Databases and data model

Lecturer: Jiaheng Lu

Autumn 2016
Outline

• History of databases (Why we use databases)

• Data models
 • Three features of data models
 • Relational model
 • Semi-structure model
 – XML model
 – JSON model
 • Graph model
Data storage and history

Before-1950s Data was stored as paper records

Lot of time was wasted. e.g. when searching. Therefore inefficient.
Magnetic tapes and hard disk

- 1950s and early 1960s: Data processing using magnetic tapes for storage
Magnetic tapes and hard disk

• 1950s and early 1960s: Data processing using magnetic tapes for storage

• Late 1960s and 1970s: Hard disks allow direct access to data

• Data stored in files in the above two devices.
Drawbacks of file system

- Data sharing: Each program has its own data format. Data cannot be easily accessed by other programs.
- Data duplication
- Data independence on programs
Database Systems

- Problems inherent in file systems make using a database system desirable
- File system
 - Many separate and unrelated files
- Database
 - Logically related data stored in a single logical data repository
Database Systems and File System

A Database System

Personnel dept.
Sales dept.
Accounting dept.

DBMS

Database
Employees
Customers
Sales
Inventory
Accounts

A File System

Personnel dept.
Sales dept.
Accounting dept.

Employees
Customers
Sales
Inventory
Accounts

Contrasting database and file systems
Introducing the Database and the DBMS

- Database—shared, integrated computer structure that stores:
 - End user data (raw facts)
 - Metadata (data about data)
Introducing the Database and the DBMS (continued)

• DBMS (database management system):
 • Collection of programs that manages database structure and controls access to data
 • Possible to share data among multiple applications or users
 • Makes data management more efficient and effective
DBMS manages the interaction between the end user and the database.
The Database System Environment (continued)
• DBMS’s were developed to address file systems’ inherent weaknesses

• Data is independent of the program

• Data can shared between two programs

• Data duplication can be removed by database design
• Watch a video on the young history of database systems.

• Youtube link:

• https://www.youtube.com/watch?v=nowcBsX_4kc
Outline

- History of databases (Why we use databases)

- Data models
 - Three features of data models
 - Relational model
 - Semi-structure model
 - XML model
 - JSON model
 - Graph model
Data Model: What’s a model?

• A data model is a representation of reality
• It’s used to define the storage and manipulation of a data base.

A Map Is a Model of Reality
Model features

• A model is a means of communication
• Users of a model must have a certain amount of knowledge in common
• A model on emphasized selected aspects
• A model is described in some language
• A model can be erroneous
Data model describes three features of data

- **Structure**: the structure of the data stored within
- **Operations**: facilities for manipulation of the data.
- **Constraints**: the constraints of data values
A table structures of relational model

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>32</td>
<td>Male</td>
<td>Engineer</td>
</tr>
<tr>
<td>Mary</td>
<td>27</td>
<td>Female</td>
<td>Doctor</td>
</tr>
<tr>
<td>Anna</td>
<td>57</td>
<td>Female</td>
<td>Teacher</td>
</tr>
</tbody>
</table>
The index provides …

section

The …

abstract

In order …

author

Gerhard Weikum

The Web in 10 years

article

title

The Web in 10 years
Examples of operations

- **Subsetting**
 - Given a condition and a set of data, find a subset of data which satisfy the condition

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>32</td>
<td>Male</td>
<td>Engineer</td>
</tr>
<tr>
<td>Mary</td>
<td>27</td>
<td>Female</td>
<td>Doctor</td>
</tr>
<tr>
<td>Anna</td>
<td>57</td>
<td>Female</td>
<td>Teacher</td>
</tr>
</tbody>
</table>

- Given a condition Age < 40
Examples of operations

- **Subsetting**
 - Given a condition and a set of data, find a subset of data which satisfy the condition

- **Substructure extracting**
 - Extract from each data item a part of structure as specified by a condition

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>32</td>
<td>Male</td>
<td>Engineer</td>
</tr>
<tr>
<td>Mary</td>
<td>27</td>
<td>Female</td>
<td>Doctor</td>
</tr>
<tr>
<td>Anna</td>
<td>57</td>
<td>Female</td>
<td>Teacher</td>
</tr>
</tbody>
</table>
Examples of operations

• **Subsetting**
 - Given a condition and a set of data, find a subset of data which satisfy the condition

• **Substructure extracting**
 - Extract from each data item a part of structure as specified by a condition

