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OUTLINE

1. Relational and Graph Data Modelling (10 minutes)

2. Multi-Model Queries (20 minutes)

3. Join and Subgraph Matching (15 minutes)

4. Fusion of Query Processing Techniques (40 minutes)

5. Open problems and challenges (5 minutes)



Data modelling is a never-ending story. We will review the history of relational and

graph data modelling.

 The relational model and its extensions

 The graph data models

01 Relational and Graph Data Modelling



Big Data Modelling

• Data modelling is a Never-Ending Story
– Data model enables a user to define the data using high-level constructs without worrying 

about low-level details of how data will be stored on disk

• Many data models proposed to address the variety of big data

– Structured data (our focus)

• All data conforms to a predefined schema, e.g., business data

– Semi-structured data

• Some structure in the data but implicit and irregular, e.g., XML and JSON

– Unstructured data

• No structure in data, e.g., text, sound, images, videos



• Relational: 1970’s

• Entity-Relationship: 1970’s

– Successful in logical database design

• Extended Relational: 1980’s

• Semantic: late 1970’s and 1980’s

• Object-oriented: late 1980’s and early 1990’s

– Address impedance mismatch: relational dbs and OO languages

• Object-relational: late 1980’s and early 1990’s

– User-defined types, ops, functions, and access methods

• Semi-structured: late 1990’s and 2000’s

• Graph: 1990’s to the present

Data Models



The Relational Model

The dominant data model over last 5 decades

• A relation is a subset of Cartesian product and logically represented as un-ordered tuples and 

each record is uniquely identified by a key

• Table, columns(attributes), rows (tuples)

• Domain, cardinality, etc.

• Cannot nest one tuple within another

name street … city

Yu Liu Zhichun 7 … Beijing

Qingsong G Xueyuan Road Taiyuan

… … …

a2

degree

a1

attributes

t1

an

t2

relation r

tuples
tm

D1 DnD2

cardinality



The relational model can be described by 3 components:
• Primitive types: number, string, Boolean, Date, null, etc.
• Relational constructor used on the primitive types
• A set of operators that can be used to each primitive type and type constructor

The relational model can be extended correspondingly
• Nested relational model 

– Remove the restriction of 1NF
– Nested type constructors that allow building nested relations from atomic types by using tuple 

constructors and set constructors 

• Object-relational model 
– Separates set and tuple of the relational constructor and support object

• JSON
– includes other type constructors such as lists, multisets, arrays, etc.

The Relational Extensions



Self-describing by associating semantic tags or markers and enforce hierarchies of 
records and fields by nesting elements within the data.
• XML, json, protobuf, Parquet, etc.

Can be viewed as relational extensions with restriction removal
• Complex types: arrays, (nested) tuples, maps
• Rigid schema is not necessary

Semistructured Data

Relational data model
• Rigid flat structure(tables)
• Schema must be fixed in advanced
• Binary representation: good for

performance, bad for exchange 
• Query language based on Relational

Calculus

Semistructured data model
• Flexible, nested structure(trees)
• Schemaless("self-describing”)
• Richer types, e.g., text representation:

good for exchange, bad for performance
• Query language borrows from automata

theory



JSON as an example

Primitive values
• A string, which looks like "Hello"
• A number, which looks like 42 or -3.14159
• true or false
• null

Structured values
• Object: a list of name-value pairs (i.e., fields)

{ "partno": 461,
"description": "Wrench"

}

• Array: an ordered list of items
– [1, 2.5, "Hello", true, null]

The items in an array and the values in the fields of an object can be any JSON 
values, arrays and objects.

Order.json
{"Order_no":"0c6df508",

“Orderlines": [
{ “Product_no”: "2724f”

“Product_Name”: “Toy",
"Price":66 },

{ “Product_no”: “3424g”,
“Product_Name”: “Book",
"Price":40 } ]

}



A graph consists of a set of vertices V and edges E
• A generalization of the relational model and semi-structured model

Original intuition: 
• Entities (objects) are represented as nodes 
– Relationships are represented as edges 
– Therefore, nodes and edges have associated types, and attributes 

Many variations in circulation 
– Kind of edges? 

– Directed, undirected 
– Where is data? 

– Only on nodes, only on edges, on both 
– Shape of graph? 

– Arbitrary (has cycles), directed acyclic graph (DAG), tree

Data Viewed as Graphs



Two Schemes for Graph Modelling

book

author
author author

title

“Abiteboul” 
“Buneman”

“Suciu”
“Data on the Web” 

Node-labeled scheme: nodes are 
labeled with types (book, author, 
title) and/or data (strings) 

author
author author

title

“Abiteboul” 
“Buneman”

“Suciu”

“Data on the Web” 

Edge-labeled scheme: edges are
labeled with types (book, author, title)
and/or data (strings)

book



Nodes and Edges both Labeled with Data and Type

book

author
author author

title

“Abiteboul” “Buneman” “Suciu” “Data on the Web” 

A combination of the node-labeled and edge-labeled schemes:
• both nodes and edges are labeled with types (book, author, title) and/or data 

(strings) 
• E.g., node labels: book, edge labels: author and title, data: “Abiteboul”,

“Buneman”, “Suciu”, and “Data on the Web” 



• Edge-labeled graph (N, E, L)
– RDF triple: <subject, predicate, object>

– Knowledge graph

– Query language: SPARQL

Edge-Labeled Graph: RDF

SuciuBuneman

“Data on the Web”

authorOfauthorOf

RDF triples:
< Abiteboul, authorOf, “Data on the Web”>

< Buneman, authorOf, “Data on the Web”>

< Suciu, authorOf, “Data on the Web”>

Abiteboul

authorOf



Node-Labeled Graph: Property Graph

Id: 100
Label: knows

Since: 2010/10/01

Id: 3
Type: Group

Name:
Football

Id:2
Type: Human
Name: Bob

Age: 22

Id:1
Type: Human
Name: Alice

Age: 18

Id: 101
Label: knows

Since:
2010/10/02

Id: 101
Label: memberOf
Since: 2015/10/01

Id: 104
Label: hasMember

Id: 105
Label: memberOf
Since: 2017/01/01

• Property graph model (PGM)
– Represents data as a directed, attributed 

multi-graph. 

– Vertices and edges are rich objects with a set 

of labels and a set of key-value pairs, so-

called properties, e.g., Type:Human

– Semantics of the directions is up to the 

applications

– Cypher/openCypher, Gremlin, etc.



Multi-Model Database Systems

Rank (Apr 2023) DBMS Supported Data Models

1. Oracle Relational, Document, Graph, RDF, Spatial

2. MySQL Relational, Document, Spatial

3. Microsoft SQL Server Relational, Document, Graph

4. PostgreSQL Relational, Document, Spatial

5. MongoDB Documents, Spatial, Time Series, Search Engine

6. Redis KV, Document, Graph, Spatial, TS, Search Engine

7. IBM Db2 Relational, Document, RDF, Spatial

8. Elasticsearch Search engine, Document, Spatial

9. SQLite Relational

10 Microsoft Access Relational

By 2017, all leading operational DBMSs offer multiple data models, relational and NoSQL, in a single 
DBMS platform. - Gartner report for operational databases 2016

The DB-Engines Ranking ranks DBMSs according to their popularity. The ranking is updated monthly.
 8 Multi-Model DBMSs in top-10 (124 out of 414 in total)



Mary (1)

John (2)

friendfriend

William (3)

{“Order_no”: "0c6df508",

"Orderlines": [

{“Product_no”: “2724f”,

"Product_Name”: "Toy",

"Price”: 66 },

{"Product_no": "3424g",

"Product_Name": "Book",

"Price”: 40 } ]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"

“2” -- > "0c6df508"

Recommendation query Q: Return all products which are ordered by a 
friend of a customer whose credit limit is over 3000!

Multi-Model Data and Query



LET CustomerIDs =(
FOR Customer IN Customers 

FILTER Customer.CreditLimit > 3000 
RETURN Customer.id)

LET FriendIDs=(FOR CustomerID IN CustomerIDs
FOR Friend IN 1..1 OUTBOUND CustomerID Knows 
RETURN Friend.id)

FOR Friend IN FriendIDs
FOR Order IN 1..1 OUTBOUND Friend Customer2Order
RETURN Order.orderlines[*].Product_no

ArangoDB is designed as a native multi-model database, supporting key/value, 
document and graph models. 

Q: Return all products which are ordered by a friend of a customer whose credit 
limit is over 3000!

Multi-Model Query in ArangoDB



SELECT EXPAND(OUT(“Knows”).Orders.orderlines.Product_no) 
FROM Customers 
WHERE CreditLimit > 3000

OrientDB
• Supporting graph, document, key/value and object models.

• It supports schema-less, schema-full and schema-mixed modes.

MMQ in OrientDB

Q: Return all products which are ordered by a friend of a customer whose credit 
limit is over 3000!



