1. Parts (a) and (b) are basically Problem 1 from Homework 2.

For part (c), the update becomes

\[w_{t+1,i} = w_{t,i} \exp(-\eta L_{abs}(y_t, E_{i,t})) \]

in other words we just substitute the absolute loss as the loss function and leave the value of \(\eta \) open for now. We want to choose \(\hat{y}_t \) such that

\[L_{abs}(y_t, \hat{y}_t) \leq P_t - P_{t+1} \]

holds both for \(y_t = 0 \) and \(y_t = 1 \), where \(P_t = c \ln W_t \) and \(W_t = \sum_{j=1}^{n} w_{t,j} \) as before. For \(p \in \{0, 1\} \), let \(\Delta_p \) denote the value of \(P_t - P_{t+1} \) if \(y_t = p \) and we update the weights as above. The above condition can be split into two cases, for \(y_t = 0 \) and \(y_t = 1 \), as follows:

\[\hat{y}_t \leq \Delta_0 \]
\[1 - \hat{y}_t \leq \Delta_1. \]

In other words, we need

\[1 - \Delta_1 \leq \hat{y}_t \leq \Delta_0. \]

A solution \(\hat{t}_t \) exists if and only if \(\Delta_0 + \Delta_1 \geq 1 \). The main technical challenge in the proof is showing that this indeed is the case, for suitable value of \(c \) and \(\eta \).

It turns out that for any \(\eta > 0 \) such a constant \(c \) exists. If we denote the best (smallest) possible \(c \) for a given \(\eta \) as \(c(\eta) \), the bound becomes

\[L_{abs}(S, AA) \leq \eta c(\eta) \min_i L(S, E_i) + c(\eta) \ln n. \]

If we know an upper bound \(K \geq \min_i L(S, E_i) \), we can use that to choose \(\eta \) such that the above becomes

\[L_{abs}(S, AA) - \min_i L(S, E_i) \leq a \sqrt{K \ln n} + b \ln n \]

for some constants \(a, b > 0 \).

2. (a) We assume there is a fixed but unknown probability distribution \(P \) over \(X \times Y \) where \(Y = \{0, 1\} \).

The true risk of a hypothesis \(h : X \to Y \) with the 0-1 loss is

\[R(h) = E_{(x,y) \sim P}[L_{0-1}(y, h(x))]. \]

Given a sequence of \(m \) examples \((x_i, y_i) \in X \times Y \), we define the empirical risk as

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} L_{0-1}(y_i, h(x_i)). \]
Fix now $\varepsilon, \delta > 0$. If we draw the m examples independently from distribution P where
\[
m \geq \frac{1}{2\varepsilon} \ln \frac{2|H|}{\delta},
\]
then with probability at least $1 - \delta$ all hypotheses $h \in H$ satisfy
\[
\left| R(h) - \hat{R}(h) \right| \leq \varepsilon.
\]
(This is Theorem 1.11, page 54 of lecture notes.)

(b) The proof of Theorem 1.11 in on page 55 of lecture notes.

3. As suggested, let
\[
\xi'_i = \max \{-w \cdot x_i + y_i - \varepsilon, 0\}, \quad \xi''_i = \max \{w \cdot x_i - y_i - \varepsilon, 0\}.
\]
Using this notation, we can write the ε-insensitive loss as
\[
L_\varepsilon(w \cdot x_i - y_i) = \xi'_i + \xi''_i.
\]
Therefore the objective function becomes
\[
\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} (\xi'_i + \xi''_i).
\]
We treat ξ'_i and ξ''_i as new variables and use constraints to give them the intended meaning. We get the optimisation problem

minimize with respect to $w \in \mathbb{R}^d$, $\xi' \in \mathbb{R}^m$, $\xi'' \in \mathbb{R}^m$

\[
f(w, \xi', \xi'') = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} (\xi'_i + \xi''_i)
\]

subject to
\[
-\xi'_i - w \cdot x_i + y_i - \varepsilon \leq 0 \quad i = 1, \ldots, m
\]
\[
-\xi''_i + w \cdot x_i - y_i - \varepsilon \leq 0 \quad i = 1, \ldots, m
\]
\[
-\xi'_i \leq 0 \quad i = 1, \ldots, m
\]
\[
-\xi''_i \leq 0 \quad i = 1, \ldots, m.
\]
We get the Lagrangian

