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“Yön maku,
kun linnut syöksyy mustina siipinä tähtiä päin;
vaan mikä on nimesi nimi,
tähtesi salainen luku ja numero?”

– Arcana by CMX, from their album Discopolis
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An Appetizer: The MIU-System

● Douglas Hofstadter presented the following puzzle in his famous 
book “Gödel, Escher, Bach: an Eternal Golden Braid”:

● The MIU-system has the letters M, I, and U in its alphabet
● It has four production rules:

1)  αI → αIU; 2)  Mα → Mαα;

3)  αIIIβ → αUβ; and 4)  αUUβ → αβ;

● The question is: Is MU derivable from MI?
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Subway Map

● This slide was inspired by the West Metro, that connects Espoo 
and Helsinki (most of the time). The stops are the concepts 
worth learning. Page number is written beneath the stops
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Map of the Universe

Mathematics Computer 
Science

We are here
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What Is a Function?

Formula
● f(x) = 2x
● g(x,y) = 5
● h : X→Y
● x ↦ 3
● (a∘b)(x) = a(b(x))

Interpretation
● f(x) yields 2x
● g is a constant function
● h maps every X to a Y
● x is mapped to 3
● composition of a and b
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First-Order vs. Higher-Order

First-Order Higher-Order

f = {((a1,b1),c1), ((a1,b2),c2), ...}

A×B Cf

(a1, b1)
(a1, b2)
(a1, b3)

⋮

c1

c2

c3

⋮

A

CB

f

A×B

CB×B C

f

ϵ

f×1B

f = ϵ  ∘ f×1B
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Extensional vs. Intensional

Extensional Intensional

f(x)y

x

x = 0
true

(x,y) ← (y%x,x)

false

x≤y

GCD(x,y)

return y
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My Point of View

● According to Wiktionary (viewed some time in 2017):
– The word “function” comes from a Latin word that means 

performance or execution
– The Latin word “calculus” means “a pebble or stone used for counting”

● Does set theoretical mathematics do justice to these concepts?
– Do you see pebbles in the real line?

● I think of functions as a primitive rather than a derived notion
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Some Terminology

● Functions are abstract dependencies between objects
● Algorithms are representations of functions in a formal system.

Several algorithms per function; one function per algorithm
● Strings can represent functions as well as their arguments
● Computation is the art of algorithmic string manipulation
● A model of computation is a formal system that defines 

effectively computable functions in terms of algorithms
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Some Models of Computation
M

inim
a l

Industrial

Legend:
CA = Cellular Automata
CL = Combinatory Logic
FC = Flow Charts
FT = FRACTRAN
LC = Lambda-Calculus
µRF = Mu Recursive Functions
PA = Peano Arithmetic
PN = Petri Nets
PCS = Post Canonical Systems
TM = Turing Machines
TT = Type Theory
URM = Unlimited Register Machines

Academic
C

om
pl

ex

TM PCS CA

FT

CLPA

URM µRF PN

TT FC LC
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The Computational Universe

● Lambda-Calculus, Combinatory Logic, Mu Recursive Functions, 
Turing Machines, and others, represent the strongest class of 
models of computation. (Church-Turing Thesis)

● They’re powerful enough to feature undecidability, i.e. the 
incompleteness of computational universe. (Thanks, Gödel!)
– There are strange loops between object and meta languages
– On the bright side, we can extend every formal system infinitely!
– We’ll see later how undecidability emerges in LC
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Lambda-Calculus?

● Lambda-Calculus (LC) is the model (or language) of computation 
(i.e. programming) discussed in this presentation. 
– It is a system that expresses functions as strings of symbols

● A few common misconceptions need to be addressed:
– It’s lambda (the Greek letter Λ, λ), not “lambada” (the dance)
– “Calculus” referes to proof calculus, not the differential/integral one 
– “Barendregt convention” was actually initiated by Thomas Ottmann
– “Curry transformation” was actually discovered by Gottlob Frege
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The Rough Idea

● Lambda-Calculus is about anonymous functions, called lambda 
expressions (λ-exprs)

● There are conversion and reduction rules that allow us to reason 
about (in)equality of λ-exprs. Reducing λ-exprs is like 
– running a computer program;
– performing a series of algebraic simplifications; or

– transforming graphs

● We’ll see how this works in due time
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Teaser: Building Functions

● f(x) = 2x + c translates into f ≝ λx.+ ((λt.  2 ⋅ t)x) c in LC
– 2x can be seen as a function of t, t ↦ 2  ⋅ t, applied to x
– In LC, we write 2  ⋅ t in prefix notation as  2 ⋅ t
– c is constant (or free variable); it stays fixed as x varies

– We bind x as the formal parameter: λx.+ ((λt.  2 ⋅ t)x) c

● (λt.  2 ⋅ t)x means evaluating t ↦ (  2 ⋅ t) with the argument x
● We can simplify: f = λx.+ ((λt.  2 ⋅ t)x) c = λx.+ (  2 ⋅ x) c
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The Black Box Analogy Revisited

● Traditionally, functions are 
seen as black boxes

● In LC, functions are the stars 
of the show

function1? ?input1 output1?

input2
? output2 ? ?function2

input3
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Two Programming Paradigms

● Imperative paradigm operates 
algorithms like cooking 
recipes, on step-by-step basis:
0: IN R1,=KBD
1: LOAD R2,=1
2: JZER R1,6
3: MUL R2,R1
4: SUB R1,=1
5: JUMP 2
6: OUT R2,=CRT
7: SVC R0,=HALT

● Declarative paradigm defines 
algorithms as compositions of 
computational primitives:
select name, email
    from students join staff
    where email like ’%.fi’

● LC is declarative
● LC doesn’t have implicit state 

or side effects
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● Declarative paradigm defines 
algorithms as compositions of 
computational primitives:
select name, email
    from students join staff
    where email like ’%.fi’

● LC is declarative
● LC doesn’t have implicit state 

or side effects

● Imperative paradigm operates 
algorithms like cooking 
recipes, on step-by-step basis:
0: IN R1,=KBD
1: LOAD R2,=1
2: JZER R1,6
3: MUL R2,R1
4: SUB R1,=1
5: JUMP 2
6: OUT R2,=CRT
7: SVC R0,=HALT
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Side-Effects Make Program Analysis Hard

● A “function” in C:
int c = 0;
int f(int i)
{
    return i + c++;
}
f(3); // Returns 3
f(3); // Returns 4

● Thus, f(3) ≠ f(3)!
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Lambda-Calculus Makes Effects Explicit

● A “function” in C:
int c = 0;
int f(int i)
{
    return i + c++;
}
f(3); // Returns 3
f(3); // Returns 4

● Thus, f(3) ≠ f(3)!

● Consider the following: 
int g(int c, int i) 
    {return i + (c + 1);}
int h(int i) {return g(0);}

● The state of c is now explicit
● In pseudo-LC, we’d declare 

int g(int c)(int i);
int h(int i){return g(0)(i);}

● Now, h(3) = h(3)
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Traditional Notation is Imprecise

● Take “f(x) = y” for instance
– What does ‘=’ mean?
– Definition or assertion?
– Did we apply f to x?
– Perhaps we multiplied f by x?
– Do we need the graph of f ?

● Is ‘∘’ in (f ∘ g) a function?
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Lambda-Calculus is Unambiguous

● Take “f(x) = y” for instance
– What does ‘=’ mean?
– Definition or assertion?
– Did we apply f to x?
– Perhaps we multiplied f by x?
– Do we need the graph of f ?

