Information-Theoretic Modeling

Lecture 3: Source Coding: Theory

Jyrki Kivinen

Department of Computer Science, University of Helsinki

Autumn 2012
Lecture 3: Source Coding: Theory
1 Entropy and Information

- Entropy
- Information Inequality
- Data Processing Inequality
1 Entropy and Information
 • Entropy
 • Information Inequality
 • Data Processing Inequality

2 Data Compression
 • Asymptotic Equipartition Property (AEP)
 • Typical Sets
 • Noiseless Source Coding Theorem
Entropy

Given a discrete random variable X with pmf p_X, we can measure the amount of “surprise” associated with each outcome $x \in \mathcal{X}$ by the quantity

$$I_X(x) = \log_2 \frac{1}{p_X(x)}.$$

The less likely an outcome is, the more surprised we are to observe it. (The point in the log-scale will become clear shortly.)
Entropy

Given a discrete random variable X with pmf p_X, we can measure the amount of “surprise” associated with each outcome $x \in \mathcal{X}$ by the quantity

$$I_X(x) = \log_2 \frac{1}{p_X(x)}.$$

The less likely an outcome is, the more surprised we are to observe it. (The point in the log-scale will become clear shortly.)

The **entropy** of X measures the *expected* amount of “surprise”:

$$H(X) = E[I_X(X)] = \sum_{x \in \mathcal{X}} p_X(x) \log_2 \frac{1}{p_X(x)}.$$
Binary Entropy Function

For binary-valued X, with $p = p_X(1) = 1 - p_X(0)$, we have

$$H(X) = p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1 - p}.$$
More Entropies

1. the joint entropy of two (or more) random variables:

\[H(X, Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X,Y}(x, y) \log_2 \frac{1}{p_{X,Y}(x, y)} \]

Jyrki Kivinen Information-Theoretic Modeling
More Entropies

1. the **joint entropy** of two (or more) random variables:
 \[H(X, Y) = \sum_{x \in X} \sum_{y \in Y} p_{X,Y}(x, y) \log_2 \frac{1}{p_{X,Y}(x, y)} , \]

2. the **entropy of a conditional distribution**:
 \[H(X \mid Y = y) = \sum_{x \in X} p_{X \mid Y}(x \mid y) \log_2 \frac{1}{p_{X \mid Y}(x \mid y)} , \]
More Entropies

1. the **joint entropy** of two (or more) random variables:

 \[
 H(X, Y) = \sum_{x \in X} \sum_{y \in Y} p_{X,Y}(x, y) \log_2 \frac{1}{p_{X,Y}(x, y)},
 \]

2. the **entropy of a conditional distribution**:

 \[
 H(X \mid Y = y) = \sum_{x \in X} p_{X \mid Y}(x \mid y) \log_2 \frac{1}{p_{X \mid Y}(x \mid y)},
 \]

3. and the **conditional entropy**:

 \[
 H(X \mid Y) = \sum_{y \in Y} p(y) H(X \mid Y = y)
 \]
More Entropies

1. **the joint entropy** of two (or more) random variables:

\[
H(X, Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X,Y}(x, y) \log_2 \frac{1}{p_{X,Y}(x, y)},
\]

2. **the entropy of a conditional distribution**:

\[
H(X \mid Y = y) = \sum_{x \in \mathcal{X}} p_{X \mid Y}(x \mid y) \log_2 \frac{1}{p_{X \mid Y}(x \mid y)},
\]

3. **and the conditional entropy**:

\[
H(X \mid Y) = \sum_{y \in \mathcal{Y}} p(y) \cdot H(X \mid Y = y)
= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X,Y}(x, y) \log_2 \frac{1}{p_{X \mid Y}(x \mid y)}.
\]
More Entropies

1. the joint entropy of two (or more) random variables:

\[H(X, Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X,Y}(x, y) \log_2 \frac{1}{p_{X,Y}(x, y)}, \]

2. the entropy of a conditional distribution:

\[H(X \mid Y = y) = \sum_{x \in \mathcal{X}} p_{X \mid Y}(x \mid y) \log_2 \frac{1}{p_{X \mid Y}(x \mid y)}, \]

3. and the conditional entropy:

\[H(X \mid Y) = \sum_{y \in \mathcal{Y}} p(y) H(X \mid Y = y) \]

\[= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X,Y}(x, y) \log_2 \frac{1}{p_{X \mid Y}(x \mid y)}. \]
The joint entropy $H(X, Y)$ measures the uncertainty about the pair (X, Y).
The joint entropy $H(X, Y)$ measures the uncertainty about the pair (X, Y).

The entropy of the conditional distribution $H(X \mid Y = y)$ measures the uncertainty about X when we know that $Y = y$.
More Entropies

The joint entropy $H(X, Y)$ measures the uncertainty about the pair (X, Y).

The entropy of the conditional distribution $H(X \mid Y = y)$ measures the uncertainty about X when we know that $Y = y$.

The conditional entropy $H(X \mid Y)$ measures the expected uncertainty about X when the value Y is known.
Chain Rule of Entropy

Remember the chain rule of probability:

\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x \mid y). \]
Chain Rule of Entropy

Remember the chain rule of probability:

\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x \mid y) . \]

For the entropy we have:

Chain Rule of Entropy

\[H(X, Y) = H(Y) + H(X \mid Y) . \]
Chain Rule of Entropy

Remember the chain rule of probability:

\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x \mid y) . \]

For the entropy we have:

\[H(X, Y) = H(Y) + H(X \mid Y) . \]

Proof.

\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x \mid y) \]

Next apply \(\log(ab) = \log a + \log b \).
Chain Rule of Entropy

Remember the chain rule of probability:

\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x \mid y) . \]

For the entropy we have:

Chain Rule of Entropy

\[H(X, Y) = H(Y) + H(X \mid Y) . \]

Proof.

\[\log_2 p_{X,Y}(x,y) = \log_2 p_Y(y) + \log_2 p_{X|Y}(x \mid y) \]

Next apply \(\log a = -\log(1/a) \).
Chain Rule of Entropy

Remember the chain rule of probability:

\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x | y) \, . \]

For the entropy we have:

Chain Rule of Entropy

\[H(X, Y) = H(Y) + H(X | Y) \, . \]

Proof.

\[
\begin{align*}
\log_2 \frac{1}{p_{X,Y}(x,y)} &= \log_2 \frac{1}{p_Y(y)} + \log_2 \frac{1}{p_{X|Y}(x | y)} \\
\iff E \left[\log_2 \frac{1}{p_{X,Y}(x,y)} \right] &= E \left[\log_2 \frac{1}{p_Y(y)} \right] + E \left[\log_2 \frac{1}{p_{X|Y}(x | y)} \right] \\
\iff H(X, Y) &= H(Y) + H(X | Y) \, .
\end{align*}
\]
Chain Rule of Entropy

Remember the chain rule of probability:

\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x | y) \] .

For the entropy we have:

Chain Rule of Entropy

\[H(X, Y) = H(Y) + H(X \mid Y) \] .