Challenges are two-fold:
• Designing a language to express multi-model data queries (MMQs)

– An MMQ is a mixture of the relational query, path query, graph pattern matching, etc.

• Cross-model query processing strategies

– The mediator-wrapper fashion in Polystores/Multistores

• Relies heavily on data exchange workflow and hence costly

– A holistic evaluation in MMDB systems

• In this tutorial, we focus on the techniques dealing with the relational and graph
data

• There is an emerging trend that a fusion of relational and graph database
techniques

Challenges
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02 Multi-Model Queries

We will briefly present the multi-model queries and languages

 The relational query languages and their extensions

 The semi-structured query languages and their extensions

 The graph query languages and their extensions

(20 minutes)



Multi-Model Queries

A multi-model query (MMQ) may consist of the following types of fundamental
queries
• Relational queries

• Graph pattern matching

• Path queries

• Aggregations

• Key-Value lookups

• …

An MMQ is a mixture of the above types of queries by cross-model joins

- No commonly accepted definition yet.



Relational Queries

• SWF syntax (SELECT-WHERE-FROM)
– Select, Projection, Join (SPJ)

– Conjunctive Queries (CQs)

• Aggregation

• Query languages:

– Relational algebra (RA)

– Relational calculus (RC)

– SQL

Conjunctive query (CQ) :
• Written in conjunctive form (without using , , ):

q(x1,...,xn)  = y1.y2...yp.(R1(t11,...,t1m) ... 

Rk(tk1,...,tkm))

• Written in Datalog notation:

q(x1,...,xn)   :- R1(t11,...,t1m), ... , Rk(tk1,...,tkm))



Formal Relational Query Languages

A query Language has equivalent expressive power with RA and RC is said to be
Relational Complete.
• Relational Algebra

– Select, Project, Union, Set different, Cartesian product, Rename
– More operational(procedural), and always used as an internal representation for query 

evaluation plans

• Relational Calculus
– Tuple Relational Calculus: filtering variable ranges over tuples {T | Condition}

• Alpha: proposed by Codd in 1971; QUEL: INGRES 1975
• { T.name | Author(T) AND T.article = 'database' }

– Domain Relational Calculus: the filtering variable uses the domain of attributes instead of 
entire tuple values, { a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

• {< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}



SQL(Structured Query Languages)

• SQL is a standard language for querying and manipulating data
– RA and RC form the basis for “real” languages like SQL

• SQL is a very high-level (or declarative) programming language
– This works because it is optimized well!

• Many standards out there (vendors support various subsets): 
– ANSI SQL,  SQL92 (a.k.a. SQL2),  SQL99 (a.k.a. SQL3), ….

• Query syntax
– SWF syntax (SELECT-WHERE-FROM)

• Select, Projection, Join (SPJ)

– Aggregation

– Recursion (CTE)

NB: One the world’s most successful programming language



Are CQ queries precisely the SELECT-DISTINCT-FROM-WHERE queries ?

Relational Algebra:

• CQ correspond precisely to sC, PA,  (missing: , –)

26

P$2.name

sname=“Smith”

ManagedBy ManagedBy

$1.manager = $2.manager

A(x) :- ManagedBy(“Smith”,y), ManagedBy(x,y)

SELECT DISTINCT m2.name
FROM ManagedBy m1, ManagedBy m2
WHERE m1.name=“Smith” AND

m1.manager=m2.manager

CQs and Relational Queries



Graph Queries

Pioneered by academic work on CQ extensions for graphs (in the 90’s)

• Graph pattern
– Small subgraph of interests

– Can be also defined as conjunctive queries over the relational representation of graph data

– (x, hasWon, Nobel), (x, hasWon, Booker)

• Path query for navigating along connected edges

– x, citizenOf | ((bornIn | livesIn) locatedIn*), y

• Variables for manipulating data found during navigation

• Aggregation of data encountered during navigation 
 support for bag semantics as prerequisite 



Graph Patterns

Graph pattern:

• V={x, y, z, …}, Alphabet Σ = {friend}

• {(x, friend, y), (y, friend, z), (z, friend, x), (y, friend, x), (z, friend, y),

(x, friend, y)}

• E.g, in a social network one can match the pattern to look for a 

clique of three individuals that are all friends with each other

y z

x

friend friend

friend

Semantics:
• The semantics of patterns is given using the notion of matching. 

• A match of a pattern P=(VP, EP) over a graph (VG, EG) is a mapping π from variables to constants.

• Semantics vary according to the mapping functions, such as homomorphism or isomorphism.



Graph Patterns as Relational Queries

• Given an alphabet Σ, we define σ(Σ) as the relational schema that consists of one 
binary predicate symbol Ea, for each symbol a ∈ Σ.

• Each graph database G=(V, E) can be represented as a relational instance D(G)
over σ(Σ)
– The database D(G) consist of all facts of the form Ea(v, v’) such that (v, a, v’) is an edge in G (we

assume that D includes all the nodes in V)

– CQ Q(x) = ∃y ϕ(x, y), x and y are tuples of variables and ϕ(x, y) is a conjunction of relational
atoms from σ that use variables from x to y.

– E.e., Q(x, y, z) = friend(x,y), friend(y,x), friend (x,z), friend(z, x), friend(y,z), friend(z,y)



Path Queries

• Express reachability via constrained paths 

• Introduced initially in academic research in early 90s

– StruQL (AT&T Research, Fernandez, Halevy, Suciu)

– WebSQL (Mendelzon, Mihaila, Milo)

– Lorel (Widom et al)

• Today supported by languages of commercial systems

– XPath/XQuery, SQL++,

– Cypher, SparQL, Gremlin, GSQL



Path Query Syntax

Various notations to express path queries
• Dot notation, e.g., SQL++, N1QL
• Axes notation, e.g., XPath/XQuery

Path expressions  Edge label
| _ // wildcard, any edge label
| ^ edge label // inverse edge
| path . path // concatenation
| path | path // alternation
| path* // 0 or more reps
| path*(min, max) // at least min, at most max
| (path)

Adopting here that of SparQL W3C Recommendation.



Path Expression Examples

• Pairs of customer and product they bought:
Bought

• Pairs of customer and product they were involved with (bought or reviewed)
Bought|Reviewed

• Pairs of customers who bought same product (lists customers with themselves)
Bought.^Bought

• Pairs of customers involved with same product (like-minded)
(Bought|Reviewed).(^Bought|^Reviewed)

• Pairs of customers connected via a chain of like-minded customer pairs
((Bought|Reviewed).(^Bought|^Reviewed))*

• Bounded-length traversal
friendOf*(1,3)



Regular Path Queries (RPQ)

The path query can be defined with various grammars, the most widely adopted
one is RPQ: 
• RQP(x, y) := (x, R, y), where R is a regular expression over the vocabulary of edge labels
• the semantics is defined in terms of sets of node pairs (x, y), where there exists a path in G from x

to y whose concatenated labels spell out a word in L(PE)
• L(PE) = language accepted by PE when seen as regular expression over alphabet of edge labels

Construction of regular expressions: 
• R ::= s | R.R | (R|R) | (R) | R? | R* | R+ // s element from S

Examples: 
• Ancestors: isChildOf+ 
• Cousins: isChildOf, isChildOf, hasChild, hasChild

Page 33



Conjunctive Regular Path Queries

RQPs can be further extended to Conjunctive Regular Path Queries (CRPQs)
• Replace relational atoms appearing in CQs with path expressions.

• Explicitly introduce variables binding to source and target nodes of path expressions. 