● Is ‘∘’ in (f ∘ g) a function?

● In LC, f(x) = y means 
“f applied to x equals y”
– It is an assertion (“==”), not a 

definition (“=”)
– No other interpretations
– ‘=’ always has a direct proof

● ∘ is just another function:
– f∘g ≡ (λvwx.v(wx))fg
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Why Lambda-Calculus?

● Lambda-Calculus is capable of describing computable functions 
using a referentially transparent (i.e. compositional) language

● LC has an unambiguous syntax with very few special cases
● The computer of LC doesn’t need soul, intuition, or magic
● LC doesn’t burden us with boring and error-prone technical 

details, such as memory management or instruction sequencing
● LC gives the best of both mathematics and computer science
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Subway Map

● You’re probably very eager to get started already, so let’s get to 
business!
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Before We Start

● Our object language is the language of lambda expressions
– Words in the object language consist of variable and other symbols

● Our meta language (e.g. set/category/topos/type theory, etc.) 
defines rules for working with lambda expressions
– Capital Latin letters (i.e. meta variables), indices, substitution 

notation, and various relational symbols belong to this language

● Don’t get confused with object and meta languages!
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Strings

● Strings are (finite) ordered sequences of symbols, i.e. objects
– For example, “a string” is a string (of the English alphabet)
– Quotation marks separate object and meta languages. They may (and 

usually will) be omitted, when there’s no risk of ambiguity

● We refer to strings by identifying them with meta variables.
– ‘V ≝ “value”’ tells that we denote the string “value” with V; 
– ‘V ≝ W’ declares that V is a shorthand for W; and
– A meta variable is interchangeable with the string it denotes
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String Length and Equality

● The length of a string V, written as |V|, is the number of 
(possibly repeated) symbols in it
– For example, |“”| = 0, |“x”| = 1, |“xx”| = 2, |“string”| = 6

● Strings V and W, are equal, written as V ≡ W, if and only if
|V| = |W| and they contain the same symbols in the same order
– For example, “cat” ≡ “cat”, but “cat” ≢ “tac” and “cat” ≢ “catch”
– String equality is reflexive, symmetric, and transitive
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String Catenation

● V⋆W or VW is a string, called (con)catenation of V and W. It 
contains every symbol of first V, then W.
– E.g. “bat”⋆“man” ≡ “batman”, but “bat”⋆“man” ≢ “man”⋆“bat”

● For every string U, V, and W:
1) “”⋆U ≡ U⋆ “” ≡ U (“” is the neutral element of ⋆)

2) (U⋆V)⋆W ≡ U⋆(V⋆W) (⋆ is associative)

● Catenation also satisfies the equation |U⋆V| = |U|+|V|



34 / 252

Substrings

● V is a substring of W if and only if |V| ≤ |W| and V contains 
the same symbols as W in the same order, until the end of V

● For instance, 
– V and W (and their substrings) are substrings of VW; 
– “tba” is a substring of “cat”⋆“bat”, but not of “cat” or “bat”
– “at” and “cat” are substrings of “cat”; “Cat” is not a substring 

of “cat” (as “C” ≢ “c”)
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Alphabet of Lambda-Calculus

● The objects of study in LC are (non-empty) strings known as 
lambda expressions (λ-exprs, a.k.a. lambda terms). Their 
alphabet contains:
1)  ‘λ’ (lambda)

2)  ‘.’ (dot)

3)  ‘(’ (left parenthesis)

4)  ‘)’ (right parenthesis)

5)  x0, x1, x2, … (variable symbols)
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First Definition: Induction

● Let x be a variable symbol and M, N (meta!) λ-exprs. Then:
1)  x is a lambda expression (called variable);

2)  (λx.M)  is a lambda expression (called abstraction);

3)  (MN)  is a lambda expression (called application); and

4)  nothing else is a lambda expression.

● The definitions above may be applied recursively; e.g. since x is 
a λ-expr, (xx), (λx.(xx)), ((λx.(xx))(xx)), etc. are also λ-exprs
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Second Definition: BNF

● Alternatively, we can use Backus-Naur Form (BNF). Let
<λ-expr>  ::= <λ-var> | <λ-abstr> | <λ-app>
<λ-var>   ::= “(” <λ-symbol> “)”
<λ-abstr> ::= “(λ” <λ-symbol> “.” <λ-expr> “)”
<λ-app>   ::= “(” <λ-expr> <λ-expr> “)”

where <λ-symbol> can be replaced with an appropriate variable 
symbol from the alphabet

● We can construct every (finitary) λ-expr be applying these 
production rules finitely many times
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Third Definition: Deduction Rules

● Yet another way to define 
lambda expressions is to use 
formation rules

● A string of symbols is a λ-
expr iff it can be derived 
using the rules on the right

● Rules are useful, aren’t they?

x : λ-expr
(var)

λx.M : λ-expr

x : λ-expr M : λ-expr
(abs)

MN : λ-expr

M : λ-expr N : λ-expr
(app)
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Fourth Definition: Parse Trees

λx

λx.M

M

yM

MN

M N

Expression Variable ● Subexpressions 
are below the 
bigger expressions

● Colours identify
variables

● Trees can be 
nested

● More on parse 
trees shortly

ApplicationAbstraction



40 / 252

Syntactic Sugar

● It shall be declared that:
1)  Outermost parentheses may be omitted;

2)  abstraction binds as far to the right as possible;

3)  MNO ≝ (MN)O, so application is left-associative;

4)  λx.λy.M ≝ λx.(λy.M), so abstraction is right-associative; and

5)  λxy.M ≝ λx.λy.M (in general, λx0x1x2...xn.M ≝ λx0.λx1.λx2...λxn.M).

● For example, (λx.x)y is different from λx.xy (i.e. λx.(xy))
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Subexpressions

● A subexpression (or subterm) N of a λ-expr M is
1)  a substring of M; such that

2)  N is a λ-expr in its own right; and

3)  M can be formed from N using the syntax rules of LC.

● For example:
– x is a subexpression of itself, (λx.x), and (xy); and
– λw or (λx.z) are not subexpressions of x, (xy), or (z(λx.y)wv).
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A Corner Case

● Consider λxz.xz. One might think that it has λxz.x or λz.x as a 
subexpression...

● But it doesn’t! Let’s unroll the syntactic sugar:
λxz.xz ≡ λx.λz.xz≡ λx.(λz.(xz))

● The subexpressions of λxz.xz are λxz.xz, λz.xz, xz, x, and z
● The lesson: The definition applies to de-sugared expressions
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Did You Get The Syntax?

Are the following strings are λ-exprs? (Why?)
– λx
– (λx.x
– zx(λx.y)
– λxy.z
– (λx.x)(λx.x)
– c
– (c)
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Did You Get The Syntax?

Are the following strings are λ-exprs? (Why?)
– λx   No. The expression after “λx” is missing
– (λx.x  No. The right parenthesis is missing
– zx(λx.y)  Yes.
– λxy.z   Yes. Stands for (λx.λy.z)
– (λx.x)(λx.x)  Yes, it’s (λx.x) applied to itself
– c   Of course! (A variable expression)
– (c)   Yes, it’s the same as c above
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Are These Expressions Identical?

● Are the following pairs of lambda expressions identical?
– (x) and x
– z(λx.y) and (λx.y)z
– x(λx.y)z and (x)((λx.y)z)
– wx(yz) and (wx)(yz)
– λx.(λy.x)z and λx.λy.xz
– λwx.(λy.z) and λwxy.z
– λxy.z and λx.yz
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Are These Expressions Identical?

