1. We generalise the Perceptron Algorithm by introducing a learning rate $\eta > 0$. The update becomes

$$w_{t+1} = w_t + \eta \sigma_t y_t x_t.$$

Further, we start the algorithm with $w_1 = w_{\text{init}}$ where the initial weights need not be zero. (Note that if we have $w_{\text{init}} = 0$ then the learning rate does not affect the predictions $\text{sign}(w_t \cdot x_t)$.) Assume that $\|x_t\|_2 \leq X$ for some $X > 0$, and some $u \in \mathbb{R}^d$ satisfies $y_t u \cdot x_t \geq 1$ for all t. Modify the proof for the Perceptron Convergence Theorem by using

$$P_t = \frac{1}{2} \|u - w_t\|_2^2$$

as the potential function. The result should be that

$$\sum_{t=1}^{T} \sigma_t \leq \|u - w_{\text{init}}\|_2^2 X^2$$

for a suitable choice of η. Thus, if we start the algorithm close to the target, we get a smaller mistake bound.

Hint: This is a fairly straightforward modification of the proof in the lecture notes. Instead of c and γ, the learning rate η will appear in some terms of the potential estimate.

2. As with the all subsets kernel (Example 2.19, page 110), define for $A \subseteq \{1, \ldots, n\}$ the feature

$$\psi_A(x) = \prod_{i \in A} x_i.$$

The degree q ANOVA feature map has the $\binom{n}{q}$ features ψ_A where $|A| = q$. (Thus the all subsets feature map combines the ANOVA features for $q = 0, \ldots, n$.) Let k_q be the kernel of this feature map. There is no nice closed form for this kernel, but given $x, z \in \mathbb{R}^n$ we can still compute the value

$$k_q(x, z) = \sum_{|A| = q} \psi_A(x)\psi_A(z)$$

much more efficiently than the naive $O(n^q)$. Give an algorithm to do this.

Hint: Express $k_q((x_1, \ldots, x_n), (z_1, \ldots, z_n))$ in terms of $k_{q-1}((x_1, \ldots, x_{n-1}), (z_1, \ldots, z_{n-1}))$ and $k_q((x_1, \ldots, x_{n-1}), (z_1, \ldots, z_{n-1}))$. You can save computation effort by dynamic programming.

Continues on the next page!
3. Consider online linear regression, where now \(\hat{y}_t \) and \(y_t \) can both be arbitrary real numbers. The analogue of the Perceptron algorithm is the Least Mean Squares algorithm (LMS, also known as Widrow-Hoff):

\[
\text{Initialise } w_1 = 0.
\]

Repeat for \(t = 1, \ldots, T \):

1. Get \(x_t \in \mathbb{R}^n \).
2. Predict \(\hat{y}_t = w_t \cdot x_t \).
3. Receive the correct answer \(y_t \).
4. Update \(w_{t+1} = w_t - \eta(\hat{y}_t - y_t)x_t \).

Here \(\eta > 0 \) is a learning rate parameter.

Assume that there are some \(u \in \mathbb{R}^n \) and \(X > 0 \) such that \(y_t = u \cdot x_t \) and \(\|x_t\|_2 \leq X \) for all \(t \).

Show that the square loss of the LMS algorithm can be bounded as

\[
\sum_{t=1}^{T} (y_t - \hat{y}_t)^2 \leq \|u\|_2^2 X^2.
\]

For extra credit (worth one regular problem), generalise this to the “agnostic” case where we do not assume \(u \cdot x_t = y_t \).

Hint: For the basic case, show that

\[
\frac{1}{2} \|u - w_t\|_2^2 - \frac{1}{2} \|u - w_{t+1}\|_2^2 = \left(\eta - \frac{1}{2} \eta X^2 \right) (y_t - \hat{y}_t)^2.
\]

Optimise \(\eta \) and sum over \(t \).

For the agnostic case, show that

\[
\frac{1}{2} \|u - w_t\|_2^2 - \frac{1}{2} \|u - w_{t+1}\|_2^2 = a(y_t - \hat{y}_t)^2 - b(y_t - u \cdot x_t)^2
\]

for some \(a, b > 0 \) that depend on \(X \) and \(\eta \). You do not need to find the optimal \(\eta \) for this case.

4. Consider the linear classifier \(f(x) = \text{sign}(w \cdot x) \) for \(x \in \mathbb{R}^d \) where \(w_1 = w_2 = 1 \) and \(w_i = 0 \) for \(i = 3, \ldots, d \).

We generate a random sample as follows. First, we draw a large number of instances \(x_t \) from the uniform distribution over the cube \([-1, 1]^d \). Then we classify the instances using the above classifier \(f \). Finally, we discard from the sample the points where the margin is below some value \(\gamma \) we decide in advance. Therefore we get a sample that is linearly separable with margin \(\gamma \) by the classifier \(f \).

Implement the sampling method and the Perceptron algorithm. Study how the number of mistakes made by the algorithm changes when you

- keep dimension \(d \) fixed but let the margin \(\gamma \) vary
- keep the margin \(\gamma \) fixed but let dimension \(d \) vary.

Is the behaviour of the algorithm similar to what you would expect from the Perceptron Convergence Theorem?

Your solution should consist of a brief explanation of the observations you made, a couple of representative plots to support this, and a printout of your program code.