The rule can be extended to more than two random variables:

\[H(X_1, \ldots, X_n) = \sum_{i=1}^{n} H(X_i \mid H_1, \ldots, H_{i-1}) \] .
Chain Rule of Entropy

Remember the chain rule of probability:

\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x \mid y). \]

For the entropy we have:

Chain Rule of Entropy

\[H(X, Y) = H(Y) + H(X \mid Y). \]

The rule can be extended to more than two random variables:

\[H(X_1, \ldots, X_n) = \sum_{i=1}^{n} H(X_i \mid H_1, \ldots, H_{i-1}). \]

\(X \independent Y \iff H(X \mid Y) = H(X) \iff H(X, Y) = H(X) + H(Y). \)
Chain Rule of Entropy

Remember the chain rule of probability:
\[p_{X,Y}(x,y) = p_Y(y) \cdot p_{X|Y}(x \mid y). \]

For the entropy we have:

Chain Rule of Entropy

\[H(X, Y) = H(Y) + H(X \mid Y). \]

The rule can be extended to more than two random variables:

\[H(X_1, \ldots, X_n) = \sum_{i=1}^{n} H(X_i \mid H_1, \ldots, H_{i-1}). \]

\[X \perp Y \iff H(X \mid Y) = H(X) \iff H(X, Y) = H(X) + H(Y). \]

Logarithmic scale makes entropy **additive**.
The **mutual information**

\[I(X ; Y) = H(X) - H(X | Y) \]

measures the average decrease in uncertainty about \(X \) when the value of \(Y \) becomes known.
Mutual Information

The **mutual information**

\[I(X ; Y) = H(X) - H(X | Y) \]

measures the average decrease in uncertainty about \(X \) when the value of \(Y \) becomes known.

Mutual information is **symmetric** (chain rule):

\[I(X ; Y) = H(X) - H(X | Y) = H(X) - (H(X, Y) - H(Y)) \]
The **mutual information**

\[I(X ; Y) = H(X) - H(X | Y) \]

measures the average decrease in uncertainty about \(X \) when the value of \(Y \) becomes known.

Mutual information is **symmetric** (chain rule):

\[I(X ; Y) = H(X) - H(X | Y) = H(X) - H(X, Y) + H(Y) \]
The **mutual information**

\[I(X ; Y) = H(X) - H(X | Y) \]

measures the average decrease in uncertainty about \(X \) when the value of \(Y \) becomes known.

Mutual information is **symmetric** (chain rule):

\[I(X ; Y) = H(X) - H(X | Y) = (H(X) - H(X, Y)) + H(Y) \]
Mutual Information

The **mutual information**

\[
I(X ; Y) = H(X) - H(X | Y)
\]

measures the average decrease in uncertainty about \(X \) when the value of \(Y \) becomes known.

Mutual information is **symmetric** (chain rule):

\[
I(X ; Y) = H(X) - H(X | Y) = (H(X) - H(X, Y)) + H(Y) \\
= H(Y) - H(Y | X) = I(Y ; X)
\]
The **mutual information**

\[I(X ; Y) = H(X) - H(X | Y) \]

measures the average decrease in uncertainty about \(X \) when the value of \(Y \) becomes known.

Mutual information is *symmetric* (chain rule):

\[I(X ; Y) = H(X) - H(X | Y) = (H(X) - H(X, Y)) + H(Y) \]
\[= H(Y) - H(Y | X) = I(Y ; X) . \]

On the average, \(X \) gives as much information about \(Y \) as \(Y \) gives about \(X \).
Relationships between Entropies

\[H(X,Y) \]

\[H(X) \]

\[H(Y) \]

\[H(X \mid Y) \]

\[I(X \mid Y) \]

\[H(Y \mid X) \]
Kullback-Leibler Divergence

The *relative entropy* or **Kullback-Leibler divergence** between (discrete) distributions p_X and q_X is defined as

$$D(p_X \parallel q_X) = \sum_{x \in \mathcal{X}} p_X(x) \log_2 \frac{p_X(x)}{q_X(x)}.$$
Kullback-Leibler Divergence

The relative entropy or **Kullback-Leibler divergence** between (discrete) distributions p_X and q_X is defined as

$$D(p_X \parallel q_X) = \sum_{x \in \mathcal{X}} p_X(x) \log_2 \frac{p_X(x)}{q_X(x)}.$$

(We consider $p_X(x) \log_2 \frac{p_X(x)}{q_X(x)} = 0$ whenever $p_X(x) = 0$.)
Information Inequality

Kullback-Leibler Divergence

The relative entropy or **Kullback-Leibler divergence** between (discrete) distributions p_X and q_X is defined as

$$D(p_X \parallel q_X) = \sum_{x \in \mathcal{X}} p_X(x) \log_2 \frac{p_X(x)}{q_X(x)}.$$

Information Inequality

For any two (discrete) distributions p_X and q_X, we have

$$D(p_X \parallel q_X) \geq 0$$

with equality iff $p_X(x) = q_X(x)$ for all $x \in \mathcal{X}$.

Jyrki Kivinen Information-Theoretic Modeling
Kullback-Leibler Divergence

The relative entropy or Kullback-Leibler divergence between (discrete) distributions p_X and q_X is defined as

$$D(p_X \parallel q_X) = \sum_{x \in \mathcal{X}} p_X(x) \log_2 \frac{p_X(x)}{q_X(x)}.$$

Information Inequality

For any two (discrete) distributions p_X and q_X, we have

$$D(p_X \parallel q_X) \geq 0$$

with equality iff $p_X(x) = q_X(x)$ for all $x \in \mathcal{X}$.

Proof. Gibbs!
Kullback-Leibler Divergence

The information inequality implies

$$I(X ; Y) \geq 0.$$
Kullback-Leibler Divergence

The information inequality implies

\[I(X ; Y) \geq 0 . \]

Proof.

\[
I(X ; Y) = H(X) - H(X \mid Y) \\
= H(X) + H(Y) - H(X, Y) \\
= \sum_{x \in X, y \in Y} p_{X,Y}(x, y) \log_2 \frac{p_{X,Y}(x, y)}{p_X(x) p_Y(y)} \\
= D(p_{X,Y} \parallel p_X p_Y) \geq 0 .
\]
Kullback-Leibler Divergence

The information inequality implies

\[I(X ; Y) \geq 0 . \]

Proof.

\[
I(X ; Y) = H(X) - H(X | Y) \\
= H(X) + H(Y) - H(X, Y) \\
= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X,Y}(x, y) \log_2 \frac{p_{X,Y}(x, y)}{p_X(x) p_Y(y)} \\
= D(p_{X,Y} \parallel p_X p_Y) \geq 0 .
\]

In addition, \(D(p_{X,Y} \parallel p_X p_Y) = 0 \) iff \(p_{X,Y}(x, y) = p_X(x) p_Y(y) \) for all \(x \in \mathcal{X}, y \in \mathcal{Y} \). This means that variables \(X \) and \(Y \) are independent iff \(I(X ; Y) = 0 \).
Properties of Entropy

