Decision trees and rule-based classifiers
Decision tree: An example

Idea: Ask a sequence of questions (as in the ‘20 questions’ game) to infer the class
Decision tree: A second example

There can be many different trees that all work equally well!
Decision tree: Structure

- **Structure of the tree:**
 - A single *root node* with no incoming edges, and zero or more outgoing edges
 - *Internal nodes*, each of which has exactly one incoming edge and two or more outgoing edges
 - *Leaf or terminal* nodes, each of which has exactly one incoming edge and no outgoing edges

- **Node contents:**
 - Each terminal node is assigned a prediction (here, for simplicity: a definite class label).
 - Each non-terminal node defines a test, with the outgoing edges representing the various possible results of the test (here, for simplicity: a test only involves a single attribute)
Decision tree: 2D example

Notation: In this figure \(x \) and \(y \) are two continuous-valued attributes (i.e. \(y \) is not the class label in this figure!)

Decision boundary consists of parts which all are parallel to the axes because each decision depends only on a single attribute
Learning a decision tree from data: General idea

- Simple idea: Recursively divide up the space into pieces which are as \textit{pure} as possible
Learning a decision tree from data: General idea

- Simple idea: Recursively divide up the space into pieces which are as pure as possible

![Diagram of decision tree]

\[x_1 > 2.8 \]
Learning a decision tree from data: General idea

- Simple idea: Recursively divide up the space into pieces which are as pure as possible
Learning a decision tree from data: General idea

- Simple idea: Recursively divide up the space into pieces which are as *pure* as possible

![Diagram of decision tree and data points](image)
Learning a decision tree from data: General idea

- Simple idea: Recursively divide up the space into pieces which are as *pure* as possible
Learning a decision tree from data: Hunt’s algorithm

- Notation: Let D_t denote the set of records corresponding to node t. For the root node, D_t is the set of all training data.

- Hunt’s algorithm:
 1. If all the records in D_t belong to the same class y_t, then t is a leaf node labeled as y_t.
 2. If D_t contains records that belong to more than one class, select an attribute test condition that partitions the records into smaller subsets. Create a child node for each outcome and distribute the records in D_t to the children. Apply the algorithm recursively to each child node.

D_t is an empty set \Rightarrow use majority vote among parent records

All records in D_t are identical, but labels not \Rightarrow use majority vote

This general method is also known as $TDIDT$ (Top-Down Induction of Decision Trees).
Attribute test conditions

- Binary attributes: yes / no (two children only)

- Nominal (categorical) attributes with L states:
 - Multiway split (L children)
 - Binary split (2 children, any of the $2^{L-1} - 1$ ways of splitting)

- Ordinal attributes with L states:
 - Multiway or binary split
 - Must respect the ordering (only combine contiguous values)

- Continuous attributes:
 - Multiway or binary split
 - Defined using breakpoints
Impurity measures

How do we measure whether a subset of the records is ‘pure’ or ‘impure’?

- Denote by $p(i \mid t)$ the fraction of records belonging to class i of all the records at node t.

- Impurity measures:

$$\text{Entropy}(t) = - \sum_{i=0}^{K-1} p(i \mid t) \log p(i \mid t)$$

$$\text{Gini}(t) = 1 - \sum_{i=0}^{K-1} p(i \mid t)^2$$

$$\text{Classification error}(t) = 1 - \max_i p(i \mid t)$$

where K is the total number of classes.
Impurity measures: Binary classification

Qualitatively, the three measures agree. However, some differences in the selection of test attributes do occur.
Selecting the best split

- Test all valid splits

- Select the split which maximizes the *gain* Δ:

\[
\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),
\]

(18)

where

- $I(\cdot)$ is the impurity of a given node
- N is the total number of records of the parent
- $N(v_j)$ is the number of records of child v_j

- Note: Essentially just minimizing a weighted sum of the impurities of the children in the split
Computational issues:

- Binary attributes: Just one split to test per attribute
- Discrete attributes: Finite number of possible splits to test per attribute
- Continuous attributes: In principle, any value \(x \in R \) could be chosen as a breakpoint, but we only need to test midpoints between adjacent points. Computationally feasible by first sorting (complexity \(O(N \log N) \)) the records, then stepping through in order while updating the necessary statistics.
Example: Web Robot Detection

