1. Let the language A over alphabet $\{0, 1\}$ consist of strings that end in zero. Further, let the language B consist of strings that end in 01. The languages A and B can be recognised with DFAs M_A and M_B, respectively:

![DFA M_A.](image)

![DFA M_B.](image)

Construct an NFA for the language $A \cup B$ from M_A and M_B by applying the construction given in Sipser, pp. 59–60. Then transform your NFA into an equivalent DFA by applying the construction given in Sipser, pp. 55–56. Omit states that are not reachable from the start state.

2. Consider the same languages A and B and DFAs M_A and M_B as in Problem 1. Construct an NFA for the language $A \circ B$ by applying the construction given in Sipser, pp. 60–61. Show the computation tree of the NFA for input strings 001001 and 1110011011001.

3. (Sipser Problem 1.31) Define the reverse of a language A as

$$A^R = \{ w^R \mid w \in A \}.$$

Show that if A is regular, then so is A^R.

4. (a) We say that a string w is a prefix of a string x, if a string z exists such that $x = wz$. For any language A over alphabet Σ, we define its set of prefixes as

$$\text{PREFIX}(A) = \{ w \in \Sigma^* \mid \text{there exists } z \in \Sigma^* \text{ such that } wz \in A \}.$$

Prove that if A is regular, then so is $\text{PREFIX}(A)$.

(b) We say that a string w is a suffix of a string x, if a string z exists such that $x = zw$. For any language A, we define its set of suffixes as

$$\text{SUFFIX}(A) = \{ w \in \Sigma^* \mid \text{there exists } z \in \Sigma^* \text{ such that } zw \in A \}.$$

Prove that if A is regular, then so is $\text{SUFFIX}(A)$. Hint: you may apply part (a) together with the result from Problem 3.