1. Let $X = \{1, 2, \ldots, k\}$, and consider the concept class C that consists of closed intervals $[a, b]$ where $a, b \in X$ and $a \leq b$. What is the cardinality $|C|$ of the concept class? Show how the Halving Algorithm for this C can be implemented efficiently. (The implementation should do less than $O(|C|)$ computation per prediction.)

2. We consider two important inequalities that can both be proved by applying Jensen’s inequality with $f(x) = -\ln x$.

(a) Show that the arithmetic mean of non-negative numbers a_1, \ldots, a_n is at least their geometric mean, i.e.,

$$\frac{1}{n} \sum_{i=1}^{n} a_i \geq \left(\prod_{i=1}^{n} a_i \right)^{1/n}.$$

(b) Given $p \in \mathbb{R}^n$ and $q \in \mathbb{R}^n$ such that $p_i \geq 0$ and $q_i \geq 0$ for all i and $\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} q_i = 1$, we define their relative entropy (or Kullback-Leibler divergence) as

$$d_{\text{KL}}(p, q) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}.$$

Show that $d_{\text{KL}}(p, q) \geq 0$ holds for all p and q (that satisfy the conditions above). This is known as the information inequality.

3. We consider the Weighted Average algorithm, with η and c that satisfy the conditions of Theorem 2.9 in the lecture notes. In this problem you are asked to generalise the proof of Theorem 2.9.

(a) Show that if there are k different experts i that all satisfy $L(E_i) \leq M$ for some M, then

$$L(WA) \leq cnM + c \ln \frac{N}{k}.$$

(b) Change the initialisation of the algorithm so that $w_{1,i} = p_i$ for all i, where $p_i > 0$ for all i and $\sum_{i=1}^{N} p_i = 1$ but otherwise p is arbitrary. Show that for the modified algorithm WA' we have

$$L(WA') \leq \min_{1 \leq i \leq N} \left(cnL(E_i) + c \ln \frac{1}{p_i} \right).$$

(This generalises directly to a countably infinite set of experts, if we ignore the computational issue of actually running such an algorithm.)

4. Show that when $y_t \in \{-1, 1\}$, the WA algorithm for log loss with $\eta = 1$ satisfies

$$L_{\log}(y_t, v_t \cdot x_t) = \ln \frac{W_t}{W_{t+1}}.$$

In other words, for this special case the condition of Theorem 2.9 holds as equality for $c = 1$. (Notice that a factor $1/2$ was missing from the definition of log loss in the lecture notes; this has now been fixed.)

5. Calculate the values \tilde{c}_L for logarithmic and Hellinger loss. (Consider just the case $y \in \{-1, 1\}$.)