<table>
<thead>
<tr>
<th>Session</th>
<th>IP Address</th>
<th>Timestamp</th>
<th>Request Method</th>
<th>Requested Web Page</th>
<th>Protocol</th>
<th>Status</th>
<th>Number of Bytes</th>
<th>Referrer</th>
<th>User Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160.11.11.11</td>
<td>08/Aug/2004 10:15:21</td>
<td>GET</td>
<td>http://www.cs.umn.edu/~kumar</td>
<td>HTTP/1.1</td>
<td>200</td>
<td>6424</td>
<td></td>
<td>Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)</td>
</tr>
<tr>
<td>1</td>
<td>160.11.11.11</td>
<td>08/Aug/2004 10:15:34</td>
<td>GET</td>
<td>http://www.cs.umn.edu/~kumar/MINDS</td>
<td>HTTP/1.1</td>
<td>200</td>
<td>41378</td>
<td>http://www.cs.umn.edu/~kumar</td>
<td>Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)</td>
</tr>
<tr>
<td>1</td>
<td>160.11.11.11</td>
<td>08/Aug/2004 10:15:41</td>
<td>GET</td>
<td>http://www.cs.umn.edu/~kumar/MINDS_papers.htm</td>
<td>HTTP/1.1</td>
<td>200</td>
<td>1018516</td>
<td>http://www.cs.umn.edu/~kumar/MINDS</td>
<td>Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)</td>
</tr>
<tr>
<td>1</td>
<td>160.11.11.11</td>
<td>08/Aug/2004 10:16:11</td>
<td>GET</td>
<td>http://www.cs.umn.edu/~kumar/papers/papers.html</td>
<td>HTTP/1.1</td>
<td>200</td>
<td>7463</td>
<td>http://www.cs.umn.edu/~kumar/MINDS</td>
<td>Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)</td>
</tr>
<tr>
<td>2</td>
<td>35.9.2.2</td>
<td>08/Aug/2004 10:16:15</td>
<td>GET</td>
<td>http://www.cs.umn.edu/~steinbac</td>
<td>HTTP/1.0</td>
<td>200</td>
<td>3149</td>
<td></td>
<td>Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7) Gecko/20040616</td>
</tr>
</tbody>
</table>

(a) Example of a Web server log.

(b) Graph of a Web session.

(c) Derived attributes for Web robot detection.
Example: Web Robot Detection

- Resulting decision tree:

 (more details in the book)

  ```plaintext
  Decision Tree:
  depth = 1:
  | breadth > 7: class 1
  | breadth <= 7:
  | | breadth <= 3:
  | | | ImagePages > 0.375: class 0
  | | | ImagePages <= 0.375:
  | | | | totalPages <= 6: class 1
  | | | totalPages > 6:
  | | | | breadth <= 1: class 1
  | | | | breadth > 1: class 0
  | | width > 3:
  | | | MultiIP = 0:
  | | | | ImagePages <= 0.1333: class 1
  | | | | ImagePages > 0.1333:
  | | | | breadth <= 6: class 0
  | | | | breadth > 6: class 1
  | | | MultiIP = 1:
  | | | | TotalTime <= 361: class 0
  | | | | TotalTime > 361: class 1
  depth > 1:
  | MultiAgent = 0:
  | | depth > 2: class 0
  | | depth < 2:
  | | | MultiIP = 1: class 0
  | | | MultiIP = 0:
  | | | | breadth <= 6: class 0
  | | | | breadth > 6:
  | | | | | RepeatedAccess <= 0.322: class 0
  | | | | | RepeatedAccess > 0.322: class 1
  | | | MultiAgent = 1:
  | | totalPages <= 81: class 0
  | | totalPages > 81: class 1
  ```

Figure 4.18. Decision tree model for Web robot detection.
Characteristics of Decision Tree Induction

- **Nonparametric** approach:
 - Can in the limit approximate *any* decision boundary to arbitrary precision

 ⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit

 ...but requires *regularization* to avoid overlearning.
Characteristics of Decision Tree Induction