Properties of entropy:

1. $H(X) \geq 0$
Properties of Entropy

Properties of entropy:

1. $H(X) \geq 0$

Proof. $p_X(x) \leq 1 \Rightarrow \log_2 \frac{1}{p_X(x)} \geq 0.$
Properties of Entropy

Properties of entropy:

1. $H(X) \geq 0$

 Proof. $p_X(x) \leq 1 \Rightarrow \log_2 \frac{1}{p_X(x)} \geq 0.$

2. $H(X) \leq \log_2 |\mathcal{X}|$
Properties of Entropy

Properties of entropy:

1. \(H(X) \geq 0 \)

 \[\text{Proof.} \quad p_X(x) \leq 1 \Rightarrow \log_2 \frac{1}{p_X(x)} \geq 0. \]

2. \(H(X) \leq \log_2 |X| \)

 \[\text{Proof.} \quad \text{Let} \ u_X(x) = \frac{1}{|X|} \text{ be the uniform distribution over } X. \]

 \[0 \leq D(p_X \parallel u_X) = \sum_{x \in X} p_X(x) \log_2 \frac{p_X(x)}{u_X(x)} = \log_2 |X| - H(X). \]
Properties of Entropy

Properties of entropy:

1. \(H(X) \geq 0 \)

 \textbf{Proof.} \(p_X(x) \leq 1 \Rightarrow \log_2 \frac{1}{p_X(x)} \geq 0. \)

2. \(H(X) \leq \log_2 |\mathcal{X}| \)

 A \textit{combinatorial} approach to the definition of information (Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):
 \[S = k \ln \mathcal{W}. \]
Ludwig Boltzmann (1844–1906)
Properties of Entropy

Properties of entropy:

1. $H(X) \geq 0$

 \textit{Proof.} $p_X(x) \leq 1 \Rightarrow \log_2 \frac{1}{p_X(x)} \geq 0$.

2. $H(X) \leq \log_2 |\mathcal{X}|$

 A \textbf{combinatorial} approach to the definition of information (Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):
 \[S = k \ln W. \]

3. $H(X | Y) \leq H(X)$
Properties of Entropy

Properties of entropy:

1. $H(X) \geq 0$

 Proof. $p_X(x) \leq 1 \Rightarrow \log_2 \frac{1}{p_X(x)} \geq 0$.

2. $H(X) \leq \log_2 |\mathcal{X}|$

 A **combinatorial** approach to the definition of information (Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

 $$S = k \ln W.$$

3. $H(X \mid Y) \leq H(X)$

 Proof.

 $$0 \leq I(X ; Y) = H(X) - H(X \mid Y).$$
Properties of Entropy

Properties of entropy:

1. $H(X) \geq 0$

 Proof. $p_X(x) \leq 1 \Rightarrow \log_2 \frac{1}{p_X(x)} \geq 0$.

2. $H(X) \leq \log_2 |\mathcal{X}|$

 A combinatorial approach to the definition of information (Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

 $$S = k \ln W.$$

3. $H(X \mid Y) \leq H(X)$

 On the average, knowing another r.v. can only reduce uncertainty about X. However, note that $H(X \mid Y = y)$ may be greater than $H(X)$ for some y — “contradicting evidence”.

Jyrki Kivinen Information-Theoretic Modeling
Chain Rule of Mutual Information

The **conditional mutual information** of variables X and Y given Z is defined as

$$I(X ; Y | Z) = H(X | Z) - H(X | Y, Z).$$
Chain Rule of Mutual Information

The **conditional mutual information** of variables X and Y given Z is defined as

$$I(X ; Y | Z) = H(X | Z) - H(X | Y, Z).$$

Chain Rule of Mutual Information

For random variables X and Y_1, \ldots, Y_n we have

$$I(X ; Y_1, \ldots, Y_n) = \sum_{i=1}^{n} I(X ; Y_i | Y_1, \ldots, Y_{i-1}).$$
The **conditional mutual information** of variables X and Y given Z is defined as

$$I(X ; Y | Z) = H(X | Z) - H(X | Y, Z).$$

Chain Rule of Mutual Information

For random variables X and Y_1, \ldots, Y_n we have

$$I(X ; Y_1, \ldots, Y_n) = \sum_{i=1}^{n} I(X ; Y_i | Y_1, \ldots, Y_{i-1}).$$

Independence among Y_1, \ldots, Y_n implies

$$I(X ; Y_1, \ldots, Y_n) = \sum_{i=1}^{n} I(X ; Y_i).$$
Data Processing Inequality

Let X, Y, Z be (discrete) random variables. If Z is conditionally independent of X given Y, i.e., if we have

$$p_{Z|X,Y}(z \mid x, y) = p_{Z|Y}(z \mid y) \quad \text{for all } x, y, z,$$

then X, Y, Z form a Markov chain $X \rightarrow Y \rightarrow Z$.
Data Processing Inequality

Let X, Y, Z be (discrete) random variables. If Z is *conditionally independent of X given Y, i.e.,* if we have

$$p_{Z|X,Y}(z|x,y) = p_{Z|Y}(z|y) \text{ for all } x, y, z,$$

then X, Y, Z form a **Markov chain** $X \rightarrow Y \rightarrow Z$.

For instance, Y is a “noisy” measurement of X, and $Z = f(Y)$ is the outcome of deterministic data processing performed on Y, then we have $X \rightarrow Y \rightarrow Z$.

Jyrki Kivinen

Information-Theoretic Modeling
Data Processing Inequality

Let X, Y, Z be (discrete) random variables. If Z is conditionally independent of X given Y, i.e., if we have

$$p_{Z|X,Y}(z|x,y) = p_{Z|Y}(z|y) \quad \text{for all } x, y, z,$$

then X, Y, Z form a Markov chain $X \rightarrow Y \rightarrow Z$.

For instance, Y is a “noisy” measurement of X, and $Z = f(Y)$ is the outcome of deterministic data processing performed on Y, then we have $X \rightarrow Y \rightarrow Z$.

This implies that

$$I(X ; Z | Y) = H(Z | Y) - H(Z | Y, X) = 0.$$

When Y is known, Z doesn’t give any extra information about X (and vice versa).
Data Processing Inequality

Assuming that $X \rightarrow Y \rightarrow Z$ is a Markov chain, we get

$$I(X ; Y, Z) = I(X ; Z) + I(X ; Y | Z)$$

$$= I(X ; Y) + I(X ; Z | Y) .$$
Assuming that $X \to Y \to Z$ is a Markov chain, we get

$$I(X ; Y, Z) = I(X ; Z) + I(X ; Y | Z)$$
$$= I(X ; Y) + I(X ; Z | Y) .$$

Now, because $I(X ; Z | Y) = 0$, and $I(X ; Y | Z) \geq 0$, we obtain:

If $X \to Y \to Z$ is a Markov chain, then we have

$$I(X ; Z) \leq I(X ; Y) .$$

No data-processing can increase the amount of information that we have about X.
1 Entropy and Information
 - Entropy
 - Information Inequality
 - Data Processing Inequality

2 Data Compression
 - Asymptotic Equipartition Property (AEP)
 - Typical Sets
 - Noiseless Source Coding Theorem
AEP

If X_1, X_2, \ldots is a sequence of independent and identically distributed (i.i.d.) r.v.'s with domain \mathcal{X} and pmf p_X, then

$$\log_2 \frac{1}{p_X(X_1)}, \log_2 \frac{1}{p_X(X_2)}, \ldots$$

is also an i.i.d. sequence of r.v.'s.
If X_1, X_2, \ldots is a sequence of independent and identically distributed (i.i.d.) r.v.’s with domain \mathcal{X} and pmf p_X, then

$$\log_2 \frac{1}{p_X(X_1)}, \log_2 \frac{1}{p_X(X_2)}, \ldots$$

is also an i.i.d. sequence of r.v.’s.