• Examples:
– Pairs of customers who have bought same product (do not list a customer with herself):

Q1(c1,c2) :- c1 –Bought.^Bought-> c2, c1 != c2

– Customers who have bought and also reviewed a product:

Q2(c) :- c –Bought-> p, c –Reviewed-> p

ANS(x,y) := (x, hasWon, Nobel), (x, hasWon, Booker), (x, (citizenOf | ((bornIn |

livesIn) locatedIn*)), y)



RPQ Examples
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1

a

3

4

5

2 6

7

9

8

b

c

a

d

RPQ = a+(d|c)be
• acbe: (2,4), (4,5), (5,7), (7,9)
• aacbe: (1,2), (2,4), (4,5), (5,7), (7,9)

a

d

b

a
b

a

e

e

c

Pattern: (x, a, y), (y, e, z), (z, ?, x)
• triangle: (7,8), (8,5), (5,7)

CRPQ: (x, a, y), (y, e, z), (z, ?c+(d|b), x)
• cycle: (7,8), (8,5), (5,7)
• cycle: (7,8), (8,5), (5,4), (4,7)
• cycle: (7,8), (8,5), (5,4), (4,6), (6,7)

c



• SQL++ : A Backwards-Compatible SQL , which can access a SQL extension with 
nested and semi-structured data

• Queries exhibit XQuery and OQL abilities, yet backwards compatible with SQL-92

• Supports relation and JSON

• Simpler than XML and the XQuery data model
• Unlike labeled trees (the favorite XML abstraction of XPath and XQuery research) 

makes the distinction between tuple constructor and list/array/bag constructor

Case Study 1: SQL++

SQL++: http://arxiv.org/abs/1405.3631

http://db.ucsd.edu/wp-content/uploads/pdfs/375.pdf

http://arxiv.org/abs/1405.3631
http://db.ucsd.edu/wp-content/uploads/pdfs/375.pdf


{ 
'location': 'Alpine',
'readings': [

{ 
'time': timestamp('2014-03-12T20:00:00'),
'ozone': 0.035,
'no2': 0.0050

},
{ 

'time': timestamp('2014-03-12T22:00:00'),
'ozone': 'm',
'co': 0.4

} ]
}

Arbitrary compositions of array, bag, tuple

SQL++ Data Model

Can think of as extension of SQL 
• Extend with arrays + nesting + heterogeneity by 

following JSON’s notation

37

Can also think of as extension of JSON
• Use single quotes for literals
• Extended with bags and enriched types

{ 
'location': 'Alpine',
'readings': {{

{ 
'time': timestamp('2014-03-12T20:00:00'),
'ozone': 0.035,
'no2': 0.0050

},
{ 

'time': timestamp('2014-03-12T22:00:00'),
'ozone': 'm',
'co': 0.4

} }}
}

Array nested inside a tuple

Heterogeneous tuples in collections Bags {{ … }}

Enriched types



BNF Grammar for SQL++ queries

• Semi-structured query

• SFW query:

• SELECT-FROM-WHERE (SFW)

• Complex: tuple, collection or map

• Expression query:

• Operator expressions

• Path expression

SQL++ Query Syntax

SQL++ QUERY  SFW QUERY
| EXPRESSION_QUERY

SFW_QUERY  SELECT [DISTINCT] | [FROM] | [WHERE]
| [GROUP BY] | [HAVING]
| [ORDER BY] | [LIMIT] | [OFFSET]

EXPRESSION  OperatorExpression

| QuantifiedExpression

Operator
Expression

 PathExpression

| Operator OperatorExpression

| OperatorExpression Operator 

(OperatorExpression)? 

|OperatorExpression <BETWEEN> 

OperatorExpression <AND> 

OperatorExpression



@tuple_nav {absent: missing, type_mismatch: null}

@array_nav {absent: missing, type_mismatch: null}

([r.co, r.so, 7.co, r.no[1], r.no[3], r.co[1]])

Two types path navigations:
1. Tuple path navigation t.a from the tuple t to its attribute a returns the value of a
2. Array path navigation a[i] returns the i-th element of the array a

<r:{ ci: 1.2, no: [0.5, 2] }>

Path Navigation in SQL++



sid temp

2 70.1

2 49.2

1 null

sid

2

Find sensors that recorded a temperature below 50:

readings : {{
{ sid: 2, temp: 70.1 },
{ sid: 2, temp: 49.2 }, 
{ sid: 1, temp: null }

}}

{{ 
{ sid : 2 }

}}

Backwards Compatibility with SQL

SELECT DISTINCT r.sid
FROM readings AS r
WHERE r.temp < 50



Case Study 2: ArangoDB Query Language (AQL)

A native multi-model DBMS that supports
• Graph
• Key-value
• Json

Doing queries with AQL
• Data retrieval with filtering, sorting and more
• Simple graph queries
• Traversing through a graph with different options
• Shortest path queries

SQL AQL

database database

table collection

row document

column attribute

table joins collection joins

primary key
primary key (automatically present 
on _key attribute)

index index



AQL query syntax

Query syntax (FOR-FILTER-RETUREN)

• Selecting all rows / documents from a table / 

collection, with all columns / attributes

• Filtering rows / documents from a table / 

collection, with projection

• Sorting rows / documents from a table / collection

FOR user IN users
RETURN user

FOR user IN users
FILTER user.active == 1
RETURN {
name: CONCAT(user.firstName, " ",

user.lastName),
gender: user.gender

}

FOR user IN users
FILTER user.active == 1
SORT user.name, user.gender
RETURN user



ArangoDB has its own implementation of JOINS.

FOR user IN users 

FOR friend IN friends

FILTER friend.user == user._key

RETURN MERGE(user, friend)

• Outer join are not directly supported in AQL, 
but can be implemented using subqueries:

FOR user IN users 
LET friends = (
FOR friend IN friends
FILTER friend.user == user._key
RETURN friend

)
FOR friendToJoin IN (

LENGTH(friends) > 0 ? friends :[ { } ]
/* no match exists */ 

)
RETURN { user: user, friend: friend }

• Inner join can be expressed easily in AQL by 
nesting FOR loops and using FILTER
statements:

AQL JOINS



• Traverse to the parents

• Traverse to the children

• Traverse to the 
grandchildren

• Traverse with variable depth

NB: This FOR loop doesn’t iterate over a 
collection or an array, it walks the graph and 
iterates over the connected vertices it finds, 
with the vertex document assigned to a 
variable (here: v).

FOR c IN Characters FILTER c.name == "Ned" 
FOR v IN 1..1 INBOUND c ChildOf

RETURN v.name

FOR c IN Characters FILTER c.name == "Tywin" 
FOR v IN 2..2 INBOUND c ChildOf

RETURN v.name

FOR c IN Characters FILTER c.name == "Joffrey" 

FOR v IN 1..2 OUTBOUND c ChildOf

RETURN DISTINCT v.name

FOR v IN 1..1 OUTBOUND “Characters/2901776” 
ChildOf

RETURN v.name

AQL Graph Traversal



OrientDB is a Multi-Model Database 
• Document, Graph, Spatial, FullText
• Tables -> Classes
• Extended SQL

#12:382

Frank
#15:39
Helsinki

#22:11
Lives_in

Since: 2003

• Each element (vertex and edge) is a JSON document
• Each element in the Graph has own immutable 

Record ID, such as #13:55, #22:11
• Connections use persistent pointers

in = #13:55 out = #13:55

(Vertex)
(Vertex) (Edge)

Data models

{ “@rid”: “12:382”,
“@class”: “Customer”,
“name”: “Frank”,
“surname” : “Raggio”,
“phone” : “+358 0402678479”,
“details”: {“city”:”London“,

“tags”:”millennial” }
}

Case Study 3: OrientDB Query Language (OrientQL)



OrientDB supports SQL as a query language with some differences:

SELECT out('Eats', 'Favorited')

FROM Restaurant

WHERE city = 'Rome'

Q: Get all the outgoing vertices connected with edges with label (class) “Eats” and
"Favourited" from all the Restaurant vertices in Rome

SELECT city, sum(salary) AS salary 

FROM Employee

GROUP BY city

HAVING salary > 1000

OrientQL



SELECT expand( out() ) 
FROM #12:468

SELECT expand( out() ) 

FROM Customer 

WHERE name = ‘Green’

This uses an index to retrieve the starting vertex 
(#12:468) vertex

Order
2332

Green

Lives_in Order
8834

Shampoo

#15:4334

#12:468

#15:19345

#15:49602

OrientQL Graph Traversal



SELECT expand( out().out() ) 

FROM #12:468

SELECT expand( out().out() ) 
FROM Customer 
WHERE name = ‘Green’

Order
2332

Green

Lives_in Order
8834

Shampo
o

#15:4334

#12:468

#15:19345

#15:49602

SELECT expand( in().in() )
FROM #15:49602

SELECT expand( in().in() )
FROM Product
WHERE name = ‘White Soap’

OrientQL: Graph Traversal



In a social network-like domain, a 
user profile is connected to friends 
through links.

• TRAVERSE out("Friend")

• FROM #10:1234 WHILE $depth <= 3

• STRATEGY BREADTH_FIRST

MATCH {class: Person, WHERE: (name = ‘Abel’), AS: me}
-friendOf->{}-friendOf>{AS: foaf}, 

{AS: me}-friendOf->{AS: foaf}
RETURN me.name AS myName, foaf.name AS foafName

Traversal Pattern Matching

Me

F

FoaF

friendOf

friendOf

friendOf

OrientDB Graph Traversal and Pattern Matching



A forked project of PostgreSQL (v9.6.2) supports
• Relational data, property graph, and JSON documents

• Integrated querying using SQL (Relational data) and Cypher (Graph data)

• Extended property graph model

• Data objects
– Graph

– Vertex and edge

– Each vertex and edge can have a JSON document as its property

• Label hierarchy
– Vertexes and edges can be grouped into labels (e.g. person, student, teacher, …)

– Labels are organized as a hierarchy

Case Study 4: AgensGraph Query Language (AgensQL)



RPQ can be written as Variable-length Edge (VLE) Query
• Can be implemented using recursive common table expression (CTE) in SQL

• But CTE is inefficient for VLE query

– Using CTE is BFS (Breadth First Search)-style processing

– BFS processing needs to buffer intermediate results

VLE with Cypher:

MATCH p=(x)-[:Parent*]->(y) 
RETURN (x), (y), length(p)
ORDER BY (y), (x),length(p)

MATCH (x)-[*1..5]->(y) 
RETURN x, y;

x y

RPQ with AgensGraph



• ArangoDB Query Language(AQL). https://www.arangodb.com/docs/stable/aql/index.html.