\[L(w, \xi_i', \xi_i'', \alpha', \alpha'', \beta', \beta'') = \frac{1}{2} w \cdot w + C \sum_{i=1}^{m} (\xi_i' + \xi_i'') \]

\[+ \sum_{i=1}^{m} \alpha'_i (-\xi_i' - w \cdot x_i + y_i - \varepsilon) \]

\[+ \sum_{i=1}^{m} \alpha''_i (-\xi_i'' + w \cdot x_i - y_i - \varepsilon) \]

\[- \sum_{i=1}^{m} \beta'_i \xi_i' - \sum_{i=1}^{m} \beta''_i \xi_i''. \]

Taking derivatives with respect to the primal variables, we get

\[\frac{\partial L}{\partial w_j} = w_j - \sum_{i=1}^{m} (\alpha'_i - \alpha''_i) x_{ij} \]

\[\frac{\partial L}{\partial \xi_i'} = C - \alpha'_i - \beta'_i \]

\[\frac{\partial L}{\partial \xi_i''} = C - \alpha''_i - \beta''_i. \]

In particular, \(w = \sum_{i=1}^{m} (\alpha'_i - \alpha''_i) x_i \). Substituting this and \((\partial L)/(\partial \xi_i') = (\partial L)/(\partial \xi_i'') = 0 \) back to \(L \), we get the dual function

\[g(\alpha', \alpha'', \beta', \beta'') = -\frac{1}{2} \sum_{i,j=1}^{m} (\alpha'_i - \alpha''_i)(\alpha'_j - \alpha''_j) x_i \cdot x_j + \sum_{i=1}^{m} (\alpha'_i - \alpha''_i) y_i - \sum_{i=1}^{m} (\alpha'_i + \alpha''_i) \varepsilon \].

Since all \(\alpha \) and \(\beta \) variables are constrained to be non-negative, the conditions \(C - \alpha'_i - \beta'_i = C - \alpha''_i - \beta''_i \) imply \(0 \leq \alpha'_i \leq C \) and \(0 \leq \alpha''_i \leq C \). Conversely, if \(0 \leq \alpha'_i \leq C \) and \(0 \leq \alpha''_i \leq C \), it is always possible to choose \(\beta'_i \geq 0 \) and \(\beta''_i \geq 0 \) such that \(C - \alpha'_i - \beta'_i = C - \alpha''_i - \beta''_i \). Since \(\beta \) variables have otherwise no effect, we can write the dual problem as

maximise

\[g_2(\alpha', \alpha'') = -\frac{1}{2} \sum_{i,j=1}^{m} (\alpha'_i - \alpha''_i)(\alpha'_j - \alpha''_j) x_i \cdot x_j \]

\[+ \sum_{i=1}^{m} (\alpha'_i - \alpha''_i) y_i - \sum_{i=1}^{m} (\alpha'_i + \alpha''_i) \varepsilon \]
subject to

\[\begin{align*}
\alpha'_i & \leq C & i = 1, \ldots, m \\
\alpha''_i & \leq C & i = 1, \ldots, m \\
-\alpha'_i & \leq 0 & i = 1, \ldots, m \\
-\alpha''_i & \leq 0 & i = 1, \ldots, m.
\end{align*} \]

In the kernelised version we replace \(x_i \) by \(\psi(z_i) \) where \(\psi(z') \cdot \psi(z'') = k(z', z'') \).

Therefore we can just replace \(g_2 \) above with

\[-\frac{1}{2} \sum_{i,j=1}^{m} (\alpha'_i - \alpha''_i)(\alpha'_j - \alpha''_j)k(z_i, z_j). \]

In the non-kernel version, we eventually obtain \(w \), which is interpreted to represent the linear mapping \(\mathbb{R}^d \to \mathbb{R}, x \mapsto w \cdot x \). In the kernel version, we obtain the mapping

\[z \mapsto w \cdot \psi(z) = \sum_{i=1}^{m} (\alpha'_i - \alpha''_i)k(z_i, z). \]