The expected values of the elements of the above sequence are all equal to the entropy:

$$E \left[\log_2 \frac{1}{p_X(X_i)} \right] = \sum_{x \in \mathcal{X}} p_X(x) \log_2 \frac{1}{p_X(x)} = H(X) \quad \text{for all } i \in \mathbb{N}. $$
The i.i.d. assumption is equivalent to

\[p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_X(x_i) . \]
The i.i.d. assumption is equivalent to

\[
\frac{1}{p(x_1, \ldots, x_n)} = \prod_{i=1}^{n} \frac{1}{p(x_i)}.
\]
The i.i.d. assumption is equivalent to

$$\log_2 \frac{1}{p(x_1, \ldots, x_n)} = \log_2 \prod_{i=1}^{n} \frac{1}{p_X(x_i)}.$$

Asymptotic Equipartition Property (AEP)

For i.i.d. sequences, we have

$$\lim_{n \to \infty} \Pr[\left| \frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} - H(X) \right| < \epsilon] = 1$$

for all $$\epsilon > 0.$$
The i.i.d. assumption is equivalent to

\[\log_2 \frac{1}{p(x_1, \ldots, x_n)} = \sum_{i=1}^{n} \log_2 \frac{1}{p_X(x_i)} . \]
The i.i.d. assumption is equivalent to

$$\frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} = \frac{1}{n} \sum_{i=1}^{n} \log_2 \frac{1}{p_X(x_i)}.$$
The i.i.d. assumption is equivalent to

\[
\frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} = \frac{1}{n} \sum_{i=1}^{n} \log_2 \frac{1}{p_X(x_i)} .
\]

By the (weak) law of large numbers, the average on the right-hand side converges in probability to its mean, i.e., the entropy:

\[
\lim_{n \to \infty} \Pr \left[\left| \frac{1}{n} \sum_{i=1}^{n} \log_2 \frac{1}{p_X(X_i)} - H(X) \right| < \epsilon \right] = 1 \quad \text{for all } \epsilon > 0.
\]
The i.i.d. assumption is equivalent to

$$\frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} = \frac{1}{n} \sum_{i=1}^{n} \log_2 \frac{1}{p_X(x_i)}.$$
The AEP states that for any $\epsilon > 0$, and large enough n, we have

$$ \Pr \left[\left| \frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} - H(X) \right| < \epsilon \right] \approx 1 $$
The AEP states that for any $\epsilon > 0$, and large enough n, we have

$$\Pr \left(\left| \frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} - H(X) \right| < \epsilon \right) \approx 1$$

$$H(X) - \epsilon < \frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} < H(X) + \epsilon$$
The AEP states that for any $\epsilon > 0$, and large enough n, we have

$$\Pr \left[\left| \frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} - H(X) \right| < \epsilon \right] \approx 1$$

which implies

$$n(H(X) - \epsilon) < \log_2 \frac{1}{p(x_1, \ldots, x_n)} < n(H(X) + \epsilon)$$
The AEP states that for any $\epsilon > 0$, and large enough n, we have

$$\Pr \left[\left| \frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} - H(X) \right| < \epsilon \right] \approx 1$$

$$2^n(H(X)-\epsilon) < \frac{1}{p(x_1, \ldots, x_n)} < 2^n(H(X)+\epsilon)$$
The AEP states that for any $\epsilon > 0$, and large enough n, we have

$$\Pr \left[\left| \frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} - H(X) \right| < \epsilon \right] \approx 1$$

$$2^{-n(H(X) + \epsilon)} < p(x_1, \ldots, x_n) < 2^{-n(H(X) - \epsilon)}$$
The AEP states that for any $\epsilon > 0$, and large enough n, we have

$$\Pr \left[\frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} - H(X) < \epsilon \right] \approx 1$$

$$2^{-n(H(X)+\epsilon)} < p(x_1, \ldots, x_n) < 2^{-n(H(X)-\epsilon)}$$

$$\Leftrightarrow \Pr \left[p(x_1, \ldots, x_n) = 2^{-n(H(X)\pm\epsilon)} \right] \approx 1.$$
The AEP states that for any $\epsilon > 0$, and large enough n, we have

$$\Pr \left[\frac{1}{n} \log_2 \frac{1}{p(x_1, \ldots, x_n)} - H(X) < \epsilon \right] \approx 1$$

$$2^{-n(H(X)+\epsilon)} < p(x_1, \ldots, x_n) < 2^{-n(H(X)-\epsilon)}$$

$$\iff \Pr \left[p(x_1, \ldots, x_n) = 2^{-n(H(X)\pm\epsilon)} \right] \approx 1 .$$

Asymptotic Equipartition Property (informally)

“Almost all sequences are almost equally likely.”
Technically, the key step in the proof was using the weak law of large numbers to deduce

$$\lim_{n \to \infty} \Pr \left[\left| \frac{1}{n} \sum_{i=1}^{n} \log_2 \frac{1}{p_X(X_i)} - H(X) \right| < \epsilon \right] = 1 \quad \text{for all } \epsilon > 0.$$

In other words, with high probability the average “surprisingness” $\log_2 p_X(X_i)$ over the sequence is close to its expectation.
Of course we could just leave out the logs and similarly use the law of large number to deduce

$$\lim_{n \to \infty} \Pr \left[\left| \frac{1}{n} \sum_{i=1}^{n} p_X(X_i) - E[p_X(X_i)] \right| < \epsilon \right] = 1 \quad \text{for all } \epsilon > 0.$$

That is, with high probability the average probability of the elements is close to its expectation, which is the entropy.
Of course we could just leave out the logs and similarly use the law of large number to deduce

$$\lim_{n \to \infty} \Pr \left[\left| \frac{1}{n} \sum_{i=1}^{n} p_X(X_i) - E[p_X(X_i)] \right| < \epsilon \right] = 1 \quad \text{for all } \epsilon > 0.$$

That is, with high probability the average probability of the elements is close to its expectation, which is the entropy.