• C. Zhang and J. Lu. Holistic evaluation in multi-model databases benchmarking. Distributed and Parallel Databases, pages 
1–33, 2019.
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pages 7–23. Springer, 2018.

• S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. 
Gabrielova, R. Grover, Z. Heilbron, Y. Kim, C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and T. 
Westmann. AsterixDB: A scalable, open source BDMS. Proc. VLDB Endow., 7(14):1905–1916, 2014.
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databases. ACM Comput. Surv., 50(5):68:1–68:40, 2017.
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survey of SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR, abs/1405.3631, 2014.

• P. T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50–60, 2012.
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We will discuss different types of join algorithms, including:

 Binary joins

 Worst-case optimal joins

 Subgraph matching algorithms

03 Join and Subgraph Matching



• Consider R(A, B) ⋈ S(B, C) ⋈ T(A, C)

– Traditional database systems are typically only able to join two tables at once

– Pick your two favorite tables and join them to get an intermediate relation, then join that 
with another table, and so on (until we get a single table) 

– This join process can be represented by a join tree

Adapted from Justin Jaffray, A Gentle(-ish) Introduction to Worst-Case Optimal Joins (https://justinjaffray.com/a-gentle-ish-introduction-to-worst-case-

optimal-joins/?try=2)

R S

T

 Many commercial RDBMSs and GDBMSs adopt 

binary joins

 It is suboptimal when dealing with queries involving 

complex “cyclic joins” over many-to-many 

relationships, since the intermediate results might 

be unnecessarily large 

Binary Joins



Joins are Secretly Graph Processing Algorithms

• Consider R(A, B) ⋈ S(B, C) 

– Represent these tables as a graph, where each named column corresponds to a typed set 
of vertices

– If you enumerate all the paths that start from a vertex in a, go to a vertex in b, and wind 
up on a vertex in c, you’ll find that set of such paths is precisely the join results (structure 
finding in graph)

Adapted from Justin Jaffray, A Gentle(-ish) Introduction to Worst-Case Optimal Joins (https://justinjaffray.com/a-gentle-ish-introduction-to-worst-case-

optimal-joins/?try=2)



Worst-Case Optimal (WCO) Joins

• Let us consider the triangle counting problem in a graph G

• Representing the graph as a table g(from, to)

• And join the table with itself twice (equivalent to R(A, B) ⋈ S(B, C) ⋈ T(A, C))

• It turns out that a graph with O(n) edges will have no more than O(n1.5) triangles in it

• For binary joins, there are graphs where that first intermediate join 
will always have O(n2) rows in it, no matter which two tables we choose to join first.

Adapted from Justin Jaffray, A Gentle(-ish) Introduction to Worst-Case Optimal Joins (https://justinjaffray.com/a-gentle-ish-introduction-to-worst-case-

optimal-joins/?try=2)



Worst-Case Optimal (WCO) Joins

• Let us reconsider R(A, B) ⋈ S(B, C) ⋈ T(A, C)

• Column-at-a-time “Worst-case Optimal” Join Algorithms

– Instead of picking a join order for tables, we pick a column order and perform the join 
column at a time

– Step 1: Find all a’s. Here we will just take all nodes as possible a values. 

– Step 2: For each a value, e.g., a=1, we extend it to find all ab’s that can be part of 
triangles: Here we use the forward index to look up all b values for node with ID 1. This 
will generate the second intermediate relation.

– Step 3: For each ab value, e.g., the tuple (a=1 b=0), we will intersect all c’s with a=1, and 
all c’s with b=0 (k-way intersections). That is, we will intersect the backward adjacency 
list of the node with ID 1, and forward adjacency list of the node with ID 0. If the 
intersection is non-empty, we produce some triangles. 

The query graph

Adapted from Justin Jaffray, A Gentle(-ish) Introduction to Worst-Case Optimal Joins (https://justinjaffray.com/a-gentle-ish-introduction-to-worst-case-

optimal-joins/?try=2), and Semih Salihoğlu, Why (Graph) DBMSs Need New Join Algorithms: The Story of Worst-case Optimal Join Algorithms 

(https://kuzudb.com/blog/wcoj.html)

https://justinjaffray.com/a-gentle-ish-introduction-to-worst-case-optimal-joins/?try=2


Worst-Case Optimal (WCO) Joins

• Let us reconsider R(A, B) ⋈ S(B, C) ⋈ T(A, C)

• Column-at-a-time “Worst-case Optimal” Join Algorithms

– Instead of picking a join order for tables, we pick a column order and perform the join 
column at a time

– Step 1: Find all a’s. Here we will just take all nodes as possible a values. 

– Step 2: For each a value, e.g., a=1, we extend it to find all ab’s that can be part of 
triangles: Here we use the forward index to look up all b values for node with ID 1. This 
will generate the second intermediate relation.

– Step 3: For each ab value, e.g., the tuple (a=1 b=0), we will intersect all c’s with a=1, and 
all c’s with b=0 (k-way intersections). That is, we will intersect the backward adjacency 
list of the node with ID 1, and forward adjacency list of the node with ID 0. If the 
intersection is non-empty, we produce some triangles. 

The query graph

Adapted from Justin Jaffray, A Gentle(-ish) Introduction to Worst-Case Optimal Joins (https://justinjaffray.com/a-gentle-ish-introduction-to-worst-case-

optimal-joins/?try=2), and Semih Salihoğlu, Why (Graph) DBMSs Need New Join Algorithms: The Story of Worst-case Optimal Join Algorithms 

(https://kuzudb.com/blog/wcoj.html)

Worst-case optimal:
- Let IN denote the input size of the query Q
- The computational cost is INρ*, where ρ* is the fractional edge

cover number of Q (the AGM bound)
- For the above query, the cost is O(N1.5)

https://justinjaffray.com/a-gentle-ish-introduction-to-worst-case-optimal-joins/?try=2


Subgraph Matching

• Subgraph Isomorphism: Given a query  𝑄 and a data graph 𝐺, 𝑄 is subgraph isomorphism
to 𝐺, if and only if there exists an injective function 𝑓: 𝑉 𝑄 → 𝑉(𝐺), such that

– ∀ 𝑢 ∈ 𝑉 𝑄 , 𝑓 𝑢 ∈ 𝑉 𝐺 , 𝐿𝑉 𝑢 = 𝐿𝑉 𝑔 𝑢 , where 𝑉 𝑄 and 𝑉 𝐺 denotes all

vertices in 𝑄 and 𝐺, respectively; and 𝐿𝑉 ∙ denotes the corresponding vertex label.

– ∀𝑢1𝑢2 ∈ 𝐸 𝑄 , 𝑓(𝑢1)𝑓(𝑢2) ∈ 𝐸 𝐺 , 𝐿𝐸 𝑢1𝑢2 = 𝐿𝐸 𝑓 𝑢1 𝑓(𝑢2)



Subgraph Matching

• Subgraph Isomorphism: Given a query  𝑄 and a data graph 𝐺, 𝑄 is subgraph isomorphism
to 𝐺, if and only if there exists an injective function 𝑓: 𝑉 𝑄 → 𝑉(𝐺), such that

– ∀ 𝑢 ∈ 𝑉 𝑄 , 𝑓 𝑢 ∈ 𝑉 𝐺 , 𝐿𝑉 𝑢 = 𝐿𝑉 𝑔 𝑢 , where 𝑉 𝑄 and 𝑉 𝐺 denotes all

vertices in 𝑄 and 𝐺, respectively; and 𝐿𝑉 ∙ denotes the corresponding vertex label.

– ∀𝑢1𝑢2 ∈ 𝐸 𝑄 , 𝑔(𝑢1)𝑔(𝑢2) ∈ 𝐸 𝐺 , 𝐿𝐸 𝑢1𝑢2 = 𝐿𝐸 𝑔 𝑢1 𝑔(𝑢2)
• Subgraph Isomorphism Testing is NP-complete

• Decide whether there is a subgraph of 𝐺 that is isomorphic to 𝑄

• Enumerating all subgraph isomorphic embeddings is NP-hard
• Many techniques have been developed for efficient enumeration in

practice



Subgraph Matching – Ullman Algorithm

• Given two graphs 𝑄 and 𝐺, their corresponding matrices are 𝑀𝐴𝑛×𝑛 and 𝑀𝐵𝑚×𝑚 .

