Big data and NoSQL databases

Seminar on big data management

Lecturer: Jiaheng Lu

Spring 2016
Information on preparing Presentation and Report

Goals for presentation and report are different:

1. Presentation: Let the audience to understand your topic;

2. Report: Show your own critical thinking and new ideas.
Contents of Presentation (Length: 35-40 minutes)

• 1. Introduction: please make a clear introduction
 • 1.1 Why you are interested in this topic: what kind of problems do you hope to solve?
 • 1.2 How had the problem been studied before?
 • 1.3 What is the application of this problem for big data?

• 2. Related works:
 • 2.1 Make sure you leave sufficient time to present all related prior work. Do not assume that the audience knows the prior work,
 • 2.2 Present it on an intuitive level.
3 Main algorithms and contributions
 3.1 Show the main solutions of the paper(s).
 3.2 Present it with examples. The examples are quite important for understanding.

4. Your own comments and conclusion
 4.1 Present your own comments about the paper(s)
 4.2 It would be very good to identify the weak points of the paper(s) after your critical thinking.
Contents of Report
(6-8 pages, Single column)

1. What are the research problems?
2. What are the strengths of the paper(s)?
3. What are the main weaknesses of the paper(s)?
4. If you were to solve this problem, what would you do?
5. Why do you like/dislike the paper(s)?
6. Conclusion and summary of your report.
Opponent

- Carefully listen to the presentation

- Ask questions after the presentation

- Complete an opponent assessment form and submit it to the teacher after the presentation
• Big data and NoSQL databases
Data storage and history

Before-1950s Data was stored as paper records

Lot of time was wasted. e.g. when searching. Therefore inefficient.
Magnetic tapes and hard disk

- 1950s and early 1960s: Data processing using magnetic tapes for storage

- Late 1960s and 1970s: Hard disks allow direct access to data

- Data stored in files
Drawbacks of file system

- Each program has its own data format

- Programs are written in different languages, and so cannot easily access each other’s files.

- Any new requirement needs a new program
Database Approach

- 1960’s Network databases
- 1970’s Relational databases
- 1990’s Object-oriented and object-relational
- 1995+ XML, Mobile, GeoDB, Embedded DB
- 2005+ NoSQL DB, NewSQL DB
History of databases: Turing awards

1973 Charles W. Bachman
1981 Edgar F. Codd
1998 Jim Gray
2014 Michael Stonebraker
History of databases: Turing awards

Network databases

Relational databases

Distributed databases and transaction

Object-relational model, column stores,…Modern databases

1973 Charles W. Bachman

1981 Edgar F. Codd

1998 Jim Gray

2014 Michael Stonebraker
Network Model

Physical file pointers are used to model the relations between files.

Most suitable for large databases with well-defined queries and well-defined applications.
Relational model

- E. F Codd introduced the relational model in 1970
Relational model

- Support relational algebra and operations
- Data and program are separated
- Improved data sharing and better integration
- DB2, Oracle and SQL server are the most prominent commercial DBMS products
Object oriented data model (1990’s)

- The purpose of OODBMS is to store object-oriented programming objects in a database without having to transform them into relational format.
Object-relational model

- Extend the relational data model by including object orientation

- Allow attributes of tuples to have complex types, including non-atomic values such as nested relations
Big Data Challenge

- 1-2 billion people on the Internet
- Cisco estimates annual Internet traffic will reach 677 exabytes by 2013
- Google processes 1TB an hour
- eBay processing 80TB a day
- Facebook 12PB cluster, adding 10TB a day
- 85 million Tweets per day
- 500 million Facebook users
5V’s of big data

• Volume
 – TB → PB → EB

• Variety
 – Text, audio, video

• Velocity
 – Real time Operational / Analytic Applications

• Value
 – Extract Value from big data, complex Analytics

• Veracity
 – Biases, noise and abnormality in data.
Limitation for relational databases (1)

Different Types of Data: Data Variety

The Challenge: How much **Structured Data** can we capture from the Big Data **Continuum by using intelligent sensors?**
Limitation for relational databases (2)

What are Big Analytics

- Not only simple “group by” aggregation, But also
 - Machine learning, artificial intelligence
 - Data mining, natural language processing
 - Social network analysis and search
 -
What are Big Analytics

Aster Data works on Graph

What is Big Data Analytics: Example 1

Deep graph analysis

Business Problem

- **Retailer**: How can we design marketing, packaging, and promotions to target key segments?
- **Telco**: What are the common calling patterns for a specific user group?

Analytics Problem

- What are the most important clusters and interconnections?
- What are the patterns within a cluster or set of interconnections?