However, this is less useful because the sum $\sum_{i=1}^{n} p_X(X_i)$ has no clear connection to the probability $p_X(X_1, \ldots, X_n)$ of the whole sequence.
Of course we could just leave out the logs and similarly use the law of large number to deduce

$$\lim_{n \to \infty} \Pr \left[\left| \frac{1}{n} \sum_{i=1}^{n} p_X(X_i) - E[p_X(X_i)] \right| < \epsilon \right] = 1 \quad \text{for all } \epsilon > 0.$$

That is, with high probability the average probability of the elements is close to its expectation, which is the entropy.

However, this is less useful because the sum $\sum_{i=1}^{n} p_X(X_i)$ has no clear connection to the probability $p_X(X_1, \ldots, X_n)$ of the whole sequence.

We get the connection by taking logs, which converts sums to products, allowing us to then use the i.i.d. assumption.
Typical Sets

The **typical set** \(A^{(n)}_{\epsilon} \) is the set of sequences \((x_1, \ldots, x_n) \in X^n\) with the property:

\[
2^{-n(H(X)+\epsilon)} \leq p(x_1, \ldots, x_n) \leq 2^{-n(H(X)-\epsilon)}. \]

The AEP states that \(\lim_{n \to \infty} \Pr[X^n \in A^{(n)}_{\epsilon}] = 1 \).

In particular, for any \(\epsilon > 0 \), and large enough \(n \), we have \(\Pr[X^n \in A^{(n)}_{\epsilon}] > 1 - \epsilon \).
Typical Sets

Typical Set

The *typical set* $A^{(n)}_{\epsilon}$ is the set of sequences $(x_1, \ldots, x_n) \in \mathcal{X}^n$ with the property:

$$2^{-n(H(X)+\epsilon)} \leq p(x_1, \ldots, x_n) \leq 2^{-n(H(X)-\epsilon)}.$$

The AEP states that

$$\lim_{n \to \infty} \Pr \left[X^n \in A^{(n)}_{\epsilon} \right] = 1.$$

In particular, for any $\epsilon > 0$, and large enough n, we have

$$\Pr \left[X^n \in A^{(n)}_{\epsilon} \right] > 1 - \epsilon.$$
Typical Sets

How many sequences are there in the typical set $A^{(n)}_\epsilon$?
Typical Sets

How many sequences are there in the typical set $A_{\epsilon}^{(n)}$?

We can use the fact that by definition each sequence has probability \textit{at least} $2^{-n(H(X)+\epsilon)}$.

Since the total probability of all the sequences in $A_{\epsilon}^{(n)}$ is trivially \textit{at most} 1, there can’t be too many of them.
Typical Sets

How many sequences are there in the typical set $A^{(n)}_{\epsilon}$?

We can use the fact that by definition each sequence has probability \textit{at least} $2^{-n(H(X)+\epsilon)}$.

Since the total probability of all the sequences in $A^{(n)}_{\epsilon}$ is trivially \textit{at most} 1, there can’t be too many of them.

\[
1 \geq \sum_{(x_1, \ldots, x_n) \in A^{(n)}_{\epsilon}} p(x_1, \ldots, x_n)
\]
How many sequences are there in the typical set $A_{\epsilon}^{(n)}$?

We can use the fact that by definition each sequence has probability \textit{at least} $2^{-n(H(X)+\epsilon)}$.

Since the total probability of all the sequences in $A_{\epsilon}^{(n)}$ is trivially \textit{at most} 1, there can’t be too many of them.

$$1 \geq \sum_{(x_1, \ldots, x_n) \in A_{\epsilon}^{(n)}} p(x_1, \ldots, x_n) \geq \sum_{(x_1, \ldots, x_n) \in A_{\epsilon}^{(n)}} 2^{-n(H(X)+\epsilon)}$$
Typical Sets

How many sequences are there in the typical set \(A_\epsilon^{(n)} \)?

We can use the fact that by definition each sequence has probability \textit{at least} \(2^{-n(H(X)+\epsilon)} \).

Since the total probability of all the sequences in \(A_\epsilon^{(n)} \) is trivially \textit{at most} 1, there can’t be too many of them.

\[
1 \geq \sum_{(x_1,\ldots,x_n) \in A_\epsilon^{(n)}} p(x_1,\ldots,x_n) \geq \sum_{(x_1,\ldots,x_n) \in A_\epsilon^{(n)}} 2^{-n(H(X)+\epsilon)} = 2^{-n(H(X)+\epsilon)} \left| A_\epsilon^{(n)} \right|
\]
Typical Sets

How many sequences are there in the typical set $A^{(n)}_\epsilon$?

We can use the fact that by definition each sequence has probability \textit{at least} $2^{-n(H(X)+\epsilon)}$.

Since the total probability of all the sequences in $A^{(n)}_\epsilon$ is trivially \textit{at most} 1, there can’t be too many of them.

\[
1 \geq \sum_{(x_1, \ldots, x_n) \in A^{(n)}_\epsilon} p(x_1, \ldots, x_n) \\
\geq \sum_{(x_1, \ldots, x_n) \in A^{(n)}_\epsilon} 2^{-n(H(X)+\epsilon)} = 2^{-n(H(X)+\epsilon)} \left| A^{(n)}_\epsilon \right| \\
\iff \left| A^{(n)}_\epsilon \right| \leq 2^{n(H(X)+\epsilon)}.
\]
Is it possible that the typical set $A_{\varepsilon}^{(n)}$ is very small?

This time we can use the fact that by definition each sequence has probability at most $2^{-n(H(X)-\varepsilon)}$. Since for large enough n, the total probability of all the sequences in $A_{\varepsilon}^{(n)}$ is (by the AEP) at least $1-\varepsilon$, there can't be too few of them.

$$1-\varepsilon < \Pr\left[X^n \in A_{\varepsilon}^{(n)} \right] \leq \sum_{(x_1,...,x_n) \in A_{\varepsilon}^{(n)}} 2^{-n(H(X)-\varepsilon)} = 2^{-n(H(X)-\varepsilon)} \left| A_{\varepsilon}^{(n)} \right| \left| A_{\varepsilon}^{(n)} \right| > (1-\varepsilon)^2n(H(X)-\varepsilon).$$
Typical Sets

Is it possible that the typical set $A_{\epsilon}^{(n)}$ is very small?

This time we can use the fact that by definition each sequence has probability at most $2^{-n(H(X)-\epsilon)}$.

Since for large enough n, the total probability of all the sequences in $A_{\epsilon}^{(n)}$ is (by the AEP) at least $1 - \epsilon$, there can’t be too few of them.
Typical Sets

Is it possible that the the typical set $A_{\epsilon}^{(n)}$ is very small?

This time we can use the fact that by definition each sequence has probability at most $2^{-n(H(X)-\epsilon)}$.

Since for large enough n, the total probability of all the sequences in $A_{\epsilon}^{(n)}$ is (by the AEP) at least $1 - \epsilon$, there can’t be too few of them.

$$1 - \epsilon < \Pr \left[X^n \in A_{\epsilon}^{(n)} \right]$$
Is it possible that the typical set $A_{\epsilon}^{(n)}$ is very small?

This time we can use the fact that by definition each sequence has probability at most $2^{-n(H(X)-\epsilon)}$.

