;...g,; be another hash function
whose range and randomness varies from construction to constructiog;, khth entry
of the sketch is defined to be

D aik ().
it hi(i)=j
The contents of the sketch for each of the above techniques is specified by the parameters
w, d, and g; methods of answering queries using the sketch vary from technique to
technique. The update time for each sketclOigl) computations ofg and k, and the
space requirement is dominated by théwd) counters, provided that the hash functions
can be stored efficiently.

e Tug of war sketches have = 1, d = 0((1/¢%)log(1/68)), g(i) is {+1, —1} with
4-wise independence.

e Count sketches have = 0(1/¢2), d = 0(log(1/8)), g(i) is {+1, —1} with 2-wise
independence.

4 We observe that the same idea, of replacing the averaging(dxf/sz) copies of an estimator with a
2-universal hash function distributing 10 (1/¢2) buckets can also reduce the update time for “tug-of-war”
sketches and similar constructions@glog(1/6)).

5 In [24] the authors use a 3-wise independent hash function{@niy, chosen because it is easy to compute,
but pairwise suffices.

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 73

e Random subset sums hawe= 2, d = (24/¢2) log(1/$), g(i) is 1.
e Count-min sketches have=e¢/¢, d =In(1/6), g(i) = 1.

We briefly mention some other well-known sketch constructions, and explain why they
are not appropriate for the queries we study here. [14] gave a sketch construction for
computing theL; difference between vectors. It extends the tug-of-war construction, the
technical contribution being a demonstration of how to compute range sums of 4-wise
random variables efficiently. Indyk [23] pioneered the use of stable distributions in sketch
computations, again in order to computg norms of vectors presented as a sequence of
updates. However, all these norm computations do not directly answer the three query types
we consider here. Lastly, we note that our count-min sketches appear similar in outline to
both the uniscan algorithm due to Fang et al. [13] and the parallel multistage filters of Estan
and Varghese [11]. Our construction differs for the following reasons:

(1) the structures from prior work are not sketches: they do not approximate any value,
but instead return only a binary answer about whether an item has exceeded a certain
numeric threshold;

(2) the algorithms used require updates to be only positive; and

(3) the analysis does not consider any limited independence needed for the hash functions,
in contrast to CM sketches, which require only pairwise independence.

The methods in [11,13] as such seem to use fully independent hash functions which is
prohibitive in principle.

7. Conclusions

We have introduced the count-min sketch, and shown how to estimate fundamental
gueries such as point, range or inner product queries as well as solve more sophisticated
problems such as quantiles and heavy hitters. The space and/or time bounds of our solutions
improve previously best known bounds for these problems. Typically the improvement is
from 1/¢2 factor to Y/e which is significant in real applications. Our CM sketch is quite
simple, and is likely to find many applications, including in hardware solutions for these
problems.

We have recently applied these ideas to the problem of change detection on data
streams [9], and we also believe that it can be applied to improve the time and space bounds
for constructing approximate wavelet and histogram representations of data streams [19].
Also, the CM sketch can also be naturally extended to solve problems on streams that
describe multidimensional arrays rather than the unidimensional array problems we have
discussed so far.

Our CM sketch is not effective when one wants to compute the norms of data stream
inputs. These have applications to computing correlations between data streams and
tracking the number of distinct elements in streams, both of which are of great interest. It
is an open problem to design extremely simple, practical sketches such as our CM sketch
for estimating such correlations and more complex data stream applications.

74 G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75

References

[1] N. Alon, P. Gibbons, Y. Matias, M. Szegedy, Tracking join and self-join sizes in limited storage, in:
Proceedings of the Eighteenth ACM Symposium on Principles of Database Systems (PODS '99), 1999,
pp. 10-20.

[2] N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency moments, in:
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, 1996, pp. 20-29;
Journal version in J. Comput. System Sci. 58 (1999) 137-147.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in:
Proceedings of Symposium on Principles of Database Systems (PODS), 2002, pp. 1-16.

[4] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, L. Trevisan, Counting distinct elements in a data
stream, in: Proceedings of RANDOM 2002, 2002, pp. 1-10.

[5] M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, in: Proceedings of the
International Colloquium on Automata, Languages and Programming (ICALP), 2002, pp. 693-703.

[6] G. Cormode, M. Datar, P. Indyk, S. Muthukrishnan, Comparing data streams using Hamming norms, in:
Proceedings of 28th International Conference on Very Large Data Bases, 2002, pp. 335-345; Journal version
in IEEE Trans. Knowledge Data Engrg. 15 (3) (2003) 529-541.

[7] G. Cormode, F. Korn, S. Muthukrishnan, D. Srivastava, Finding hierarchical heavy hitters in data streams,
in: International Conference on Very Large Databases, 2003, pp. 464—-475.