• **Union and Join**
Types of constraints

- Value constraints
 - E.g. age is never negative
- Uniqueness constraints
 - E.g. any course can have only one ID
- Cardinality constraints
 - E.g. each person can have at most three blood pressure records in the system
Types of constraints (cont’d)

- Type constraint
 - E.g. age is an integer
- Domain constraint
 - E.g. Month is between 1 to 12
Outline

• History of databases

• Data models
 • Three features of data model
 • Relational model
 • Semi-structure model
 – XML model
 – JSON model
 • Graph model
Relational data models

- Relational model is an approach to managing data using tables:
 - No duplicate tuples
 - Dissimilar tuples disallowed

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>32</td>
<td>Male</td>
<td>Engineer</td>
</tr>
<tr>
<td>Mary</td>
<td>27</td>
<td>Female</td>
<td>Doctor</td>
</tr>
<tr>
<td>Anna</td>
<td>57</td>
<td>Female</td>
<td>Teacher</td>
</tr>
<tr>
<td>23,</td>
<td>87</td>
<td></td>
<td>Teacher</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Computer science</td>
</tr>
</tbody>
</table>
Relational models

Operation: Join

- Join operation for two tables based on the names

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>32</td>
<td>Engineer</td>
</tr>
<tr>
<td>Mary</td>
<td>27</td>
<td>Doctor</td>
</tr>
<tr>
<td>Anna</td>
<td>57</td>
<td>Teacher</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Job</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>32</td>
<td>Engineer</td>
<td>Golf</td>
</tr>
<tr>
<td>John</td>
<td>32</td>
<td>Engineer</td>
<td>Reading</td>
</tr>
</tbody>
</table>
Relational models constraints

- Uniqueness constraints: key
 - E.g. any course can have only one ID
- Type constraint
 - E.g. age is an integer
Outline

• History of databases (Why we use databases)

• Data models
 • Three features of data models
 • Relational model
 • Semi-structure model
 – XML model
 – JSON model
 • Graph model
Semi-structured model

• The **semi-structured** model is a database model where there is no separation between the data and the schema, and the amount of structure used depends on the purpose.

Advantage:
• The schema (with flexible formats) can easily be changed.
XML...

- **Extensible Markup Language**
- Based on Standard Generalized Markup Language (SGML)
- Version 1.0 introduced by World Wide Web Consortium (W3C) in 1998
- Bridge for data exchange on the Web

SGML

HTML

XML
A Simple XML Document

<article>
 <author>Gerhard Weikum</author>
 <title>The Web in Ten Years</title>
 <text>
 <abstract>In order to evolve...</abstract>
 <section number="1" title="Introduction">
 The <index>Web</index> provides the universal...
 </section>
 </text>
</article>
A Simple XML Document

Start Tag

<article>
 <author>Gerhard Weikum</author>
 <title>The Web in Ten Years</title>
 <text>
 <abstract>In order to evolve...</abstract>
 <section number="1" title="Introduction">
 The <index>Web</index> provides the universal...
 </section>
 </text>
</article>
A Simple XML Document

<article>

<author>Gerhard Weikum</author>
<title>The Web in Ten Years</title>

<text>

<abstract>In order to evolve...</abstract>

<section number="1" title="Introduction">

The <index>Web</index> provides the universal...

</section>

</text>

</article>
Elements in XML Documents

- (Freely definable) **tags**: article, title, author
 - with start tag: `<article>` etc.
 - and end tag: `</article>` etc.
- **Elements**: `<article> ... </article>`
- Elements have a **name** (article) and a **content** (...
- Elements may be nested.
- Elements may be empty: `<this_is_empty/>`
Attributes

• Only one attribute with a given name per element
• Attributes have no structure, simply strings

Example:

<person born="1912-06-23" died="1954-06-07">...

Alan Turing</person> proved that...
Document Type Definitions (DTD)

- An XML document may have an optional DTD.
- DTD serves as grammar for the underlying XML document, and it is part of XML language.
XML and DTD examples

• Consider an XML document:

```
<db>
  <person>
    <name>Alan</name>
    <age>42</age>
    <email>agb@usa.net</email>
  </person>
  <person>…………</person>
</db>
```
XML and DTD examples