• Goal:  1) Find matrix 𝑀′𝑛×𝑚 such that

2) or report no such matrix 𝑀′.

Julian R. Ullmann: An Algorithm for Subgraph Isomorphism. J. ACM 23(1): 31-42 (1976)

MC=M’ M’ ∙ 𝑀𝐵 𝑇 ∀𝑖, 𝑗, 𝑀𝐴 𝑖 𝑗 = 1 → 𝑀𝐶 𝑖 𝑗 = 1

MA: the adjacency matrix of query Q
MB: the adjacency matrix of graph G
M’: the matching matrix, which specifies the
isomorphism from Q to a subgraph of G if it exists.
(M’ specifies an subgraph isomorphism from Q to G.)

1) M’[i][j] = 1 means that the i-th vertex in Q 

corresponds to j-th vertex in query G;

2) Each row in M’ contains exactly one 1;

3) No column contains more than one 1. 



Subgraph Matching – Ullman Algorithm

• Step 1. Set up matrix 𝑀𝑛×𝑚, such that 𝑀 [i][j]=1, if 1) the i-th vertex in 𝑄 has the same label as the j-th
vertex in 𝐺; and 2) the i-th vertex in 𝑄 has smaller vertex degree than the j-th vertex in 𝐺. 

• Step 2. Matrices 𝑀′ are generated by systematically changing to 0 all but one of the 1’s in each of the rows 
of 𝑀, subject to the definitory condition that no column of a matrix 𝑀′ may contain more than one 1 (the 
maximal depth is |MA|).

• Step 3. Verify matrix 𝑀′ by the following equation:

• Iterate the above steps and enumerate all possible matrixes 𝑀′. 

Julian R. Ullmann: An Algorithm for Subgraph Isomorphism. J. ACM 23(1): 31-42 (1976)

MC=M’ M’ ∙ 𝑀𝐵 𝑇

∀𝑖, 𝑗 𝑀𝐴 𝑖 𝑗 = 1 → 𝑀𝐶 𝑖 𝑗 = 1



Subgraph Matching – Ullman Algorithm

• Step 1. Set up matrix 𝑀𝑛×𝑚, such that 𝑀 [i][j]=1, if 1) the i-th vertex in 𝑄 has the same label as the j-th
vertex in 𝐺; and 2) the i-th vertex in 𝑄 has smaller vertex degree than the j-th vertex in 𝐺. 

• Step 2. Matrices 𝑀′ are generated by systematically changing to 0 all but one of the 1’s in each of the rows 
of 𝑀, subject to the definitory condition that no column of a matrix 𝑀′ may contain more than one 1 (the 
maximal depth is |MA|).

• Step 3. Verify matrix 𝑀′ by the following equation:

• Iterate the above steps and enumerate all possible matrixes 𝑀′. 

Julian R. Ullmann: An Algorithm for Subgraph Isomorphism. J. ACM 23(1): 31-42 (1976)

MC=M’ M’ ∙ 𝑀𝐵 𝑇

∀𝑖, 𝑗 𝑀𝐴 𝑖 𝑗 = 1 → 𝑀𝐶 𝑖 𝑗 = 1

• Neighborhood Connection Pruning
• Let the i-th vertex v in Q corresponds to the j-th vertex u in G. Each neighbor

vertex of v in Q must correspond to some neighbor vertex of u in G.
Otherwise, v cannot correspond to u.



Subgraph Matching – VF2 Algorithm 

• Considering two graph 𝑄 and 𝐺, the (sub)graph isomorphism from 𝑄 to 𝐺 is expressed as 
the set of pairs (𝑛, 𝑚) (with 𝑛 ∈ 𝑄and 𝑚 ∈ 𝐺 )

• Let 𝑠 be an intermediate state. Actually, 𝑠 denotes a partial mapping from 𝑄 to 𝐺, namely, 
a mapping from a subgraph of 𝑄 to a subgraph of 𝐺.  These two subgraphs are denoted as 
𝑄(𝑠) and 𝐺(𝑠), respectively.  

• All neighbor vertices to 𝑄(𝑠) in graph 𝑄 are denoted as 𝑁𝑄(𝑠) , and all neighbor vertices 
to 𝐺(𝑠) in graph 𝐺 are denoted as 𝑁𝐺(𝑠). Candidate pair sets are a subset of 𝑁𝑄 s ×
𝑁𝐺(𝑠). Apply structural feasibility rules to prune unpromising candidate pairs. 

– E.g., neighbor connection

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento: A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs. IEEE Trans. 

Pattern Anal. Mach. Intell. 26(10): 1367-1372 (2004)

( , , ) ( , , ) ( , , )structure labelF s n m F s n m F s n m 

1 1

2 2
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' ( ( ) ( , ))

F s n m n V s N n Q

m V s N m G

   
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𝑁1(𝑛, 𝑄): The neighbors of vertex n in graph 𝑄;

𝑁2(𝑚, 𝐺): The neighbors of vertex m in graph 𝐺;



Subgraph Matching – Multi-Way Join 

• Recall that a subgraph query Q is equivalent to a multiway self-join query over edge tables 

• Worst-case optimal join

Its running time complexity is O(𝑁1.5) , 

matching the worst case output size. 

A. ATSERIAS, M. GROHE and D. MARX, “Size bounds and query plans for relational joins,” FOCS 2008.



Subgraph Matching

• A Summary of representative subgraph matching algorithms 

Methodology Algorithms and Systems

Sequential Parallel

Backtracking Search Ullman, VF2, QuickSI,
GADDI,

SPath, GraphQL, TurboISO,
BoostISO, CFL, SGMatch,

CECI, DP-iso

PGX, PSM, STwig

Multi-way
Join

Pair-wise
Join

PostgreSQL, MonetDB,
Neo4J

GpSM, GSI

Worst-Case
Optimal Join

LogicalBlox, gStore EmptyHeaded, GraphFlow



Equivalence between Join and Subgraph Matching

• We have discussed the equivalence in previous slides…

• The equivalence has been observed in a bunch of studies…

– …by using the standard relational algebra, a graph traversal has to be represented as a 
sequence of joins. [EDBT/ICDT 2016 Workshops]

– …we discuss the alternative approach of using graph exploration, instead of substructure joins, 
to answer subgraph matching queries. [VLDB 2012]

– The execution process of join operations can be considered as explorations over links in an 
entity-relationship graph. [VLDB 2016]

– …subgraph matching is equivalent to multi-way joins between base Vertex and base Edge 
tables on ID attributes. [SIGMOD-GRADES&NDA 2021]

– …a subgraph query Q is equivalent to a multi-way self-join query that contains one E(ai,aj ) (for 
Edge) relation for each ai→aj ∈ EQ. [VLDB 2019]



• Justin Jaffray, A Gentle(-ish) Introduction to Worst-Case Optimal Joins (https://justinjaffray.com/a-gentle-ish-introduction-
to-worst-case-optimal-joins/?try=2)

• Semih Salihoğlu, Why (Graph) DBMSs Need New Join Algorithms: The Story of Worst-case Optimal Join Algorithms 
(https://kuzudb.com/blog/wcoj.html)

• Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento: A (Sub)Graph Isomorphism Algorithm for Matching Large 
Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10): 1367-1372 (2004)

• A. ATSERIAS, M. GROHE and D. MARX, “Size bounds and query plans for relational joins,” FOCS 2008.

• Julian R. Ullmann: An Algorithm for Subgraph Isomorphism. J. ACM 23(1): 31-42 (1976)

• Jiang, Chuntao, Frans Coenen, and Michele Zito. "A survey of frequent subgraph mining algorithms." The Knowledge 
Engineering Review 28.1 (2013): 75-105.

• Hölsch, Jürgen, and Michael Grossniklaus. "An algebra and equivalences to transform graph patterns in neo4j." EDBT/ICDT 
2016 Workshops: EDBT Workshop on Querying Graph Structured Data (GraphQ). 2016.

• Sun Z, Wang H, Wang H, et al. Efficient subgraph matching on billion node graphs[J]. VLDB 2012.

• Ma, Hongbin, et al. "G-SQL: Fast query processing via graph exploration." Proceedings of the VLDB Endowment 9.12 
(2016): 900-911.

• Mhedhbi, Amine, et al. "LSQB: a large-scale subgraph query benchmark." Proceedings of the 4th ACM SIGMOD Joint 
International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA). 
2021.