Since for large enough n, the total probability of all the sequences in $A_{\epsilon}^{(n)}$ is (by the AEP) at least $1-\epsilon$, there can’t be too few of them.

$$1-\epsilon < \Pr\left[X^n \in A_{\epsilon}^{(n)}\right] \leq \sum_{(x_1,\ldots,x_n) \in A_{\epsilon}^{(n)}} 2^{-n(H(X)-\epsilon)}$$
Typical Sets

Is it possible that the the typical set $A^{(n)}_{\epsilon}$ is very small?

This time we can use the fact that by definition each sequence has probability *at most* $2^{-n(H(X)-\epsilon)}$.

Since for large enough n, the total probability of all the sequences in $A^{(n)}_{\epsilon}$ is (by the AEP) *at least* $1 - \epsilon$, there can’t be too few of them.

\[
1 - \epsilon < \Pr \left[X^n \in A^{(n)}_{\epsilon} \right] \\
\leq \sum_{(x_1,\ldots,x_n) \in A^{(n)}_{\epsilon}} 2^{-n(H(X)-\epsilon)} = 2^{-n(H(X)-\epsilon)} \left| A^{(n)}_{\epsilon} \right|
\]
Typical Sets

Is it possible that the typical set $A_{\epsilon}^{(n)}$ is very small?

This time we can use the fact that by definition each sequence has probability *at most* $2^{-n(H(X) - \epsilon)}$.

Since for large enough n, the total probability of all the sequences in $A_{\epsilon}^{(n)}$ is (by the AEP) *at least* $1 - \epsilon$, there can’t be too few of them.

$$1 - \epsilon < \Pr \left[X^n \in A_{\epsilon}^{(n)} \right]$$

$$\leq \sum_{(x_1, \ldots, x_n) \in A_{\epsilon}^{(n)}} 2^{-n(H(X) - \epsilon)} = 2^{-n(H(X) - \epsilon)} \left| A_{\epsilon}^{(n)} \right|$$

$$\Leftrightarrow \left| A_{\epsilon}^{(n)} \right| > (1 - \epsilon)2^{n(H(X) - \epsilon)}.$$
Typical Sets

So the AEP guarantees that for small ϵ and large n:

1. The typical set $A_{\epsilon}^{(n)}$ has high probability.
So the AEP guarantees that for small ϵ and large n:

1. The typical set $A_\epsilon^{(n)}$ has high probability.
2. The number of elements in the typical set is about $2^{nH(X)}$.
Typical Sets

So the AEP guarantees that for small ϵ and large n:

1. The typical set $A_{\epsilon}^{(n)}$ has high probability.
2. The number of elements in the typical set is about $2^{nH(X)}$.

So what?
So the AEP guarantees that for small ϵ and large n:

1. The typical set $A^{(n)}_{\epsilon}$ has high probability.
2. The number of elements in the typical set is about $2^{nH(X)}$.

The number of all possible sequences $(x_1, \ldots, x_n) \in \mathcal{X}^n$ of length n is $|\mathcal{X}|^n$.

The maximum of entropy is $\log_2 |\mathcal{X}|$. If $H(X) = \log_2 |\mathcal{X}|$, we obtain

$$|A^{(n)}_{\epsilon}| \approx 2^{nH(X)} = 2^{n \log_2 |\mathcal{X}|} = |\mathcal{X}|^n,$$

i.e., the typical set can be as large as the whole set \mathcal{X}^n.
So the AEP guarantees that for small ϵ and large n:

1. The typical set $A_{\epsilon}^{(n)}$ has high probability.
2. The number of elements in the typical set is about $2^{nH(X)}$.

The number of all possible sequences $(x_1, \ldots, x_n) \in \mathcal{X}^n$ of length n is $|\mathcal{X}|^n$.

However, for $H(X) < \log_2 |\mathcal{X}|$, the number of sequences in $A_{\epsilon}^{(n)}$ is exponentially smaller than $|\mathcal{X}|^n$:

$$\frac{2^{nH(X)}}{2^n \log_2 |\mathcal{X}|} = 2^{-n\delta} \xrightarrow{n \to \infty} 0,$$

if $\delta = \log_2 |\mathcal{X}| - H(X) > 0$.
A (relatively) small set that contains most of the probability mass.
A (relatively) small set that contains most of the probability mass.

\[\mathcal{X}^n : \left| \mathcal{X} \right|^n \text{ elements} \]

Typical Set

\[A^{(n)}_{\varepsilon} : 2^{nH(X)} \text{ elements} \]
A (relatively) small set that contains most of the probability mass.
A (relatively) small set that contains most of the probability mass.
A (relatively) small set that contains most of the probability mass.
A (relatively) small set that contains most of the probability mass.
Examples

If the source consists of i.i.d. bits $\mathcal{X} = \{0, 1\}$ with $p = p_X(1) = 1 - p_X(0)$, then we have

$$p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_X(x_i) = p^{\sum x_i}(1 - p)^{n - \sum x_i},$$

where $\sum x_i$ is the number of 1's in x^n.

$$\log_2 \frac{1}{p(x_1, \ldots, x_n)} \approx \log_2 \frac{1}{p\sum x_i(1 - p)^{n - \sum x_i}} = nH_X,$$
Examples

If the source consists of i.i.d. bits $X = \{0, 1\}$ with $p = p_X(1) = 1 - p_X(0)$, then we have

$$p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_X(x_i) = p^{\sum x_i} (1 - p)^{n - \sum x_i},$$

where $\sum x_i$ is the number of 1's in x^n.

In this case, the typical set $A_\varepsilon^{(n)}$ consists of sequences for which $\sum x_i$ is close to np. For such strings, we have

$$\log_2 \frac{1}{p(x_1, \ldots, x_n)} \approx \log_2 \frac{1}{p^{np}(1 - p)^{n(1 - p)}}$$

$$= n \left(p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1 - p} \right) = nH(X).$$
Examples

If the source consists of i.i.d. rolls of a die
\[\mathcal{X} = \{1, 2, 3, 4, 5, 6\} \] with \(p_j = p_X(j), \ j \in \mathcal{X} \), then we have

\[
p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_X(x_i) = \prod_{j=1}^{6} p_j^{k_j},
\]

where \(k_j \) is the number of times \(x_i = j \) in \(x^n \).
Examples

If the source consists of i.i.d. rolls of a die $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$ with $p_j = p_X(j), j \in \mathcal{X}$, then we have

$$p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_X(x_i) = \prod_{j=1}^{6} p_j^{k_j},$$

where k_j is the number of times $x_i = j$ in x^n.

In this case, the typical set $A^{(n)}_\epsilon$ consists of sequences for which k_j is close to $n p_j$ for all $j \in \{1, 2, 3, 4, 5, 6\}$. For such strings, we have

$$\log_2 \frac{1}{p(x_1, \ldots, x_n)} \approx \log_2 \frac{1}{\prod_{j=1}^{6} p_j^{np_j}}$$

$$= n \left(\sum_{j=1}^{6} p_j \log \frac{1}{p_j} \right) = n H(X).$$
The AEP Code

We now construct a code from source strings \((x_1, \ldots, x_n) \in \mathcal{X}^n\) to binary sequences \(\{0, 1\}^*\) of arbitrary length.
The AEP Code

We now construct a code from source strings \((x_1, \ldots, x_n) \in \mathcal{X}^n\) to binary sequences \(\{0, 1\}^*\) of arbitrary length.

