1. (a) Give a formal definition for the following finite automaton. What is the sequence of states the automaton enters on the following inputs: 0101, 1010 and 000111. What is the language recognised by the automaton?

(b) Let \(M = (\{ q_0, q_1, q_2 \}, \{ 0, 1 \}, \delta, q_0, \{ q_1 \}) \), where \(\delta \) is as follows:

\[
\begin{array}{c|cc}
& 0 & 1 \\
\hline
q_0 & q_1 & q_0 \\
q_1 & q_2 & q_1 \\
q_2 & q_1 & q_2
\end{array}
\]

Draw the automaton as a state diagram. What is the sequence of states the automaton enters on the following inputs: 01010, 1010 and 000111. What is the language recognised by the automaton?

2. For each of the following languages over the alphabet \{ a, b, c \}, give a finite automaton recognising the language (as a state diagram):
 (a) strings that end with “abc”
 (b) strings that begin with “abc”
 (c) strings where each odd-numbered position contains character b.

3. Suppose a finite automaton \(M \) is given.
 (a) How can you easily decide whether \(\varepsilon \in L(M) \)?
 (b) Give an algorithm that decides whether \(L(M) = \emptyset \). How would you augment your algorithm so that in case \(L(M) \neq \emptyset \) it also returns some string belonging to \(L(M) \)?

4. Prove that the language \{ 0^n1^n \mid n \in \mathbb{N} \} is not regular.
 \textit{Hint:} Extend the transition function by defining \(\delta^*(q, w) \), for any \(q \in Q \) and \(w \in \Sigma^* \), to be the state where the automaton would end up if it started in state \(q \) and received as input the string \(w \). Suppose some \(n \neq m \) satisfy \(\delta^*(q_0, 0^n) = \delta^*(q_0, 0^m) = q \). Is the state \(\delta^*(q, 1^n) \) an accept state or not?