- **Difficult to express** in SQL
 - Requires repeated iterations through data
Limitation for relational databases (3)

• Design for relational data, but not suitable for
 – Graph data, Geo-spatial data, unstructured data

• Limited Scalability
 – No RDBMS has been deployed onto a cluster of more than 1000 nodes

• Separation of Data Storage and Data Analytics
 – Data migration
 – Difficulty for parallel
 – ……
Limitation for relational databases (4)

- Extending relational database
 - Relational table sharding
 - Depending on the program
 - Data size increase, need resharding
 - De-normalization for relational table to improve the performance
 - Increase more redundancy data
 - Increase the cost to maintain data consistence

Relational databases cannot solve those challenges. We need new types of databases.
NoSQL databases
NoSQL DEFINITION:

- Next Generation Databases mostly addressing some of the points: being non-relational, distributed, open-source and horizontally scalable

- Non-SQL or Not only SQL

- Watch a video about NoSQL from Jens Dittrich:
 - Say No! No! and No! CIDR 2013
Types and examples of NoSQL databases

<table>
<thead>
<tr>
<th>Types</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>Accumulo, Cassandra, Druid, HBase, Vertica</td>
</tr>
<tr>
<td>Document</td>
<td>HyperDex, Lotus Notes, MarkLogic, MongoDB, OrientDB, Qizx, RethinkDB</td>
</tr>
<tr>
<td>Key-value:</td>
<td>Aerospike, CouchDB, Dynamo, FairCom c-treeACE, FoundationDB, HyperDex, MemcacheDB, MUMPS, Oracle NoSQL databases</td>
</tr>
<tr>
<td>Graph</td>
<td>Allegro, InfiniteGraph, MarkLogic, Neo4J, OrientDB, Virtuoso, Stardog</td>
</tr>
<tr>
<td>Multi-model</td>
<td>Alchemy Database, ArangoDB, CortexDB, FoundationDB, MarkLogic, OrientDB</td>
</tr>
</tbody>
</table>
Column stores

- A column-oriented DBMS is a database management system (DBMS) that stores data tables as sections of columns of data rather than as rows of data.

- This column-oriented DBMS has advantages for data warehouses, clinical data analysis, customer relationship management (CRM) systems, and library card catalogs, and other ad hoc inquiry systems.
Example of column stores

<table>
<thead>
<tr>
<th>RowId</th>
<th>EmpId</th>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123</td>
<td>Anna</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>456</td>
<td>Mikko</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>789</td>
<td>Emilia</td>
<td>44</td>
</tr>
</tbody>
</table>

Row-oriented storage:
1:123,Anna,34; 2:456,Mikko,30; 3:789,Emilia,44

Column-oriented storage:
123:1,456:2,789:3; Anna:1, Mikko:2, Emilia:3; 34:1, 30:2, 44:3
Key-value stores

- Key-value (KV) stores use the associative array as their fundamental data model.

- In this model, data is represented as a collection of key-value pairs, such that each possible key appears at most once in the collection.
Example of Key-value stores

<table>
<thead>
<tr>
<th>RowId</th>
<th>EmpId</th>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123</td>
<td>Anna</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>456</td>
<td>Mikko</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>789</td>
<td>Emilia</td>
<td>44</td>
</tr>
</tbody>
</table>

1: (123, Anna, 34); 2: (2, 456, Mikko, 30); 3: (789, Emilia, 44)
Insertion of a column and a record in Key-value stores

<table>
<thead>
<tr>
<th>RowId</th>
<th>EmpId</th>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123</td>
<td>Anna</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>456</td>
<td>Mikko</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>789</td>
<td>Emilia</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>147</td>
<td>Joha</td>
<td>28</td>
<td>3000</td>
</tr>
</tbody>
</table>

$1: (123,\text{Anna},34); 2: (2,456,\text{Mikko},30); 3: (789,\text{Emilia},44); 4: (147,\text{Joha},28,3000)$
Document store

- The central concept of a document store is the notion of a "document".

- Encodings in use include XML, YAML, and JSON as well as binary forms like BSON.

- Documents are addressed in the database via a unique key that represents that document.
Example of document store

University of Helsinki
Yliopistonkatu 4,
00100 Helsinki
Finland

XML: <contact>
 <company> Univestiy of Helsinki </company>
 <address> Yliopistonkatu 4 </address>
 <city>Helsinki</city>
 <zip> 00100 </zip>
 <country> Finland </country>
</contact>

JSON: "contact": {
 "company": "Univestiy of Helsinki",
 "address": "Yliopistonkatu 4",
 "city": "Helsinki",
 "zip": "00100",
 "country": "Finland"
};
Graph stores

- Designed for graph data
- Applications: social relations, public transport links, road maps or network topologies, etc.
Multi-model stores

- Support multiple data models against a single, integrated backend: Document, graph, relational, and key-value models are examples of data models

<table>
<thead>
<tr>
<th>Database</th>
<th>Key-value</th>
<th>SQL</th>
<th>Document</th>
<th>Graph</th>
<th>Object</th>
<th>Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>OrientDB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full ACID, even distributed</td>
</tr>
<tr>
<td>CouchDB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Marklogic</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Full ACID</td>
</tr>
</tbody>
</table>
Relational databases is very successful to manage table and relational data, but it has limitations for managing big data.

NOSQL databases is a general term, which includes five types of data stores.

NOSQL database are starting to gain market traction.