Let \(x^n \in \mathcal{X}^n\) denote the sequence \((x_1, \ldots, x_n)\), and let \(\ell(x^n)\) denote the length (bits) of the codeword assigned to sequence \(x^n\).
The AEP Code

We now construct a code from source strings \((x_1, \ldots, x_n) \in \mathcal{X}^n\) to binary sequences \(\{0, 1\}^*\) of arbitrary length.

Let \(x^n \in \mathcal{X}^n\) denote the sequence \((x_1, \ldots, x_n)\), and let \(\ell(x^n)\) denote the length (bits) of the codeword assigned to sequence \(x^n\).

The code we will construct has expected per-symbol codeword length arbitrarily close to the entropy

\[
E \left[\frac{1}{n} \ell(x^n) \right] \leq H(X) + \epsilon ,
\]

for large enough \(n\).
The AEP Code

We now construct a code from source strings \((x_1, \ldots, x_n) \in \mathcal{X}^n\) to binary sequences \(\{0, 1\}^*\) of arbitrary length.

Let \(x^n \in \mathcal{X}^n\) denote the sequence \((x_1, \ldots, x_n)\), and let \(\ell(x^n)\) denote the length (bits) of the codeword assigned to sequence \(x^n\).

The code we will construct has expected per-symbol codeword length arbitrarily close to the entropy

\[
E \left[\frac{1}{n} \ell(x^n) \right] \leq H(X) + \epsilon,
\]

for large enough \(n\).

This is the best achievable rate for uniquely decodable codes.
We treat separately two kinds of source strings $x^n \in \mathcal{X}^n$:
The AEP Code

We treat separately two kinds of source strings $x^n \in \mathcal{X}^n$:

1. the **typical** strings $x^n \in A_{\epsilon}^{(n)}$, and
The AEP Code

We treat separately two kinds of source strings $x^n \in \mathcal{X}^n$:

1. the **typical** strings $x^n \in A^{(n)}_\epsilon$, and
2. the **non-typical** strings $x^n \in \mathcal{X}^n \setminus A^{(n)}_\epsilon$.

There are at most $2^{n(H(\mathcal{X}) + \epsilon)}$ strings of the first kind. Hence, we can encode them using binary strings of length $n(H(\mathcal{X}) + \epsilon) + 1$.

There are at most $|\mathcal{X}|^{n}$ strings of the second kind. Hence we can encode them using binary strings of length $n \log_2 |\mathcal{X}| + 1$.

Since the decoder must be able to tell which kind of a string it is decoding, we prefix the code by a 0 if $x^n \in A^{(n)}_\epsilon$ or by 1 if not. This adds one more bit in either case.
The AEP Code

We treat separately two kinds of source strings $x^n \in \mathcal{X}^n$:

1. the **typical** strings $x^n \in A^n(\varepsilon)$, and

2. the **non-typical** strings $x^n \in \mathcal{X}^n \setminus A^n(\varepsilon)$.

There are at most $2^n(H(X) + \varepsilon)$ strings of the first kind. Hence, we can encode them using binary strings of length $n(H(X) + \varepsilon) + 1$.
The AEP Code

We treat separately two kinds of source strings $x^n \in \mathcal{X}^n$:

1. the **typical** strings $x^n \in A^{(n)}_\epsilon$, and
2. the **non-typical** strings $x^n \in \mathcal{X}^n \setminus A^{(n)}_\epsilon$.

There are at most $2^{n(H(X) + \epsilon)}$ strings of the first kind. Hence, we can encode them using binary strings of length $n(H(X) + \epsilon) + 1$.

There are at most $|\mathcal{X}|^n$ strings of the second kind. Hence we can encode them using binary strings of length $n \log_2 |\mathcal{X}| + 1$.
The AEP Code

We treat separately two kinds of source strings $x^n \in \mathcal{X}^n$:

1. the **typical** strings $x^n \in A_{\epsilon}^{(n)}$, and
2. the **non-typical** strings $x^n \in \mathcal{X}^n \setminus A_{\epsilon}^{(n)}$.

There are at most $2^n(H(X) + \epsilon)$ strings of the first kind. Hence, we can encode them using binary strings of length $n(H(X) + \epsilon) + 1$.

There are at most $|\mathcal{X}|^n$ strings of the second kind. Hence we can encode them using binary strings of length $n \log_2 |\mathcal{X}| + 1$.

Since the decoder must be able to tell which kind of a string it is decoding, we prefix the code by a 0 if $x^n \in A_{\epsilon}^{(n)}$ or by 1 if not. This adds one more bit in either case.
To see what’s going on, consider the situation $H(X) < \log_2 \mathcal{X}$. This is the interesting case in which the code actually does result in compression.
The AEP Code

To see what’s going on, consider the situation $H(X) < \log_2 X$. This is the interesting case in which the code actually does result in compression.

On the first lecture we saw that any attempt at compressing *everything* will fail because there are not enough short codewords.
The AEP Code

To see what’s going on, consider the situation $H(X) < \log_2 \mathcal{X}$. This is the interesting case in which the code actually does result in compression.

On the first lecture we saw that any attempt at compressing *everything* will fail because there are not enough short codewords. We bypass this by splitting into two cases.
The AEP Code

To see what’s going on, consider the situation $H(X) < \log_2 \mathcal{X}$. This is the interesting case in which the code actually does result in compression.

On the first lecture we saw that any attempt at compressing everything will fail because there are not enough short codewords.

We bypass this by splitting into two cases.

1. **Typical** strings are actually compressed. There are not too many of them, so there are enough short codewords.
The AEP Code

To see what’s going on, consider the situation $H(X) < \log_2 \mathcal{X}$. This is the interesting case in which the code actually does result in compression.

On the first lecture we saw that any attempt at compressing everything will fail because there are not enough short codewords.

We bypass this by splitting into two cases.

1. **Typical** strings are actually compressed. There are not too many of them, so there are enough short codewords.

2. **Non-typical** strings are not compressed. Because their total probability is low, this does not matter too much.
To see what’s going on, consider the situation $H(X) < \log_2 \mathcal{X}$. This is the interesting case in which the code actually does result in compression.

On the first lecture we saw that any attempt at compressing everything will fail because there are not enough short codewords.

We bypass this by splitting into two cases.

1. **Typical** strings are actually compressed. There are not too many of them, so there are enough short codewords.