● Are the following pairs of lambda expressions identical?
– (x) and x Yes. Outer parentheses omitted
– z(λx.y) and (λx.y)z No, there’s no commutativity
– x(λx.y)z and (x)((λx.y)z) No. Application is left-associative
– wx(yz) and (wx)(yz) Yes. Application is left-associative
– λx.(λy.x)z and λx.λy.xz No. (λy.x)z ≢ λy.xz
– λwx.(λy.z) and λwxy.z Yes
– λxy.z and λx.yz No. λxy.z ≡ λx.λy.z ≢ λx.yz
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Tree Analogy

● Lambda expressions can be 
combined into larger 
expressions, using the syntax 
rules given in p. 35

● The structure of a lambda 
expression can be visualized 
with a parse tree (or abstract 
syntax tree) (see p. 39)

λx

λy

λz

λx.λy.λz.(xz)(yz)

x z y z
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Side Note: Proof Trees

λx

λy

λz

λx.λy.λz.(xz)(yz)

x z y z
λx.λy.λz.(xz)(yz)

λy.λz.(xz)(yz)

λz.(xz)(yz)

(xz)(yz)

(xz) (yz)

x z y z
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The Other Calculus

● Here’s another tree analogy, 
representing the process of 
finding the derivative of a 
polynomial function

● Notice how structural it is
● No need to think about 

points or limits

D(3x²-x)

D(3x²) D(-x)

D(5)

3D(x²)

D(x)

2x

-D(x)

0

D(x²)

13 (-1)+⋅ ⋅ +

D(3x²-x+5)



50 / 252

The Syntax of LC Lacks Symmetry

● Remember, that
– (MN)K  ≢ M(NK)
– MN ≢ NM (unless M ≡ N)
– (λx.x)y ≢ λx.(xy)

● Cf. function composition:
– Usually, −(x²) ≠ (−x)² 
– hence, −∘² ≠ ²∘−

λx.(MN)x

λx

M N

x

λx.M(Nx)

λx

N
M

x

≢
● No general associativity, 

commutativity, or 
distributivity in LC!



51 / 252

String Equality is Very Limiting

● Consider parse trees for 
w(λyz.x(yz)) and u(λgx.f(gx))

● They’re essentially the same 
tree, with different labels

● We’ll want to focus on their 
structure instead of concrete 
typography

≡λy

λz

w(λyz.x(yz))

x
y z

w λg

λx

u(λgx.f(gx))

f
g x

u



52 / 252

From Lambdas to Calculus

● So far, we are only familiar with strings and lambda expressions. 
We don’t have the “Calculus” part yet

● The idea in LC is to show that the dynamical behaviour of 
functions can be expressed in terms of a static language

● At this point, the only notion of equivalence between lambda 
expressions we have, is string equality (up to sugaring)

● In order to construct a more useful notion of equality, we’re 
going to need more definitions...
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Subway Map

● Now that we understand the basic structure of λ-exprs, it’s time 
to start building the machinery that we’ll need for meta theory. 
First, we need free/bound variables, renaming, and substitution
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Free, Binding, And Bound Variables

● There are free, binding, and bound variables. Intuitively:
– Bound variables occur as free variables in subexpressions of lambda 

abstractions. For example, x is bound in λx.xx but not in λy.x
– Binding variables are prefixed with lambdas, like x in λx.y
– Free variables are variables not bound, such as x in zxy or (λy.y)x
– The subexpressions of applications are handled recursively

● A variable can be both free and bound, or neither
– For example, x in x(λx.x) is free, binding and bound
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Free and Bound Variables, Formal Definition

● The free variables in a λ-expr, using the language of sets:
1) free(x)  ≝ {x}

2) free(λx.M)  ≝ free(M) \ {x}
3) free(MN)  ≝ free(M) ∪ free(N)

● The bound variables, on the other hand, can be defined as:
1) bound(x)  ≝ {} (i.e. Ø)

2) bound(λx.M) ≝ bound(M) ∪ {x}

3) bound(MN) ≝ bound(M) ∪ bound(N)
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Example on Free Variables

free(λy.(λx.zy)w) = free((λx.zy)w) \ {y}= (free(λx.zy) ∪ free(w)) \ {y}= ((free(zy) \ {x}) ∪ {w}) \ {y}= (((free(z) ∪ free(y)) \ {x}) ∪ {w}) \ {y}= ((({z} ∪ {y}) \ {x}) ∪ {w}) \ {y}= (({z, y} \ {x}) ∪ {w}) \ {y}= ({z, y} ∪ {w}) \ {y}= {z, y, w} \ {y}= {z, w}.
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Real World Examples on Variable Binding

● Consider the following examples:
–  ∃x.(∅∊x)∧(∀y.(y∊x → {y,{y}}∊x))
–  z + (Σk∈ℕ\{0}6k⁻²) = z + π²

–  int f(int i) {return i + c++;}

● Variables x, y, k, and i are bound. They are parameters
● Variables z, π, and c are not bound. Their meaning depends on 

the context in which they are interpreted in
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Free and Bound Variables Quiz

Which variables in the following expressions are 
free/bound/both/neither (in outermost context)?
– λx.x
– λx.xx
– λx.xy
– (λx.y)(λy.x)
– λx.λy.xy
– λx.x(λy.y)
– x(λy.y)yz
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Free and Bound Variables Quiz

Which variables in the following expressions are 
free/bound/both/neither (in outermost context)?
– λx.x  x is bound and not free. Easy, wasn’t it?
– λx.xx  x is bound, not free. (y is neither free nor bound)
– λx.xy  x is bound, not free. y is free and not bound
– (λx.y)(λy.x) Both x and y have free and bound occurences
– λx.λy.xy  Both x and y are bound and not free
– λx.x(λy.y)  Both x and y are bound and not free
– x(λy.y)yz  x and z are only free. y is both free and bound
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Renaming Variables

● Let M be a λ-expr and y be a variable symbol. Then,

1)  x{x≔y} ≝ y

2)  z{x≔y} ≝ z (with z ≢ x)

3)  (λx.N){x≔y} ≝ λx.N

4)  (λz.N){x≔y} ≝ λx.(N{x≔y}) (with z ≢ x)

5)  (NO){x≔y} ≝ (N{x≔y})(O{x≔y})
● For example, (λz.xy(λx.x)(λy.x)z){x≔y} ≡ λz.yy(λx.x)(λy.y)z
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Renaming Flowchart

M≡x

M{x≔y}

return y

true

M≡z

return z

false
M≡λx.N

false

true

return λx.N

true

false

return (N{x≔y})(O{x≔y})

M≡λz.N

return λz.(N{x≔y})

true

false

M≡NO
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Renaming Quiz

● Are the following assertions correct or not?
– (λx.x){x≔y} ≡ λy.y
– (λy.x){x≔y} ≡ λy.y
– (λy.y){x≔y} ≡ λy.y
– (λxy.z){x≔y} ≡ λxy.y
– (λxx.x){x≔y} ≡ λxy.y
– (λxy.x){x≔y} ≡ λxy.y
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Renaming Quiz

● Are the following assertions correct or not?
– (λx.x){x≔y} ≡ λy.y No. x is bound.
– (λy.x){x≔y} ≡ λy.y Yes. x is free.
– (λy.y){x≔y} ≡ λy.y Yes. x does not occur in λy.y.
– (λxy.z){x≔y} ≡ λxy.y No. z is not being renamed.
– (λxx.x){x≔y} ≡ λxy.y No. x is bound by the inner λ.
– (λxy.x){x≔y} ≡ λxy.y No. x is bound by the outer λ.
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Alpha Congruence

● A λ-expr M ≡ λx.N is alpha congruent/convertible with
M' ≡ λy.N{x≔y}, if and only if y does not occur (at all) in N
– The assertion of alpha congruence is denoted with M ≡α M'

– We also consider expressions having congruent subexpressions to be 
congruent, i.e. if M ≡α M', then αMβ ≡α αM'β (α or β may be “”)

● Following the custom in LC, we focus on λ-exprs modulo alpha 
congruence (i.e. as representatives of equivalence classes of ≡α), 
meaning that if M ≡α N, then we usually write just M ≡ N
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Can You Convert These?