- DTD for it might be:

```xml
<!DOCTYPE db [
  <!ELEMENT db (person*)>  
  <!ELEMENT person (name, age, email)>  
  <!ELEMENT name (#PCDATA)>  
  <!ELEMENT age (#PCDATA)>  
  <!ELEMENT email (#PCDATA)>  
  <!AttributeList email (#PCDATA)> 
]>
```
Occurrence Indicator:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Occurrence</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(no indicator)</td>
<td>Required</td>
<td>One and only one</td>
</tr>
<tr>
<td>?</td>
<td>Optional</td>
<td>None or one</td>
</tr>
<tr>
<td>*</td>
<td>Optional, repeatable</td>
<td>None, one, or more</td>
</tr>
<tr>
<td>+</td>
<td>Required, repeatable</td>
<td>One or more</td>
</tr>
</tbody>
</table>
Important attribute types in DTD

• There are ten attribute types
• These are the most important ones:
 • PCDATA The value is parse-able text data
 • ID The value is a unique identifier
 – ID values must be legal XML names and must be unique within the document
Attribute list in DTD

• Recall that an attribute has the form
  ```xml
  <!ATTLIST element-name name name  type  requirement>
  ```

• The *requirement* is one of:
 • A default value, enclosed in quotes
 – Example: `<!ATTLIST degree CDATA "PhD">`
 • `#REQUIRED`
 – The attribute must be present
 • `#IMPLIED`
 – The attribute is optional
 • `#FIXED "value"
 – The attribute always has the given value
 – If specified in the XML, the same value must be used
<?xml version="1.0"?>
<!DOCTYPE weatherReport SYSTEM "http://www.mysite.com/mydoc.dtd">
<weatherReport>
 <date>05/29/2002</date>
 <location>
 <city>Philadelphia</city>, <state>PA</state> <country>USA</country>
 </location>
 <temperature-range>
 <high scale="F">84</high>
 <low scale="F">51</low>
 </temperature-range>
</weatherReport>
The DTD for this example

```xml
<!ELEMENT weatherReport (date, location, temperature-range)>  
<!ELEMENT date (#PCDATA)>  
<!ELEMENT location (city, state, country)>  
<!ELEMENT city (#PCDATA)>  
<!ELEMENT state (#PCDATA)>  
<!ELEMENT country (#PCDATA)>  
<!ELEMENT temperature-range (((low, high) | (high, low)))>  
<!ELEMENT low (#PCDATA)>  
<!ELEMENT high (#PCDATA)>  
<!ATTLIST low scale (C|F) #REQUIRED>  
<!ATTLIST high scale (C|F) #REQUIRED>
```
Operations on XML documents

- GetParent
- GetChildren
- GetSibling
- Root-node path
- Query needs the tree traversal
Querying XML with XPath

XPath is query languages for XML data, both standardized by the W3C and supported by various database products.

A query result is a set of qualifying nodes, paths, subtrees, or a set of XML documents constructed from this raw result.
The Web in 10 years

In order …

The index

provides …

Gerhard Weikum

The Web

www.helsinki.fi

/article/author

number="1"
title="…"

XPath by Example
XPath

- XPath is a simple language to identify parts of the XML document (for further processing)

- XPath operates on the tree representation of the document

- Result of an XPath expression is a set of elements or attributes
Elements of XPath

- An XPath expression usually is a location path that consists of location steps, separated by /:

 \(/article/text/abstract: selects all abstract elements\)

- Possible location steps:
 - child element \(x\): select all child elements with name \(x\)
 - Attribute \(\text{@}x\): select all attributes with name \(x\)
 - Wildcards \(*\) (any child), \(\text{@}*\) (any attribute)
 - Multiple matches, separated by \(\mid: x \mid y \mid z\)
Location Steps

• Standard: / (context node is the result of the preceding location step)
 article/text/abstract (all the abstract nodes of articles)

• Select any descendant, not only children: //
 article//index (any index element in articles)
Predicates in Location Steps

- Added with [] to the location step
- Used to restrict elements that qualify as result of a location step to those that fulfil the predicate:
 - a[b] elements a that have a subelement b
 - a[@d] elements a that have an attribute d
 - Plus conditions on content/value:
 - a[b="c"]
 - A[@d>7]
 - <, <=, >=, !=, ...
The index provides …

In order …

The Web

The Web in 10 years

Gerhard Weikum

Gerhard Weikum
The index Web provides …

In order …

The "…"

The Web in 10 years

Gerhard Weikum
The index provides …

In order …

Gerhard Weikum

The Web in 10 years

The Web

section

abstract

author
title

article

/text

/article//abstract

number="1"
title="…"

XPath by Example
The index provides …
Summary

• Database history from file system to big data system

• Data models has three characters: Structure, Operations and Constraints

• Three common data models: relational model, semi-structured model (XML and JSON) and graph model