2. **Non-typical** strings are not compressed. Because their total probability is low (AEP), this does not matter too much.
Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:
Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

\[
E[\ell(X^n)] = E \left[\ell(X^n) \mid X^n \in A^{(n)}_\epsilon \right] \Pr \left[X^n \in A^{(n)}_\epsilon \right] \\
+ E \left[\ell(X^n) \mid X^n \notin A^{(n)}_\epsilon \right] \Pr \left[X^n \notin A^{(n)}_\epsilon \right]
\]
Expected Code length of the AEP Code

Let us calculate the expected per-symbol codeword length:

\[
E[\ell(X^n)] = E \left[\ell(X^n) \mid X^n \in A_{\epsilon}^{(n)} \right] \Pr \left[X^n \in A_{\epsilon}^{(n)} \right] \\
+ E \left[\ell(X^n) \mid X^n \notin A_{\epsilon}^{(n)} \right] \Pr \left[X^n \notin A_{\epsilon}^{(n)} \right] \\
= (n(H(X) + \epsilon) + 2) \Pr \left[X^n \in A_{\epsilon}^{(n)} \right] \\
+ (n \log_2 |\mathcal{X}| + 2) \Pr \left[X^n \notin A_{\epsilon}^{(n)} \right]
\]
Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

\[E[\ell(X^n)] = E \left[\ell(X^n) \bigg| X^n \in A_{\epsilon}^{(n)} \right] \Pr \left[X^n \in A_{\epsilon}^{(n)} \right] \]
\[+ E \left[\ell(X^n) \bigg| X^n \not\in A_{\epsilon}^{(n)} \right] \Pr \left[X^n \not\in A_{\epsilon}^{(n)} \right] \]
\[= (n(H(X) + \epsilon) + 2) \Pr \left[X^n \in A_{\epsilon}^{(n)} \right] \]
\[+ (n \log_2 |\mathcal{X}| + 2) \Pr \left[X^n \not\in A_{\epsilon}^{(n)} \right] \]
Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

\[
E[\ell(X^n)] = E \left[\ell(X^n) \mid X^n \in A^{(n)}_\epsilon \right] \Pr \left[X^n \in A^{(n)}_\epsilon \right] \\
+ E \left[\ell(X^n) \mid X^n \not\in A^{(n)}_\epsilon \right] \Pr \left[X^n \not\in A^{(n)}_\epsilon \right] \\
= (n(H(X) + \epsilon) + 2) \Pr \left[X^n \in A^{(n)}_\epsilon \right] \\
+ (n \log_2 |\mathcal{X}| + 2) \Pr \left[X^n \not\in A^{(n)}_\epsilon \right] \\
\leq n(H(X) + \epsilon) + n \log |\mathcal{X}| \epsilon + 2 \quad \text{(AEP)}
\]
Expected Code length of the AEP Code

Let us calculate the expected per-symbol codeword length:

\[
E[\ell(X^n)] = E \left[\ell(X^n) \mid X^n \in A^{(n)}_\epsilon \right] \Pr \left[X^n \in A^{(n)}_\epsilon \right] \\
+ E \left[\ell(X^n) \mid X^n \notin A^{(n)}_\epsilon \right] \Pr \left[X^n \notin A^{(n)}_\epsilon \right] \\
= (n(H(X) + \epsilon) + 2) \Pr \left[X^n \in A^{(n)}_\epsilon \right] \\
+ (n \log_2 |\mathcal{X}| + 2) \Pr \left[X^n \notin A^{(n)}_\epsilon \right] \\
\leq n(H(X) + \epsilon) + n \log |\mathcal{X}| \epsilon + 2 \quad \text{(AEP)}
\]
Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

\[
E[\ell(X^n)] = E \left[\ell(X^n) \mid X^n \in A^{(n)}_\epsilon \right] \Pr \left[X^n \in A^{(n)}_\epsilon \right]
+ E \left[\ell(X^n) \mid X^n \notin A^{(n)}_\epsilon \right] \Pr \left[X^n \notin A^{(n)}_\epsilon \right]

= (n(H(X) + \epsilon) + 2) \Pr \left[X^n \in A^{(n)}_\epsilon \right]
+ (n \log_2 |\mathcal{X}| + 2) \Pr \left[X^n \notin A^{(n)}_\epsilon \right]
\leq n(H(X) + \epsilon) + n \log |\mathcal{X}| \epsilon + 2 \quad \text{(AEP)}
\]
Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

\[
E[\ell(X^n)] = E \left[\ell(X^n) \bigg| X^n \in A_{\epsilon}^{(n)} \right] \Pr \left[X^n \in A_{\epsilon}^{(n)} \right]
+ E \left[\ell(X^n) \bigg| X^n \notin A_{\epsilon}^{(n)} \right] \Pr \left[X^n \notin A_{\epsilon}^{(n)} \right]
= (n(H(X) + \epsilon) + 2) \Pr \left[X^n \in A_{\epsilon}^{(n)} \right]
+ (n \log_2 |\mathcal{X}| + 2) \Pr \left[X^n \notin A_{\epsilon}^{(n)} \right]
\leq n(H(X) + \epsilon) + n \log |\mathcal{X}| \epsilon + 2 \quad \text{(AEP)}
= n(H(X) + \epsilon')
\]

where \(\epsilon' = \epsilon + \epsilon \log_2 |\mathcal{X}| + \frac{2}{n} \) can be made arbitrarily small by choosing \(\epsilon > 0 \) small enough, and letting \(n \) become large enough.
Dividing this bound by \(n \) gives the expected per-symbol codelength of the “AEP code”:

\[
E \left[\frac{1}{n} \ell(X^n) \right] \leq H(X) + \epsilon
\]

for any \(\epsilon > 0 \) and \(n \) large enough.
Optimality of the AEP Code

Dividing this bound by n gives the expected per-symbol code length of the “AEP code”:

$$E \left[\frac{1}{n} \ell(X^n) \right] \leq H(X) + \epsilon$$

for any $\epsilon > 0$ and n large enough.

Optimality: By AEP, there are about $2^{nH(X)}$ sequences that have probability about $2^{-nH(X)}$. We can assign a codeword shorter than $n(H(X) - \delta)$ to only a proportion of less than $2^{-n\delta}$ of these sequences (by a counting argument), and hence the expected per-symbol codeword length must be about $H(X)$ or more.
Noiseless Source Coding Theorem

These two statements give the

9. The Fundamental Theorem for a Noiseless Channel

We will now justify our interpretation of H as the rate of generating information by proving that H determines the channel capacity required with most efficient coding.

Theorem 9: Let a source have entropy H (bits per symbol) and a channel have a capacity C (bits per second). Then it is possible to encode the output of the source in such a way as to transmit at the average rate $\frac{C}{H} - \epsilon$ symbols per second over the channel where ϵ is arbitrarily small. It is not possible to transmit at an average rate greater than $\frac{C}{H}$.

(Shannon, 1948)

In the noiseless setting with binary code alphabet, the channel capacity is $C = \log_2 |\{0, 1\}| = 1$.

The theorem says that the achievable rates are given by

$$R = \lim_{n \to \infty} \frac{n}{\ell(x^n)} < \frac{1}{H(X)}.$$
Next on the course:

1. brief excursion into noisy channel coding
2. source coding in practice: efficient algorithms.