- **Nonparametric** approach:
 - Can in the limit approximate *any* decision boundary to arbitrary precision
 -⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit
 -...but requires *regularization* to avoid overlearning.
Characteristics of Decision Tree Induction

» Nonparametric approach:

» Can in the limit approximate any decision boundary to arbitrary precision

⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit

...but requires regularization to avoid overlearning.
Characteristics of Decision Tree Induction

▶ *Nonparametric* approach:

▶ Can in the limit approximate *any* decision boundary to arbitrary precision

⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit

...but requires *regularization* to avoid overlearning.
Characteristics of Decision Tree Induction

- **Nonparametric** approach:
 - Can in the limit approximate *any* decision boundary to arbitrary precision

 ⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit

 ...but requires *regularization* to avoid overlearning.
Characteristics of Decision Tree Induction

- **Nonparametric** approach:
 - Can in the limit approximate *any* decision boundary to arbitrary precision

 ⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit

 ...but requires *regularization* to avoid overlearning.
Characteristics of Decision Tree Induction

- *Nonparametric* approach:
 - Can in the limit approximate *any* decision boundary to arbitrary precision

 ⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit

 ...but requires *regularization* to avoid overlearning.
Characteristics of Decision Tree Induction

- **Nonparametric** approach:
 - Can in the limit approximate *any* decision boundary to arbitrary precision

 ⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit

 ...but requires *regularization* to avoid overlearning.
Characteristics of Decision Tree Induction

- **Nonparametric** approach:
 - Can in the limit approximate *any* decision boundary to arbitrary precision
 - ⇒ Approaches optimal performance (i.e. Bayesian classifier with known distributions) in the infinite sample limit
 - ...but requires *regularization* to avoid overlearning.
Characteristics of Decision Tree Induction (cont.)

- *Local, greedy learning* to find a reasonable solution in reasonable time (as opposed to finding a globally optimal solution)

- Relatively *easy to interpret* (by experts or regular users of the system)
 - cf. ”Why was I recommended this?” on amazon.com (helps build confidence in the system)
Characteristics of Decision Tree Induction (cont.)

- Data fragmentation problem:
 - The nodes far down the tree are based on a very small fraction of the data, even only on a few data points ⇒ typically not very reliable information
 - Example: Divide any of the existing leaves into purer partitions:
Rule-based classifier

- e.g. Mac OS X ‘Mail’ application:
Rule-based classifier: Example

Example:
\[
\begin{align*}
 r_1 &: \ ('webmail') \cap ('give password') \rightarrow \text{spam} \\
 r_2 &: \ ('important') \cap (\text{sender} = \text{teacher}) \rightarrow \text{not spam} \\
 r_3 &: \ ('viagra') \cap ('extra strength') \rightarrow \text{spam} \\
 r_4 &: \ ('millions') \cap ('netflix challenge') \rightarrow \text{not spam} \\
 r_5 &: \ ('you have won') \rightarrow \text{spam}
\end{align*}
\]

Idea:

‘Many local classification models make up one global classifier’

If we can find reliable rules of the form \(r_1, \ldots, r_n \) we can build a working classifier
Rule-based classifier: Definition

- Rule set \(R = \{r_1, \ldots, r_n\} \)

- Each rule \(r_i \) is of the form

\[
 r_i : (\text{Condition}_i) \rightarrow y_i, \tag{19}
\]

where the left-hand-side is the rule antecedent (a logical expression that evaluates to true or false depending on the datapoint) and the right-hand-side is the rule consequence, i.e. a prediction (here, for simplicity, one of the classes).

- A rule \(r_i \) is said to cover a record if its rule antecedent evaluates to true. Conversely, the record is said to trigger the rule.
Properties of a single rule r_i

- The *coverage* of a rule is the fraction of records (in the training data) which it covers.

- The *accuracy* of a rule is the fraction of covered records for which the rule consequence equals the true class.

For instance, if the rule

$$r_5: \text{ ('you have won') } \rightarrow \text{ spam}$$

has a coverage of 0.1 and an accuracy of 0.85, it means that 10% of all emails received included the phrase ‘you have won’, and out of all those emails 85% were truly spam and 15% were non-spam.
Properties of the rule set R as a whole

- The rules in rule set R are *mutually exclusive* if no two rules can be triggered by any single record.