• Amine Mhedhbi, Semih Salihoglu: Optimizing Subgraph Queries by Combining Binary and Worst-Case Optimal Joins. Proc. 
VLDB Endow. 12(11): 1692-1704 (2019)
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 Relational database techniques for graph queries

 Graph techniques for relational queries

04 Fusion of Query Processing Techniques



Motivation of RDBMSs Supporting Graph Processing

• Graph processing (e.g., various analytics) is getting increasingly popular!
– Social networks, transportation networks, ad networks, e-commerce, web search, …

• In many real-world scenarios, data is collected and stored in a relational database

– Using specialized graph engines -> First need to dump data from RDBMSs with pre- and post-
processing

• Limited capacity of specialized graph processing systems compared to RDBMSs

– Transactions, checkpointing and recovery, fault tolerance, durability, integrity constraints

• “Relational” vs “graph” distinction is blurry

– Most structured data can be modeled as relations or graph

• Advances of relational data analytics

– E.g., column-oriented databases



The World of Graph Databases from An Industry Perspective

• Two different types of graph workloads

–Graph queries/Graph OLTP

• Low-latency graph traversal and pattern matching; typically only touch small 
local regions of a graph

• E.g., 2-hop neighbors, single-pair shortest path

–Graph algorithms/Graph OLAP/Graph analytics

• Typically iterative, long running processing on the entire graph

• Graph ML, e.g., Graph Neural Networks (GNNs)

Tian, Yuanyuan. "The World of Graph Databases from An Industry Perspective." ACM SIGMOD Record 51.4 (2023): 60-67.



The World of Graph Databases from An Industry Perspective

• Two prominent graph models

– RDF Model (W3C standard)
• Directed edge-labeled graph, represented by the subject–predicate–object (s, p, o) triples

– Property Graph Model
• Vertex and edge can have arbitrary number of properties and can also be tagged with labels



The World of Graph Databases from An Industry Perspective

• Query languages for graph OLTP

– RDF Model: SPARQL

– Property graphs: Tinkerpop Gremlin, Cypher/openCypher (Neo4j), PGQL 
(Oracle), GSQL (TigerGraph), G-Core (LDBC), GQL (ISO/IEC)

– Imperative vs. declarative: Gremlin is the only imperative query language

– Turing complete? (Gremlin, GSQL)

• Query languages for graph OLAP

– No standard language or API

– Most vendors support Pregel-like API

– A library of build-in graph algorithms is acceptable



The World of Graph Databases from An Industry Perspective

• Graph Databases



The World of Graph Databases from An Industry Perspective

• Graph database solution space

– Native graph DB vs. hybrid graph DB

– Graph-only DB vs converged (i.e., multi-model) DB

• Advantages of native/graph-only DB: efficiency, Graph OLAP, …

• Advantages of hybrid/converged DB come from the backend data store 
(transactions, access control, high availability, disaster recovery, …)



The World of Graph Databases from An Industry Perspective

• Graph benchmarks

–No standard benchmarks like TPC-C/H/DS

–Linked Data Benchmark Council (LDBC), e.g., SNB

–Linkbench from Facebook

–Graph500

–Open Graph Benchmark (OGB) for graph ML



Overview of Relational Database Techniques for Graph 
Processing

• Allow users to think in terms of a graph with an (unmodified) relational database

– E.g., with the vertex-centric programming interface

• Support graph analytic processing by SQL and relational algebra

• Improve graph queries (i.e., subgraph matching) via more efficient join algorithms 
(e.g., worst-case optimal join)



Vertex-Centric Graph Processing

• Popular for graph analytics

• Thinking like a vertex: processing logic applies on a vertex level and communicate 
via message passing
– Programmer only specifies a vertex program

– System takes care of running it in parallel

• Bulk Synchronous Parallel (BSP) model

• Gather-Apply-Scatter (GAS) model

BSP Model GAS Model



Vertex-Centric Graph Processing

• Vertex-centric BSP computation of the Single-Source Shortest Path (SSSP) algorithm:

– Source node: 1

distance



Grail: The Case Against Specialized Graph Analytics Engines [CIDR 2015]

• Motivation: Is graph processing that different from other types of data processing?
– Answer:  No. Can be subsumed by “traditional” relational processing

• Vertex-centric programming adopted by specialized graph engines

Bulk Synchronous Parallel (BSP)

(e.g., Giraph)

Gather-Apply-Scatter (GAS)

(e.g., GraphLab)

Fan, Jing, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. "The Case Against Specialized Graph Analytics Engines." CIDR. 2015.



• Basic idea:  Build a similar vertex-centric simple API and then map it to SQL (with 
good performance)

• An example of the single-source shortest path algorithm:

Grail: The Case Against Specialized Graph Analytics Engines [CIDR 2015]
- Schema Definitions

Permanent: 

- edge(src, dst, data, val)

- vertex(id, data, val)

Intermediate:

- next(id, val)

- cur(id, val)

- message(id, val)



• An example of the single-source shortest path algorithm:

Grail: The Case Against Specialized Graph Analytics Engines [CIDR 2015]
- From Grail API to SQL



• Vertex-centric operators -> relational algebra -> SQL

Grail: The Case Against Specialized Graph Analytics Engines [CIDR 2015]
- The Role of Relational Algebra



• Vertex-centric operators -> relational algebra -> SQL

Grail: The Case Against Specialized Graph Analytics Engines [CIDR 2015]
- The Role of Relational Algebra



• Queries

– Single-source shortest 
path (SSSP)

– PageRank

– Weakly connected 
components (WCC)

Grail: The Case Against Specialized Graph Analytics Engines [CIDR 2015]
- Implementation and Performance

Implementation: 



Graph Analytics using Vertica [VLDB 2014, BigData 2015]

• Vertex-centric processing -> query execution plan (e.g., Giraph)

• -> logical query plan -> query optimization -> SQL on standard relational databases

Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Deshpande, Mike Stonebraker: VERTEXICA: Your Relational Friend for Graph 

Analytics! Proc. VLDB Endow. 7(13): 1669-1672 (2014)

Jindal, Alekh, et al. "Graph analytics using vertica relational database." 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015.



Giraph Physical Plan

• Giraph: a popular, open-source graph analytics 
system on Hadoop

• The Giraph physical plan: hard coded physical 
execution pipeline

• Server Data

– Partition store: partition vertices and related 
metadata

– Edge store: partition edges and related metadata

– Message store:  incoming messages for this partition

• In each superstep, the workers run the 
vertexCompute UDF

hash-based partitioner



Giraph Physical Plan

• The Giraph physical plan: hard coded physical 
execution pipeline

from to

1 2

1 3

… …

id value

1 0

2 inf

… …

to msg

2 1

3 1



Graph Analytics using Vertica [VLDB 2014, BigData 2015]
- Rewriting Logical Giraph Plan

Eliminating the message table (by directly update V in RDBMS):



Graph Analytics using Vertica [VLDB 2014, BigData 2015]
- Rewriting Logical Giraph Plan

Single-Source Shortest Path Connected Components PageRank

Translating vertexCompute to relational algebra/SQL:



Graph Analytics using Vertica [VLDB 2014, BigData 2015]
- SSSP as an example

Single-Source Shortest Path

Translating vertexCompute to relational algebra/SQL:



Graph Analytics using Vertica [VLDB 2014, BigData 2015]
- Query Optimization: Update vs. Replace

• For large number of updates:

– Create a new vertex relation (vertex_prime) by joining the updated vertices with the non-
updated vertices

– Replace vertex with vertex_prime



Graph Analytics using Vertica [VLDB 2014, BigData 2015]
- Query Optimization: Incremental Evaluation

• In single-source shortest path (SSSP)

– only need to explore the neighbors of vertices that found a smaller distance in the 
previous iteration, i.e., the updated vertices table v_update



Graph Analytics using Vertica [VLDB 2014, BigData 2015]
- Comparison with Specialized Graph Systems

• Typical graph analytics

• Advanced graph analytics (e.g., multi-hop neighborhood queries)

• Strong overlap: Find all pairs of nodes having a large 

number of common neighbors (i.e., above the threshold)

• Weak ties: Find all nodes that act as a bridge between 

two otherwise disconnected node-pairs, i.e., connect at 

least a threshold number of node pairs



All-in-One: Graph Processing in RDBMSs Revisited [SIGMOD 2017]

Zhao, Kangfei, and Jeffrey Xu Yu. "All-in-one: graph processing in RDBMSs revisited." Proceedings of the 2017 ACM International Conference on 

Management of Data. 2017.