● Are the following pairs of expressions alpha congruent?
– λx.x and λy.y
– λx.x and λx.y
– λx.x and λy.x
– λxy.x and λyx.x
– λxy.x and λyx.y
– λxy.xy and λzy.zy
– λxy.xy and λyx.yx
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Can You Convert These?

● Are the following pairs of expressions alpha congruent?
– λx.x and λy.y Yes. λx.x ≡α λy.x[x≔y] ≡α λy.y
– λx.x and λx.y No. Different variable bindings
– λx.x and λy.x No. Different variable bindings
– λxy.x and λyx.x No. λxy.x ≡ λx.λy.x ≢ λy.λx.x ≡ λyx.x
– λxy.x and λyx.y Yes. λxy.x ≡ λzy.z ≡ λzx.z ≡ λy.xy
– λxy.xy and λzy.zy Yes. λxy.xy ≡ λx.λy.xy ≡ λz.λy.zy ≡ λzy.zy
– λxy.xy and λyx.yx Yes. λxy.xy ≡ λxz.xz ≡ λyz.yz ≡ λyx.yx
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Substitution of Expressions

● M[x≔N] denotes “M with all free occurrences of x replaced with 
N, after renaming bound variables of M if necessary”

● The formal definition of substitution is technical. Intuitively:
1) free variables must remain free;

2) bound variables must remain bound;

3) same variables must remain same; and

4) different variables must remain different.
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Perils of Careless Substitution

● Substitution is surprisingly non-trivial business because variable 
capture needs to be avoided

● Variable capture is a violation of the rules on the previous slide
– Note that y captured x on p. 60! That’s why we have the extra 

condition on p. 67 demanding that we always pick fresh variables

● For example, if (λx.y)[x≔y] yielded λy.y, the free variable y 
would become bound. (Thus, it gives λx.y back unchanged)
– Other examples include (λx.y)[y≔x], (λx.yz)[x≔z], and (λx.yz)[y≔z]
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How to Avoid Variable Capture

● Wrong (λx.xyz)[z≔x]:
– Naïve substitution

λx.xyz

x y
z

λx

λx.xyx

x y
x

λx≢ ● Correct (λx.xyz)[z≔x]:
– Rename x; Then substitute

λx.xyz

x y
z

λx

λw.wyx

w y
x

λw≡
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Formal Definition of Substitution

● Formally, we define M[x≔N] by cases on M:
1a) x[x≔N] ≝ N

1b) y[x≔N] ≝ y (if y ≢ x, o/w case 1a applies)

2)  (λx.O)[x≔N] ≝ λx.O (x isn’t free in λx.O)

3a) (λy.O)[x≔N] ≝ λy.O[x≔N] (if x ∉ free(O) or x ∉ free(N))

3b) (λy.O)[x≔N] ≝ λz.(O[y≔z])[x≔N] (with z being fresh)

4)  (OP)[x≔N] ≝ O[x≔N]P[x≔N] (recursive case)
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Substitution Flowchart

M≡y

M[x≔N]

M≡λy.O

return λx.O

y≡x

return (O[x≔N])(P[x≔N])

free(x,O)

y≡x

return N

return y

false

return λz.(O[y≔z])[x≔N]

return λx.O[x≔N]

true

false

true

true

false, M≡OP

true

free(x,N)

true

false

false

false

true
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Substitution Quiz

What is the result of these substitutions? (Why?)
– y[x≔y]
– x[x≔y]
– (xy)[x≔y]
– (λy.x)[x≔y]
– (λy.y)[x≔y]
– (λy.x)[x≔(λz.z)]
– (λy.x)[x≔(λx.x)]
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Substitution Quiz

What is the result of these substitutions? (Why?)
– y[x≔y] y. There’s no x to be replaced
– x[x≔y] y. This is a basic substitution
– (xy)[x≔y] xy. Otherwise, y would capture x
– (λy.x)[x≔y] λz.y. The bound variable was renamed
– (λy.y)[x≔y] λy.y. No x present
– (λy.x)[x≔(λz.z)] λy.λz.z
– (λy.x)[x≔(λx.x)] λy.λx.x. x is not free in λx.x
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Subway Map

● Now that we’ve endured most of the gory technical details, we 
can take the next step towards defining equality of λ-exprs. 
Equality is one of the most interesting questions in LC and TT
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Beta Reducible Expressions

● From now on, were going to be naïve. We will only work with 
expressions for which substitution works easily

● A lambda expression is beta reducible expression (β-redex) if 
(and only if) it’s of the following form:
– (λx.M)N (where x is a variable symbol and M, N are λ-expr)

● A λ-expr is in β-Normal Form (β-NF) if and only if it doesn’t 
contain any β-redexes.
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Beta Reduction

● Let M ≡ (λx.N)O and M' ≡ N[x≔O] be expressions. The rule of 
(beta) reduction says that:
– redex M reduces to reduct M'. This is denoted with M → M'
– We also say that αMβ reduces to αM'β. (α or β can be empty.)

● This means, that the computer has to:
– Take (λx.N)O (A β-reducible expression)
– Give [x≔O]N (Drop “λx.”; Substitute free ‘x’s with Os)
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Reduction Flowchart (Single Step)

M≡x

reduce M

return x

true

M≡(λx.N)O

return N[x≔O]

false
M≡λx.N

false

true

return reduce N

true

false, M≡NO redexes
in N?

return reduce N

return reduce O

true

false
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The Fun Is About to Begin

● Performing a single step of reduction is like performing one 
arithmetic operation, or one step of logical inference.
– Usually, we need many steps to fully reduce long expressions

● Reducing complex expressions comes down to repeatedly 
applying beta reduction until a β-NF is reached

● If M reduces to N in zero or more steps, we write M ↠ N.
– (↠ is the transitive-reflexive closure of →)
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Graph(ical) Example
(λx.λy.x)(λz.z)MN

λx

λy

x

λz

z

abstraction 

variable

leftmost application

λz.z

M

N

λx.λy.x

redex
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Graph(ical) Example
(λx.λy.x)(λz.z)MN

λy

λz

z

M

N

● “λx.” was removed and 
λz.z replaced x.

● In programming jargon, 
the formal parameter x 
was evaluated with the  
actual parameter λz.z.

former variable x
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Graph(ical) Example
(λx.λy.x)(λz.z)MN

λz

z

N

● Next, “λy.” was removed.
● Because y wax not free 

in the subexpression 
λz.z, the applicand M 
was thrown away during 
the reduction process.