[8] G. Cormode, S. Muthukrishnan, What's hot and what’s not: tracking most frequent items dynamically, in:
Proceedings of ACM Principles of Database Systems, 2003, pp. 296—306.

[9] G. Cormode, S. Muthukrishnan, What's new: finding significant differences in network data streams, in:
Proceedings of IEEE INFOCOM, 2004.

[10] A. Dobra, M. Garofalakis, J.E. Gehrke, R. Rastogi, Processing complex aggregate queries over data streams,
in: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, 2002, pp. 61—
72.

[11] C. Estan, G. Varghese, New directions in traffic measurement and accounting, in: Proceedings of ACM
SIGCOMM, Computer Communication Review 32 (4) (2002) 323-338.

[12] C. Estan, G. Varghese, Data streaming in computer networks, in: Proceedings of Workshop on Management
and Processing of Data Streams, 2003, http://www.research.att.com/conf/mpds2003/schedule/estanV.ps.

[13] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J.D. Ullman, Computing iceberg queries
efficiently, in: Proceedings of the Twenty-Fourth International Conference on Very Large Databases, 1998,
pp. 299-310.

[14] J. Feigenbaum, S. Kannan, M. Strauss, M. Viswanathan, An approximatiifference algorithm for
massive data streams, in: Proceedings of the 40th Annual Symposium on Foundations of Computer Science,
1999, pp. 501-511.

[15] P. Flajolet, G.N. Martin, Probabilistic counting, in: 24th Annual Symposium on Foundations of Computer
Science, 1983, pp. 76—82; Journal version in J. Comput. System Sci. 31 (1985) 182—209.

[16] M. Garofalakis, J. Gehrke, R. Rastogi, Querying and mining data streams: you only get one look, in:
Proceedings of the ACM SIGMOD International Conference on Management of Data, 2002.

[17] P. Gibbons, Y. Matias, Synopsis structures for massive data sets, in: DIMACS Ser. Discrete Math. Theoret.
Comput. Sci. A, 1999.

[18] P. Gibbons, S. Tirthapura, Estimating simple functions on the union of data streams, in: Proceedings of the
13th ACM Symposium on Parallel Algorithms and Architectures, 2001, pp. 281-290.

[19] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, M. Strauss, Fast, small-space algorithms
for approximate histogram maintenance, in: Proceedings of the 34th ACM Symposium on Theory of
Computing, 2002, pp. 389-398.

[20] A. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss, Surfing wavelets on streams: one-pass summaries for
approximate aggregate queries, in: Proceedings of 27th International Conference on Very Large Data Bases,
2001, pp. 79-88; Journal version in IEEE Trans. Knowledge Data Engrg. 15 (3) (2003) 541-554.

[21] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss, How to summarize the universe: dynamic
maintenance of quantiles, in: Proceedings of 28th International Conference on Very Large Data Bases, 2002,
pp. 454-465.

G. Cormode, S. Muthukrishnan / Journal of Algorithms 55 (2005) 58—75 75

[22] M. Greenwald, S. Khanna, Space-efficient online computation of quantile summaries, SIGMOD Record
(ACM Special Interest Group on Management of Data) 30 (2) (2001) 58—66.

[23] P. Indyk, Stable distributions, pseudorandom generators, embeddings and data stream computation, in:
Proceedings of the 40th Symposium on Foundations of Computer Science, 2000, pp. 189-197.

[24] W.B. Johnson, J. Lindenstrauss, Extensions of Lipshitz mapping into Hilbert space, Contemp. Math. 26
(1984) 189-206.

[25] G.S. Manku, S. Rajagopalan, B.G. Lindsay, Approximate medians and other quantiles in one pass and with
limited memory, in: Proceedings of the ACM SIGMOD International Conference on Management of Data,
1998, pp. 426-435.

[26] G.S. Manku, R. Motwani, Approximate frequency counts over data streams, in: Proceedings of 28th
International Conference on Very Large Data Bases, 2002, pp. 346—357.

[27] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.

[28] S. Muthukrishnan, Data streams: algorithms and applications, in: ACM-SIAM Symposium on Discrete
Algorithms, 2003, http://athos.rutgers.edu/~muthu/stream-1-1.ps.

[29] N. Thaper, P. Indyk, S. Guha, N. Koudas, Dynamic multidimensional histograms, in: Proceedings of the
ACM SIGMOD International Conference on Management of Data, 2002, pp. 359-366.

[30] D. Woodruff, Optimal space lower bounds for all frequency moments, in: ACM-SIAM Symposium on
Discrete Algorithms, 2004.

