1. [12 points] Give a regular expression and either a DFA or an NFA for both of the following languages:

 (a) The language A_1 consists of all strings over the alphabet $\{a, b, c\}$ that have length at least three and end either in “abc” or in “cba”.

 (b) The language A_2 consists of all strings over the alphabet $\{0, 1\}$ where the number of zeros is divisible by 3.

2. [8 points] Let us define a list recursively as follows:

 - There is an empty list, which is denoted by NIL.
 - Given n lists L_1, \ldots, L_n for some $n \geq 1$, we can construct a list (L_1, \ldots, L_n).
 - There are no other lists besides what the above implies.

 Thus, the following are examples of a list:

 $$((((\text{NIL}))))$$

 $$(\text{NIL}, (\text{NIL}), (\text{NIL}, (\text{NIL})), (\text{NIL}, (\text{NIL}), (\text{NIL}, (\text{NIL}))))$$

 $$(\text{NIL}, \text{NIL}, \text{NIL}, \text{NIL}).$$

 We can represent a list as a string over the alphabet that consist of the symbols ”NIL”, ”,” (comma) and the paranteses “(“ and ”)”. Give a context-free grammar that generates all such representations of lists.

3. [8 points] Let C be the language generated by the grammar

 $$S \rightarrow aSb | bSa | SS | \varepsilon.$$

 Convert C into an equivalent push-down automaton using the method given in the textbook. Explain in English, which strings belong to C.

4. [12 points] Let the language D over the alphabet $\{0, 1\}$ consist of strings where the number of zeros exceeds the number of ones exactly by 3. The order of zeros and ones does not matter. Thus, the language D includes e.g. the strings 000, 001010100 and 1111100000000. Prove that D is not a regular language. You may take as known any results given in the textbook.

5. [10 points] What is meant by the Church-Turing thesis? What arguments can be given to support the thesis? What implications does the thesis have for research in computer science?

6. [10 points] Prove that if a language A and its complement \overline{A} are both Turing-recognisable, then A is decidable.