● One more step to go.
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Graph(ical) Example
(λx.λy.x)(λz.z)MN

N

● So, (λx.λy.x)(λz.z)MN ↠ N.
● The result didn’t depend on 

M or N in any way, because 
LC is referentially 
transparent.
– Cf. the C language 

example in p. 22–23.
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● Let’s consider M ≝ (λvw.v)xy. It holds that M ↠ x:
● M ≡ (λvw.v)xy≡ ((λv.λw.v)x)y→ ((λw.v)[v≔x])y≡ (λw.x)y→ x[w≔y]≡ x
● Thus, M ↠ x (in two steps).

Formal Example
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Numerical Example

● Intuitively, we know what 
‘+’, ‘−’, ‘⋅’, ‘2’, ‘3’, ‘5’, ‘7’, 
“10”, “35”, “32”, and “42” are.

● We’ll learn how to define 
these things in a way that 
makes even machines able 
operate on them.
– The trick is called recursion.

(λx.λy.2⋅x+x⋅y−3) 5 7→ (λy.2⋅5+5⋅y−3) 7→ (λy.10+5⋅y−3) 7→ 10+5⋅7−3→ 10+35−3→ 10+32→ 42
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More graphs

● The graph to the right shows 
all the possible reducts of one 
particular λ-expr.

● Note that every path ends to 
the same normal form (λv.v).
– This is not a coincidence!
– (It follows from the Church-

Rosser Theorem.)

((λt.λu.λv.(tv)(uv))(λw.λx.w))(λy.λz.y)

(λu.λv.((λw.λx.w)v)(uv))(λy.λz.y)

λv.(((λw.λx.w)v)((λy.λz.y)v))

λv.(((λw.λx.w)v)(λz.v))

λv.((λx.v)(λz.v))

λv.v

(λu.λv.(λx.v)(uv))(λy.λz.y)

(λu.λv.v)(λy.λz.y)

λv.((λx.v)((λy.λz.y)v))
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Algebraic Analogy

(1+2) (3−4)⋅

1 (3−4)+2 (3−4)⋅ ⋅ (1+2) 3−(1+2) 4⋅ ⋅3 (3−4)⋅ (1+2) (−1)⋅

3−4+2 (3−4)⋅ 1 (3−4)+6−8⋅1 (−1)+2 (3−4)⋅ ⋅ 1 (3−4)+2 (−1)⋅ ⋅ 3 (−1)⋅

−3

1 (3−4)−2⋅(3−4)+6−8 1 (−1)+6−8⋅
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Reduction Quiz, Part I

1) The β-NF of (λx.xx)y is...
a)  xx

b)  yy

c)  neither

2) The β-NF of w(λx.xz)y is...
a)  the expression itself

b)  wyz

c)  wzy
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Reduction Quiz, Part I

1) The β-NF of (λx.xx)y is...
a)  xx

b)  yy

c)  neither

By definition,
(λx.xx)y → xx[x≔y] ≡ yy,

so we throw away “λx.” and 
substitute both xs with y.

2) The β-NF of w(λx.xz)y is...
a)  the expression itself

b)  wyz

c)  wzy

w(λx.xz)y ≡ (w(λx.xz))y, so λx.xz 
cannot be applied to y. On the 
other hand, w is just a variable. 
Thus, the expression is in β-NF.
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Reduction Quiz, Part II

3) What is the β-NF of 
(λw.w)(λx.z)(((λx.x)y)(λx.xz)yw)?

a)  (λw.w)z

b)  (λx.z)(((λx.x)y)(λx.xz)yw)

c)  neither

4) The β-NF of v(λx.z) is...
a)  the expression itself

b)  z

c)  neither
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Reduction Quiz, Part II

3) What is the β-NF of 
(λw.w)(λx.z)(((λx.x)y)(λx.xz)yw)?

a)  (λw.w)z

b)  (λx.z)(((λx.x)y)(λx.xz)yw)

c)  neither

The first two functions from the 
left are identity and a constant 
function, so we get z in 2 steps.

4) The β-NF of v(λx.z) is...
a)  the expression itself

b)  z

c)  neither

v(λx.z) is in normal form, so it 
cannot be reduced to anything 
else. N.B. (b) is wrong, because 
the operations don’t commute.
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Reduction Quiz, Part III

5) The β-NF of w(x(λy.wz)) is...
a)  w(x(λx.wz))

b)  w(x(λw.wz))

c)  w(x(λz.wz))

6) The β-NF of (λx.xx)(λx.xx) is...
a)  the expression itself

b)  (λx.xx)

c)  neither
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Reduction Quiz, Part III

5) The β-NF of w(x(λy.wz)) is...
a)  w(x(λx.wz))

b)  w(x(λw.wz))

c)  w(x(λz.wz))

w(x(λy.wz)) ≡α w(x(λx.wz)), so 
we consider them identical. 
There’s no variable capture, 
since x, y are not free in wz.

6) The β-NF of (λx.xx)(λx.xx) is...
a)  the expression itself

b)  (λx.xx)

c)  neither

(λx.xx)(λx.xx) → (λx.xx)(λx.xx). 
Uh, oh! This expression reduces 
itself, so it’s a β-redex that 
cannot be reduced!
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A Quick Recapitulation

● Let’s have a short recap on the (meta) notation:
– V ≝ W defines a meta variable V that refers to W;
– V ≝ “wzq” defines V to be a reference to the string literal “wzq”;
– M[x≔N] the λ-expr obtained from M by substituting x with N;
– M ≡ N asserts that M and N refer to (alpha) congruent λ-exprs;
– M → N asserts that M reduces to N in single step; and
– M ↠ N asserts that M reduces to N in any number of steps.
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Subway Map

● We have seen that β-reduction, though simple on the surface, 
contains some complexity in the underlying machinery. We’ll 
have a look at an arguably simpler alternative notation next
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Alternative notations

● We’ve seen that named free and bound variables lead into some 
uncomfortable technicalities

● There are two alternatives to the ordinary LC notation that 
bypass some of these challenges, namely Combinatory Logic 
(CL) and de Bruijn Indexing
– However, they come with their own limitations
– We’ll discuss de Bruijn Indexing next
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de Bruijn Indexing

● de Bruijn Indexing (dB-exprs) is an alternative syntax to LC
● Let n be a natural number and M, N be dB-exprs. Then,

1)  (n ) is a dB-expr;

2)  (MN) is a dB-expr;

3)  (λM) is a dB-expr; and

4)  nothing else is a dB-expr;
● We’ll apply syntactic sugar, e.g. λλ0 2 ≡ (λ(λ((0)(2))))
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Syntactical Correspondence

● The idea of de Bruijn Indexing is that the natural numbers 
represent bound variables by expressing their distance to the 
binding lambda abstraction, with 0 meaning immediate binding
– E.g. The λ-exprs λx.x, λxy.x, and λxyz.(λw.w)xz(yz) would 

translate into the dB-exprs λ0, λλ1, and λλλ(λ0)2 0(1 0) 
respectively. (2 0 is 2 applied to 0, 20 is number twenty)

● Free variables can be represented with sufficiently large numbers
– E.g. λxy.z(λw.w) translates into λλ2(λ0) (or e.g. λλ7(λ0))
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de Bruijn Indexing Quiz

● Do the following pairs of expressions correspond?
–  λx.x and λ0
–  λy.y and λ0
–  λx.y and λ0
–  λx.y and λ1
–  (λxy.z)(λv.w) and (λλ7)(λ1)
–  λu.(λxy.z)(λv.w) and λ(λλ7)(λ1)
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de Bruijn Indexing Quiz