A large number of graph 

algorithms

- Breadth-First Search (BFS)

- Connected Component

- Shortest Distance 

- Topological Sorting

- PageRank

- Random Walk with Restart

- SimRank

- Label Propagation

- Maximum Independent Set

…

4 new relational 

algebra operations

- MM-join

- MV-join

- Anti-join

- Union-by-update

Recursive 

SQL

- The with 

clause



All-in-One: Graph Processing in RDBMSs Revisited [SIGMOD 2017]
- Four New Relational Algebra Operations

• Let V and M be the relation representation of vector V and matrix M

– Schema: V(ID, vw), M(F, T, ew)

• Matrix-matrix / matrix-vector multiplication



All-in-One: Graph Processing in RDBMSs Revisited [SIGMOD 2017]
- Four New Relational Algebra Operations

• New relational algebra (RA) operations

Operation Definition Expression

MM-join

MV-join

Anti-join

Union-by-update Update the B attributes values of r by the B
attributes values of s if r.A = s.A
(multiple s matching a single r is not allowed)

group-by & aggregation operation
A, B: (F, T, ew), C: (ID, vw)

R, S: (A, B)



All-in-One: Graph Processing in RDBMSs Revisited [SIGMOD 2017]
- Graph Processing with New Relational Algebra Operations

• Let V and E be the relation representation of vector V and matrix E

– Schema: V(ID, vw), E(F, T, ew)

• Breadth-First Search (BFS)

– Initially, only the source node has vw=1, Eij=1 if there exists an edge from vi to vj

– The traversal operation of BFS (expressed in matrix formation):  ET·V

Generalized multiplication Generalized addition 

Union-by-update



All-in-One: Graph Processing in RDBMSs Revisited [SIGMOD 2017]
- Graph Processing with New Relational Algebra Operations

• Let V and E be the relation representation of vector V and matrix E

– Schema: V(ID, vw), E(F, T, ew)

• Breadth-First Search (BFS)

– Initially, only the source node has vw=1, Eij=1 if there exists an edge from vi to vj

– The traversal operation of BFS (expressed in matrix formation):  ET·V

– The control structure: Relational algebra plus while

Generalized multiplication Generalized addition 

Union-by-update



All-in-One: Graph Processing in RDBMSs Revisited [SIGMOD 2017]
- Graph Processing with New Relational Algebra Operations

• Representative graph algorithms:

Breadth-First Search (BFS)

Connected Component

Bellman-Ford for SSSP

Floyd-Warshall for APSP

PageRank

Random Walk with Restart

=

= P(ID, vw) denotes the restart probability



All-in-One: Graph Processing in RDBMSs Revisited [SIGMOD 2017]
- Graph Processing with New Relational Algebra Operations

• Representative graph algorithms:

Topological 
Sorting

Let Topo(ID, L) be a relation that contains a set of nodes having no 

incoming edges with initial L value 0 (                                           )

① ②

③

④ ⑤

L=0

Lvl

1

L1 Topo

ID L

1 0

V1 contains {2 ,3, 4, 5}① ②

③ E1 contains {(2, 4), (3, 4), 

(3, 5), (4, 5)}

④ T2 contains {(2, 1), (3, 1)} 



All-in-One: Graph Processing in RDBMSs Revisited [SIGMOD 2017]
- The With Clause

• Enhance the with clause in SQL’99

• Implemented by SQL/Persistent Stored Model (PSM) procedure

• The recursive queries defined by the 4 RA operators have fixpoint



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

• Build graph query support inside Db2 that is synergistic with other analytics and 
retrofittable to existing data

• Db2 Graph is a layer inside Db2 specialized for graph queries

– With the property graph model

Tian, Yuanyuan, et al. "Synergistic graph and SQL analytics inside IBM Db2." Proceedings of the VLDB Endowment 12.12 (2019): 1782-1785.

Tian, Yuanyuan, et al. "IBM db2 graph: Supporting synergistic and retrofittable graph queries inside IBM db2." Proceedings of the 2020 ACM SIGMOD 

International Conference on Management of Data. 2020.



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Creating Graph View on Tables

• Use graphQuery (i.e., the polymorphic table function) based on Gremlin

– The returned result is a table

• However, the graph is not actually built



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Creating Graph View on Tables

• Use graphQuery (i.e., the polymorphic table function) based on Gremlin

– The returned result is a table

• However, the graph is not actually built

Finds patients that have similar diseases as 

those of a particular patient (with patientID=1),

and compares their daily exercise patterns



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Creating Graph View on Tables

• Specify the relation-graph mapping via the overlay configuration file

– What table(s) store the vertex information? What table column(s) are mapped to the 
required id field? What is the label for each vertex? …



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Creating Graph View on Tables

• Automatically generation of the overlay configuration file (AutoOverlay)

– Step 1. First queries Db2 catalog to get all the metadata information for each table such as 
table schema, and primary key/foreign key constraints

– Step 2. If a table has primary key, map it to a vertex table; if it has foreign key(s), also map it 
to an edge table

– Step 3. Maps the required fields in the property graph model to columns in the vertex/edge 
tables

• Note that

– Heavily rely on the primary and foreign key constraints!

– One can manually specify the configuration

– Machine learning techniques to infer the constraints (as future work)



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Architecture

g.V().has(‘name’, ‘Alice’).outE()

①Open the graph 

and get overlay info
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- Architecture

g.V().has(‘name’, ‘Alice’).outE()

①Open the graph 

and get overlay info

②Generate logical 

query plan



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Architecture

g.V().has(‘name’, ‘Alice’).outE()

①Open the graph 

and get overlay info

②Generate logical 

query plan

③Query 

optimization



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Architecture

g.V().has(‘name’, ‘Alice’).outE()

①Open the graph 

and get overlay info

②Generate logical 

query plan ③Data-independent 

Query optimization

④Generate physical 

query plan, i.e., the 

Graph-Structure-

Accessing (GSA) step

⑤Data-dependent 

Query optimization



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Architecture

g.V().has(‘name’, ‘Alice’).outE()

①Open the graph 

and get overlay info

②Generate logical 

query plan ③Data-independent 

Query optimization

④Generate physical 

query plan, i.e., the 

Graph-Structure-

Accessing (GSA) step

⑤Data-dependent 

Query optimization

⑥Generate SQL



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Query Optimization

• Data-independent strategies

– Predicate Pushdown with Filter Steps

• E.g., for g.V().has(‘name’, ‘Alice’), fold the HasStep into the GraphStep

– Projection Pushdown with Properties Steps

• E.g., for g.V().values(‘name’, ‘address’), the GraphStep is “SELECT id, label, name, address FROM …”

– Aggregate Pushdown with Aggregation Steps

– …

• Data-dependent strategies

– Use src_v_table/dst_v_table to record from which relational table the nodes/edges are 
mapped

– Using properties of the graph

• Using Property Names in Pushdown Information

• Using Label/Prefix ID Values/…



IBM Db2 Graph: Graph Queries Inside IBM Db2 [VLDB 2019, SIGMOD 2020]

- Experimental Study

• Graph loading time matters!

• IBM Db2 Graph achieves satisfactory query efficiency on LinkBench (simple queries)

Latency Throughputs



Overview of Graph Techniques for Relational Queries

• Think in terms of graph processing when dealing with joins

• Understanding the advantages and disadvantages of GDBMSs over RDBMSs

• Improving analytical queries (OLAP) such as TPC-H/DS using GDBMSs



Wander Join: Online Aggregation via Random Walks [SIGMOD 2016]

• Online aggregation
– Analytical queries do not always need 100% accuracy

– Return an approximate answer with improving ‘quality’ guarantee

• How do we estimate an aggregate query that involves multiple joins?

• Notion of quality: express in form of confidence intervals

Li, Feifei, et al. "Wander join: Online aggregation via random walks." Proceedings of the 2016 International Conference on Management of Data. 2016.

(This query finds the total revenue loss 

due to returned orders in a given region)



Ripple Join

• Store tuples in each table in random order

• In each step

– Reads the next tuple from a table in a round-robin fashion

– Join with sampled tuples from other tables

– Estimate the aggregation value from samples, calculate confidence interval from estimator 
(using the central limit theorem)

• Works well for full Cartesian product

– But most joins are sparse

Peter J. Haas, Joseph M. Hellerstein: Ripple Joins for Online Aggregation. SIGMOD Conference 1999: 287-298



Ripple Join

Peter J. Haas, Joseph M. Hellerstein: Ripple Joins for Online Aggregation. SIGMOD Conference 1999: 287-298

What’s the total revenue of all orders from customers in China? 