- The rules in rule set R are *exhaustive* if at least one rule is triggered by any record.

 (Note that we are here considering *any possible record*, not just the records in the training dataset.)

- Together, the two properties imply that any record can be classified into a unique class. However, not all rule sets R have these properties.
The rules:

\(r_1 \): (‘webmail’) \(\cap \) (‘give password’) \(\rightarrow \) spam
\(r_2 \): (‘important’) \(\cap \) (sender = teacher) \(\rightarrow \) not spam
\(r_3 \): (‘viagra’) \(\cap \) (‘extra strength’) \(\rightarrow \) spam
\(r_4 \): (‘millions’) \(\cap \) (‘netflix challenge’) \(\rightarrow \) not spam
\(r_5 \): (‘you have won’) \(\rightarrow \) spam

are not mutually exclusive because the email: “you have won the netflix challenge, please come to the bank tomorrow to collect your millions” triggers both rule \(r_4 \) and \(r_5 \).

They are also not exhaustive because the email “hello from an old friend” is not covered by any rule.
2D example

Rule r_1: $(0.2 \leq x_1 \leq 2.2) \cap (1.3 \leq x_2 \leq 4.2) \rightarrow \text{red}$ has a coverage of $8/40 = 0.2$ and an accuracy of $7/8 = 0.875$.

The rules in rule set $R = \{r_1, r_2, r_3\}$ are mutually exclusive because the rectangles defining the rules are non-overlapping, but they are not exhaustive because there are areas of the space not covered by any of the rectangles.
Default rule

- A simple way to handle a non-exhaustive rule set is to add a *default* rule which has an empty antecedent (always true):

 \[r_d: () \rightarrow y_d \]

- Note that since this rule is always triggered the resulting rule set is necessarily *not* mutually exclusive (as long as any other rule is sometimes triggered)

 \[\Rightarrow \text{ Some mechanism is needed to handle non-mutually exclusive cases (see next slide) } \]
Ordering or voting

- When the rule set is not mutually exclusive, conflicts need to be handled by
 - Rule ordering: Instead of an unordered collection of rules, the order is taken to be important. Hence, a new record is classified by the first rule that it triggers.

 - Voting: Each triggered rule votes for its consequence class. (The votes can also be weighed by the rule’s accuracy.)

- Note that an ordered list of rules (a decision list) behaves quite a bit like a decision tree. In fact, it is easy to show that a decision tree can be written in the form of an ordered list of rules, and vice versa.
Sequential covering algorithm

- Learning a rule-based classifier can be performed by identifying good rules and then removing the covered records from the training set:

(i) Original Data

(ii) Step 1

(iii) Step 2

(iv) Step 3
Selecting the next rule

- We want to select a rule that has both high coverage and high accuracy. (Of course, typically this is a trade-off which has to be made.)

- Searching for such a rule:
 - Exhaustive search of all possible rules infeasible for all but the very smallest of problems
 - ‘General-to-specific’ greedy search: Start from an empty antecedent, add conditions one at a time to improve accuracy (but take care to still have decent coverage as well)
 - ‘Specific-to-general’ greedy search: Start from a random record, then generalize by removing conditions one-by-one to obtain better coverage while not sacrificing too much in accuracy
Characteristics of rule-based classifiers

- Expressiveness similar to that of decision trees
 - Rectilinear partitioning (though more complex decision boundaries with unordered rule sets and voting)
 - Ordered rule sets can be written as decision trees and vice versa
 - Similar also in terms of the underlying principles of learning the models
 - Non-parametric, need for regularization

- Can produce descriptive models
 - Easy to interpret (when the number of rules is not too large)
Decision trees and rule-based classifiers: Summary

- Can be easy to understand/interpret by experts/users (for small models)

- Classification generally very fast (worst case is linear in depth of decision tree or rule list length)

- Non-parametric method (can approximate optimal classifier for any underlying distribution) in the large sample limit (but may require a very large number of rules)

- Need to regularize / find a good stopping criterion when learning to avoid overfitting