● Do the following pairs of expressions correspond?
–  λx.x and λ0 Yes.
–  λy.y and λ0 Yes.
–  λx.y and λ0 No, y is free.
–  λx.y and λ1 Yes.
–  (λxy.z)(λv.w) and (λλ7)(λ1) Yes. (z could be also 2.)
–  λu.(λxy.z)(λv.w) and λ(λλ7)(λ1) No, w becomes bound.
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Beta-Reduction With de Bruijn Indexing

● I paraphrase the definition of β-reduction of a dB-redex (λM)N, 
given in https://en.wikipedia.org/wiki/De_Bruijn_index 
(viewed in 2020-01-24):

1) Find the indices n1, n2, ... nk corresponding to the variables 
bound by the abstraction of the beta redex

2) Decrement the indices of the free variables in M by one

3) Substitute each ni, with Ni, where Ni is N with the indices of 
free variables incremented suitably to avoid binding

https://en.wikipedia.org/wiki/De_Bruijn_index
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de Bruijn Indexing in Action

● Consider the example from Wikipedia (see previous slide):
– (λx.λy.zx(λu.ux))(λx.wx); which is
– (λ λ 3 1 (λ 0 2)) (λ 4 0) as a dB-expr

● We decrement the free variable, yielding (λ λ 2 1 (λ 0 2))
● We reduce the expression while increasing the index 4 by the 

number of λs in the new scope of the blue expression, yielding 
(λ 3 (λ 5 0) (λ 0 (λ 6 0))), i.e. (λy.z(λx.wx)(λu.u(λx.wx)))
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Pros and Cons of de Bruijn Indexing

● de Bruijn indexing may be less human-readable than the 
standard notation of LC

● On the other hand, de Bruijn indexing can be used to partition 
standard λ-exprs into α-congruence classes

● de Bruijn indexing can be useful for building interpreters or 
compilers of LC-like languages

● Then again, reducing dB-exprs may not be easier for humans



103 / 252

Subway Map

● We now move back to the classical LC. We’re ready to define 
the equality of λ-exprs, and discuss the consequences

Com
bin

at
or
y 
Lo

gic

Ph
ilo

so
ph

y

St
rin

gs
 an

d 
λ-t

er
ms

Ren
am

ing
 V

ar
iab

les

Red
uc

ing
 λ-

ter
ms

de
 B

ru
ijn

 In
de

xin
g

Eq
ua

lit
y

En
co

din
gs

Und
ec
ida

bil
ity

5 30 10475 9554 125 149 160

Ty
pe

s

176

Fu
rth

er
 T

op
ics

217 247

Con
clu

sio
n



104 / 252

Checkpoint

● We have seen lots of different topics and alternative definitions
● Before moving beyond this point, we need to understand

– λ-expressions;
– α-conversion;
– α-congruence;
– β-reduction; and
– β-normal forms
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Equality of Lambda Expressions

● We’re finally ready to formulate what is perhaps the main 
question in LC: Equality of lambda expressions

● Given any two λ-exprs M and N, if
1)  M ≡ N (actually included in (2) and (3));

2)  M ≡α N; or

3)  M ↠ N or N ↠ M;

then M and N are said to be equal, denoted with M = N.
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Example Equation

● Consider (λxy.y)z and (λx.x)(λw.w)
1) (λxy.y)z → (λy.y), so (λxy.y)z = (λy.y)

2) (λy.y) ≡α (λw.w), so (λy.y) = (λw.w)

3) (λx.x)(λw.w) → (λw.w), so (λw.w) = (λx.x)(λw.w)

4) By transitivity (twice), (λxy.y)z = (λx.x)(λw.w)

● However, (λxy.y) ≠ (λx.x) and z ≠ (λw.w)
● Thus, equal expressions may have non-equal subexpressions
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Equality Quiz

● Are the following pairs of λ-exprs equal?
– λx.x and λxy.xy
– λx.x and λx.xx
– λx.(λx.x)x and λx.(λy.y)x
– λx.λx.xx and λx.λy.yx
– (λx.xx)(λy.y) and λy.y
– λy.(λx.f(gx))(hy) and λy.f((λx.g(hx))y)
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Equality Quiz

● Are the following pairs of λ-exprs equal?
– λx.x and λxy.xy No, not intensionally
– λx.x and λx.xx No
– λx.(λx.x)x and λx.(λy.y)x Yes, α-congruent
– λx.λx.xx and λx.λy.yx No
– (λx.xx)(λy.y) and λy.y Yes, redex↠reduct
– λy.(λx.f(gx))(hy) and λy.f((λx.g(hx))y) Yes, same β-nf
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A Semantical Analogy

● If ƒ is a (possibly constant) function (or program) of x and its 
value can be interpreted as a λ-expr M; then
1)  f(x) is λx.M (“take x as a parameter”); and

2)  f(c) is (λx.M)c (“apply f to c”); so

3)  λx.M is like a program, which transforms x into M; and

4)  if M[x≔c] ↠ N and N is a β-NF, then the program halts and
 produces N as its output

5)  if M[x≔c] has no β-NF, then the program never halts
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Referential Transparency

● A very important feature of LC is compositionality, a.k.a. 
referential transparency in computer science speak
– The meaning of a lambda expression is entirely determined by the 

meanings of its subexpressions
– In LC, the whole is, no more, no less, than the sum of its parts
– M = N, if and only if αMβ = αNβ. This is always true in LC

● Compositionality is taken as granted in mathematics, but only 
the most elite functional programming languages can deliver it
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Confluence of Beta Reduction

● Church-Rosser Theorem is perhaps the central result in LC:
– If M ↠ N and M ↠ N', then there is O s.t. N ↠ O and N' ↠ O

● This means that if a normal form exists, it is unique and 
reachable through (iterated) reduction.
– For example, consider the graphs in p. 85–86
– If the NF is reachable, then the order of reductions is irrelevant to 

the outcome
– Cf. (1+2)⋅(3−4) = 3⋅(3−4) = (1+2)⋅(−1) = 3⋅(−1) = −3
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Confluence as Diagrams

M

N N'

M

N N'

O

N N'

O

⇒ ⋀ =( )
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Side Note: Extensionality

● (λxy.xy) ≠ (λz.z), even though (λxy.xy)MN = MN = (λz.z)MN for 
any M and N

● Equality implies equal behaviour
● The converse of the above claim is called extensionality

– The rule of η-conversion is that λx.Mx =η M when x is not free in M

– Using this rule, we see that λxy.xy ≡ λx.(λy.xy) =η λx.x ≡α λz.z

● We don’t need extensionality in this presentation though
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Side Note: Delta Conversion

● So far, the use of meta variables hasn’t been formally explained
– “X ≝ M” translates to “Δ⊳X ≜ M” where Δ is a context, X is an 

identifier (definiendum) and M is an expression (definiens)
– E.g. ⊳ n² ≔ n⋅n (“In empty context, n² denotes n⋅n”)

● Switching between definiendum and definiens is known as δ-
conversion. It is used in some type systems (e.g. Automath)
– Hence (n⋅n)⋅(n⋅n) is δ-equal (always interchangeable) with (n²)²

● α, β, η, and δ-conversions together form judgemental equality
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Connection Between Computation And Logic

● LC can be seen as a functional programming language
– It can be used for developing and analyzing algorithms
– It can be used as the foundational basis for more practical 

programming languages (e.g. Haskell, Agda, Idris, etc.)