𝑁: size of each table, e.g., 109

𝑛: # tuples taken from each 
table
𝑠: # estimators, e.g., 103

𝑛3 ⋅
1

𝑁2
= 𝑠

𝑛 = 𝑁2/3𝑠1/3 = 107



Ripple Join

Peter J. Haas, Joseph M. Hellerstein: Ripple Joins for Online Aggregation. SIGMOD Conference 1999: 287-298

What’s the total revenue of all orders from customers in China? 
𝑁: size of each table, e.g., 109

𝑛: # tuples taken from each 
table
𝑠: # estimators, e.g., 103

𝑛3 ⋅
1

𝑁2
= 𝑠

𝑛 = 𝑁2/3𝑠1/3 = 107

Estimator for sum:

=



Wander Join: Online Aggregation via Random Walks [SIGMOD 2016]
-Join as a Graph

• Take a randomly sampled tuple from ONLY one table

• Conduct a random walk from that tuple to the 
neighbors (join tuples)

– For queries with many join relations, there may be different 
walk paths

– Can handle cyclical queries

– Assumes indexes on other tables

• Provide an unbiased estimator for each aggregator

• Does not provide consistent result: must run full join in 
conjunction with wander join

Conceptual only
Never materialized



Wander Join: Online Aggregation via Random Walks [SIGMOD 2016]
-Join as a Graph

Nation CID

US 1

US 2

China 3

UK 4

China 5

US 6

China 7

UK 8

Japan 9

UK 10

OrderID ItemID Price

4 301 $2100

2 304 $100

3 201 $300

4 306 $500

3 401 $230

1 101 $800

2 201 $300

5 101 $200

4 301 $100

2 201 $600

BuyerID OrderID

4 1

3 2

1 3

5 4

5 5

5 6

3 7

5 8

3 9

7 10

SELECT SUM(Price)

FROM Customers C,

Orders O,

Items I

WHERE 

C.Nation = ‘China’     

C.CID = O.BuyerID

O.OrderID = 

I.OrderID
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Wander Join: Online Aggregation via Random Walks [SIGMOD 2016]
-Join as a Graph

Nation CID

US 1

US 2
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UK 4
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US 6
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UK 8

Japan 9

UK 10

OrderID ItemID Price

4 301 $2100

2 304 $100

3 201 $300

4 306 $500

3 401 $230
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4 301 $100

2 201 $600

BuyerID OrderID

4 1

3 2

1 3
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5 5
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SELECT SUM(Price)
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Orders O,
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WHERE 
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C.CID = O.BuyerID
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Wander Join: Online Aggregation via Random Walks [SIGMOD 2016]
-Join as a Graph

Nation CID

US 1

US 2

China 3

UK 4

China 5

US 6

China 7

UK 8

Japan 9

UK 10

OrderID ItemID Price

4 301 $2100

2 304 $100

3 201 $300

4 306 $500

3 401 $230

1 101 $800

2 201 $300

5 101 $200

4 301 $100

2 201 $600

BuyerID OrderID

4 1

3 2

1 3

5 4

5 5

5 6

3 7

5 8

3 9

7 10

Unbiased estimator:
$𝟓𝟎𝟎

𝐬𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐩𝐫𝐨𝐛.
=

$𝟓𝟎𝟎

𝟏/𝟑⋅𝟏/𝟒⋅𝟏/𝟑

𝑁: size of each table size, e.g., 109

𝑛: # tuples taken from each table = # random walks
𝑠: # estimators, e.g., 103

𝑛 = 𝑠 = 103

SELECT SUM(Price)

FROM Customers C,

Orders O,

Items I

WHERE 

C.Nation = ‘China’     

C.CID = O.BuyerID

O.OrderID = 

I.OrderID



Wander Join: Online Aggregation via Random Walks [SIGMOD 2016]
- Sampling by Random Walks

• Estimator of aggregate might be biased

– Penalize paths that are sampled with higher 
probability proportionally

• Unbiased estimator

– Walk plan optimization



Wander Join: Online Aggregation via Random Walks [SIGMOD 2016]
- Experimental Study

Convergence Comparison Wander Join in PostgreSQL

Logarithmic growth due to B-tree 
lookup to find random neighbours



Which Category Is Better: Benchmarking Relational and Graph 
Database Management Systems [DSE 2019]

- A Unified Benchmark
• Evaluate RDBMSs and GDBMSs on the same datasets

– Extend TPC-H to evaluate GDBMSs

– Extend LDBC to evaluate RDBMSs

Yijian Cheng, Pengjie Ding, Tongtong Wang, Wei Lu, Xiaoyong Du: Which Category Is Better: Benchmarking Relational and Graph Database 

Management Systems. Data Sci. Eng. 4(4): 309-322 (2019)

records -> vertices

PK-FK relationship 

-> edges



Which Category Is Better: Benchmarking Relational and Graph 
Database Management Systems [DSE 2019]

- A Unified Benchmark
• Evaluate RDBMSs and GDBMSs on the same datasets

– Extend TPC-H to evaluate GDBMSs

– Extend LDBC to evaluate RDBMSs

• Graph-to-relation mapping

– Simply store the directed edges as triples (fromVertex, edgeLabel, toVertex)

• Datasets



Which Category Is Better: Benchmarking Relational and Graph 
Database Management Systems [DSE 2019]

- Query Workloads
• Atomic relational queries, including Projection, Aggregation, Join, and Order by

• TPC-H query workloads (22 queries)

• Graph query workloads, including BFS, Community Detection using Label 
Propagation (CDLP), PageRank (PR), Local Clustering Coefficient (LCC), and 
Weakly Connected Components (WCC)

Transform TPC-H into equivalent 

SQL-like graph query statements
Implement the 5 graph algorithms in SQL 

using the procedure with While loop



Which Category Is Better: Benchmarking Relational and Graph 
Database Management Systems [DSE 2019]

- Experiments

• Tested databases

– RDBMSs: PostgreSQL (v9.5), Oracle (11g), MS SQL Server (2017)

– GDBMSs: Neo4j (v3.4.6), ArangoDB (v3.3.19)
• With varied back-end storage engines

• Metrics

– Query processing time

– Memory usage ratio

– CPU usage ratio



Which Category Is Better: Benchmarking Relational and Graph 
Database Management Systems [DSE 2019]

- Experiments on TPC-H Workloads

The GDBMSs show 

their inefficiency 

when dealing 

with TPC-H datasets

But can be further 

optimized for 

complex operations 

(Aggregation, Order 

By) via creating 

indices



Which Category Is Better: Benchmarking Relational and Graph 
Database Management Systems [DSE 2019]

- Experiments on Relational Operations

GDBMSs achieve 

better performance 

for Projection and 

Join operations



Which Category Is Better: Benchmarking Relational and Graph 
Database Management Systems [DSE 2019]

- Experiments on Graph Algorithms

The intermediate 

results are of 

tremendous scale 

for LCC

Multi-level recursive 

joins for WCC



Which Category Is Better: Benchmarking Relational and Graph 
Database Management Systems [DSE 2019]

- Experiments on Graph Algorithms
Testing BFS by 

varying the number 

of traversal levels

Similar performance at level 1 Self-joins are 

expensive for 

RDBMSs



Vertex-centric Parallel Computation of SQL Queries [SIGMOD 2021]
- Tuple-Attribute Graph (TAG) Encoding

• Each vertex and edge has

– A label, i.e., node/edge type

– A collection of attributes
(key-value pairs)

• Create exactly one vertex 
per value regardless of how 
many times the value 
occurs in the database

– Essentially an RDF graph

• Attribute vertices acts as an 
indexing scheme for joins

Ainur Smagulova, Alin Deutsch: Vertex-centric Parallel Computation of SQL Queries. SIGMOD Conference 2021: 1664-1677



Vertex-centric Parallel Computation of SQL Queries [SIGMOD 2021]
- Vertex-Centric Two-Way Join 

• Vertex-centric computation based on Yannakakis’ algorithm

– First compute two semi-joins:

– Conduct join on the reduced relations:

R(A, B) ⋈ S(B, C)

Computational cost：

Communication cost：

IN=|R|+ |S|

|R⋉S|+|S⋉R|=min(IN, OUT)

|R⋉S|+|S⋉R|

|R⋉S|+|S⋉R|

|R⋉S|+|S⋉R|

|R⋉S|+|S⋉R|



Vertex-centric Parallel Computation of SQL Queries [SIGMOD 2021]
- Acyclic Multi-Way Joins & Cyclic Joins

• TAG traversal plan generation

– Generalized hypertree decomposition (GHD) of the query

– Connected bottom-up traversal

• Vertex-centric algorithm

– Reduction phase (O(IN) cost) and collection phase (O(OUT) cost) 

R(A, B) ⋈ S(B, C) ⋈ T(A, C)

Can be improved to 

worst-case optimal 

(by the strategy of the 

NPRR algorithm)



Vertex-centric Parallel Computation of SQL Queries [SIGMOD 2021]
- Experimental Study

• Compared with commercial RDBMSs on TPC-H/DS

rdbX: leading commercial RDBMS/row store

rdbX_im: in-memory column store

rdbY: commercial RDBMS with row store support

rdbY_non: non-clustered primary key
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05 Open problems and challenges



Open Problems and Challenges

• For designing multi-model data query languages

– Design an algebra for a multi-model query language 

– General approaches for cross-model query optimization

• For RDBMS techniques supporting graph query and analytics

– Leverage the vast amount of efficient graph algorithms

– Achieve a balance between generality and efficiency of graph analytics

• For graph techniques/GDBMSs supporting relational queries

– Improve GDBMSs in transactions, checkpointing and recovery, fault tolerance, durability, 
integrity constraints, …

– Hybrid OLTP and OLAP graph processing systems
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