● LC can be also seen as a formal proof system
– The equivalence of computer programs and logical proofs is a deep 

mathematical fact, known as the Curry-Howard Correspondence
– However, “truth” is not a concept in LC (but provability is)
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Evaluation as Deduction

● We’ll define if-then-else soon, but let’s use intuition for now. 
Our example is the famous Aristotelian syllogism

● We know that every man is mortal, so 
– P ≝ (λx.if (Man x) then (Mortal x) else ⊥)

● By assumption, Socrates is a man, i.e. Man Socrates holds
● Thus, P(Socrates) ↠ (Mortal Socrates), so reduction is like 

deduction using the modus ponens rule
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Did That Even Make Sense?

● The key difference between LC and predicate logic is that in LC 
there’s no notion of objective truth
– Instead, LC investigates definability, provability, and solvability

● Also, λ-exprs don’t quite seem like the same kind of functions 
than those encountered in logic or set theory

● Actually, LC does have models that make the connection to set 
theory clear, but they require rather advanced mathematics 
that is beyond our scope. Domain theory studies these models
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The Notion of Consistency in LC

● For the logicians among the audience, here’s the idea of 
consistency in LC:
– Two expressions, M and N are incompatible, denoted with M # N, if 

and only if it is possible to derive an arbitrary equation from M = N
– Equivalently, M # N if M = N implies O = λx.x for any O
– A theory, i.e. an assortment of equations is consistent if and only if it 

doesn’t contain an equation M = N such that M # N
– Such an equation would collapse the universe into a singleton
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Standard Combinators

● Combinator is a λ-expr without free variables. For example:
– I ≝ λx.x (Thus, IM ↠ M)

– K ≝ λxy.x (Thus, KMN ↠ M)

– S ≝ λxyz.xz(yz) (Thus, SMNO ↠ MO(NO))

● Actually, S and K are sufficient for expressing all combinators
– There is even a single combinator X that can express both S and K!

– Likewise, there is a single-instruction Turing-complete computer!
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Using Combinators to Express Others

● SKK ≡ (λxyz.xz(yz))KK→ (λyz.Kz(yz))K→ (λz.Kz(Kz))≡ (λz.(λtu.t)z(Kz))→ (λz.(λu.z)(Kz))→ λz.z≡ I
● Because SKK ↠ I (in 4 steps), it holds that SKK = I. ∎
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Observations On the Proof

● In the previous slide, S was partially applied (i.e. lacked some of 
its defined argument(s)), so we needed to recall its definition

● The instance of K that was reduced, was fully applied, so we 
could treat it as a black box, using the fact KMN ↠ M
– The second instance of (Kz) was discarded completely!

● These kind of situations are common in LC
– This has implications in lazy functional programming
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An Inconsistent Theory

• Suppose that K = S. For an arbitrary λ-expr M we have

KI(KM)I = SI(KM)I ↠ II(KMI) ↠ M, so M = KI(KM)I

• On the other hand, KI(KM)I = I. By transitivity M = I. (We 
could already stop here.)

• The previous steps can be repeated for another arbitrary λ-expr 
M', yielding M' = I. By symmetry and transitivity, M = M'

• Therefore, K # S, so the theory {K = S} is inconsistent ∎
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Side Note: The Notion of Definedness

● A combinator M is solvable if and only if there are expressions 
N0, N1, ..., Nk such that M N0 N1 ... Nk = I

● Unsolvable expressions can be safely identified. The symbol 
bottom, ‘ ’ is sometimes used to represent an unsolvable ⊥
expression, or undefined value. E.g. Ω ≝ (λx.xx)(λx.xx) = ⊥

● Identifying a solvable term with an unsolvable term is 
inconsistent. E.g. the theory {λx.xIΩ = } proves anything!⊥
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Subway Map

● We’ll investigate the (theoretical) computing aspects of LC next
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Programming in LC

● Every computer program can be translated into LC
● LC offers control structures for

1)  composition;

2)  decomposition (or branching); and

3)  recursion.

● All (partial) recursive functions, i.e. effectively computable 
programs can be expressed using these three operations
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Function Composition

● ∘ ≝ S(KS)K ↠ λfgx.f(gx), so ∘MNO ↠ M(NO) for all M, N, O
● λ-exprs are closed under composition, as shown above 
● ∘(∘MN)O = ∘M(∘NO), so composition is associative

– (This statement would be (M∘N)∘O = M∘(N∘O) in infix notation)

● I is the identity element of composition
● (Thus, λ-exprs with the composition operation have the 

algebraic structure of a monoid)
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Truth Values And Branching

● Truth values and branching as programming concepts can be 
expressed in terms of combinators
– T ≝ K ↠ λxy.x (Thus, TMN ↠ M)

– F ≝ KI ↠ λxy.y (Thus, FMN ↠ N)

● We define, that
– if M then N else O ≝ MNO;
– provided M ↠ T or M ↠ F.
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Natural Numbers in LC

● For discussing natural numbers, we need the following λ-exprs:
1)  The λ-expr for representing the natural number zero: Z⁰

2)  For any λ-expr n (natural number), successor of n: S⁺ n

3)  Test for zero function: Zero Z  ⁰ = T and Zero (S  ⁺ n) = F

4)  The predecessor function: P⁻ Z⁰ = Z , ⁰ P⁻ (S  ⁺ n) = n

5)  (There is also the constant zero function KZ⁰ = λx.Z )⁰

– There are at least two encodings for Z , ⁰ Zero, S⁺ and P⁻



129 / 252

Recursive Function Definitions

● Consider factorial: 0! = 1, (n+1)! = (n+1)⋅(n!), ∀n∈ℕ
– This kind of explicitly recursive definition is not possible in LC
– λ-exprs are anonymous, so they cannot refer to their own values

● Fixpoint combinator is a combinator F, s.t. FM = M(FM) for an 
arbitrary λ-expr M. (F makes FM a fixpoint of M)
– Θ is a fixed point combinator

– Fixed point combinators, together with lambda abstraction, introduce 
a backdoor that enables recursion...
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Self-Application

● Consider Ω ≝ (λx.xx)(λx.xx)
– It’s λx.xx applied to itself!
– It’s not in normal form
– Ω reduces to Ω!

● Self-application is not 
possible in Set Theory or 
most programming languages 
(for good reasons)

∞
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A Fixed Point Combinator

● Θ ≝ (λxy.y(xxy))(λxy.y(xxy)) is another funny expression
● I’s called Turing’s Theta Combinator (after Alan Turing)
● For any lambda expression M, it holds that:

ΘM ≡ ((λxy.y(xxy))(λxy.y(xxy)))M≡ ((λx.λy.y(xxy))(λxy.y(xxy)))M→ (λy.y((λxy.y(xxy))(λxy.y(xxy))y))M→ M((λxy.y(xxy))(λxy.y(xxy))M)≡ M(ΘM)
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Let’s See a Replay

● ΘM ≡ ((λxy.y(xxy))(λxy.y(xxy)))M≡ ((λx.λy.y(xxy))(λxy.y(xxy)))M→ (λy.y((λxy.y(xxy))(λxy.y(xxy))y))M→ M((λxy.y(xxy))(λxy.y(xxy))M)≡ M(ΘM)
● Of course, proofs can be refactored. For example, we could 

assign a name for the green part or get Θ back earlier
– Also, the first two pairs of blue parentheses were redundant
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How To Hack The System To Get Recursion

● Let’s say that we want to define function F recursively
– Firstly, let F ≝ ΘE, so F ↠ E(ΘE) ≡ EF

● In order to eventually reach β-NF, some condition P is needed:
– E ≝ λfx.if (Px) then (Gx) else (Hx(fx))
– (n-ary: λfxy1...yn.if (Px) then (Gxy1...yn) else (Hx(fxy1...yn)y1...yn))

– We say that F is defined by (primitive) recursion over G and H

● Thus, F ↠ λx.if (Px) then (Gx) else (Hx(Fx))
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Arithmetics

● Let 0 ≈ Z  and ⁰ n ≈ (S⁺ ∘ S⁺ ∘ S⁺ ∘ ... ∘ S ) ⁺ Z  (with ⁰ n 
repetitions of S ). (We used an infix ‘⁺ ∘’ for readability.)
– 1 ≡ S⁺ Z , ⁰ 2 ≡ S⁺ (S⁺ Z ), ⁰ 3 ≡ S⁺ (S⁺ (S⁺ Z )), etc.⁰

● We can now proceed with:
– + ≝ ΘX;

– X ≝ λfnm.if (Zero m) then n else R; and

– R ≝ (f (S⁺ n) (P⁻ m))



135 / 252

One Plus One Equals Two

+ 1 1 ≡ ΘX 1 1
 ↠ X(ΘX) 1 1≡ (λfnm.if (Zero m) then n else R) + 1 1↠ if (Zero 1) then 1 else (+ (S⁺ 1) (P⁻ 1))↠ F 1 (+ (S⁺ 1) (P⁻ 1))↠ + (S⁺ 1) Z⁰↠ if (Zero Z )⁰  then (S⁺ 1) else (+ (S⁺ 1) Z )⁰↠ S⁺ 1 ≡ 2.        ∎
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Did That Look Complicated?

● Consider the following C-
style programming example:
int fact(int n) 
{
    if (n == 0) {
        return 1;
    } else {
        return n * fact(n-1);
    }
}

● The same idea can be 
expressed elegantly in LC:

fix (λfn.
    if (Zero n)
        then 1 
        else (S ⋅ (∘ f P⁻) n))

with fix ≝ Θ.
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Tuples and Projections

● The idea of truth values has a generalisation: An n-tuple:
– The constructor: (x0,x1,...,xn-1) ≝ λx0x1...xn-1.λz.zx0x1...xn-1

– Projections: pi ≝ λw.w(λx0x1...xn-1.xi), for every i s.t. 0 ≤ i < n

● For instance,
– (M,N,O) ≡ (λx0x1x2.λz.zx0x1x2)MNO ↠ λz.zMNO

– Thus, p1(M,N,O) ≡ (λw.w(λx0x1x2.x1))(λz.zMNO) ↠ N

● This construction is called the Scott encoding
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Multivariate Composition

● Function composition can be generalised for n-ary functions
● If f : Yⁿ→Z, and g1, g2, ... , gn : Xᵐ→Y, then 

h(x1, ... xm) ≝ f(g1(x1, ...  xm), g2(x1, ... xm), ..., gn(x1, ... xm))

is the composed function Xᵐ→Z
● For λ-exprs F, G1, G2, ... , Gn, we can define the composition as

λx1 ... xm . F (G1x1...xm) (G2x1...xm) ... (G1x1...xm)
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Unbounded Minimization

● For representing all effectively computable (μ-recursive, Turing 
complete, or whatever) functions, we need one more construct 

● The unbounded minimization operator μ, when applied to a λ-
expr M, returns the least natural number n such that Pn = T (if 
it exists, otherwise μ has no β-NF, i.e. evaluation goes forever)

● In other words, μ ≝ λp.ΘEZ , with ⁰
E ≝ λfx.if (px) then x else (f(S⁺x))
– Thus, μP ↠ if (PZ ) ⁰ then Z  ⁰ else (Θ(E[p≔P])(S⁺Z ))⁰
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Let’s Pause for a Minute

● We showed that LC can express the following technicalities:
1) The initial functions: KZ , projections⁰ , and S ;⁺

2) closure under (multivariate) composition;

3) closure under primitive recursion; and

4) closure under unbounded minimalization (the μ-operator)

● Thus, LC satisfies the axioms of μ-Recursive Functions
– Put differently, LC is Turing-complete
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Side Note: Currying

● Another powerful technique is called currying, (misattributed) 
after Haskell Curry, a pioneer in Combinatory Logic and LC

● Currying is the transformation of a f : (X × Y) → Z (in a Closed 
Monoidal Category) to a f' : X → (Y → Z)
– If f(x,y) ≡ ϕ(x,y), then f'(x) ≝ (y ↦ ϕ(x,y)) (x is constant in RHS)
– Thus, f(a,b) ≡ f'(a)(b) (i.e. ϕ(a,b)). Remember pseudocode on p. 24?

● We have been currying our functions all along... Currying also 
works also for multivariate (n-ary) functions, by the way
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Side Note: Evaluation Strategies

● Consider what happens when reducing KIΩ
– If we start from K, we obtain I, which is in normal form

– If we start from Ω, we get Ω back, which is not in normal form

● An algorithm for choosing the redex to reduce, step by step, 
until a NF is reached, is called an evaluation strategy. E.g.:
– “Always choose the leftmost redex” is guaranteed to always find the β-

NF, if it exists (called lazy evaluation strategy in programming)
– “Reduce arguments before functions” fails to reach NF with KIΩ



143 / 252

Side Note: Subroutines

● You may think that heavy 
use of functions is inefficient

● Subroutines need a call stack
● The stack contains frames:

● Consider the invocation

1: fact(3) (see p. 136)

● It results in four calls:

a2 ...v1addr a1 ... an v2 vn rvsz

arguments local variables

return address

size

return value

1 3 02

1 2 02

1 1 02

1 0 02
1

1

2

6fact(3)

fact(2)
fact(1)

fact(0)

This column gets overwritten
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Side Note: Tail Recursion

● Pure functions don’t need to be 
represented as subroutines

● This (pure) Haskell function 
uses a helper function fact' 
with an accumulator k: 
fact n =
  let fact' 0 k = k
      fact' n k = fact' (n-1)
                        (n*k)
  in  fact' n 1 

fact 3 → fact' 3 1↠ fact' 2 3↠ fact' 1 6↠ fact' 0 6↠ 6
● The function is tail recursive. 

It compiles into a loop!
● Pure functions are just 

rewrite rules
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Side Note: List Fusion

● In Haskell, we write ∘ as ‘.’:
(f . g) x = g (f x)

● Consider the function map:
map f []     = []
map f (x:xs) = f x : map f xs

● It has the following property:
map f . map g = map (f . g)

● Since f and g are pure, 
properties like this exist

● Two list traversals:
(map (+1) . map (*2)) [0,1,2]↠ map (+1) (map (*2) [0,1,2])↠ map (+1) [0,2,4]↠ [1,3,5]

● They can be turned into one:
map ((+1) . (*2)) [0,1,2]↠ [0*2+1, 1*2+1, 2*2+1]↠ [1, 3, 5]
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Side Note: Encoding Natural Numbers

● In Church encoding, numerals (see p. 128) can be defined as
n ≝ λfx.f ⁿx,

where f ⁰x ≝ x, f ⁿ ¹⁺ x ≝ f(f ⁿx)
● Thus, n means “apply f n times on x”. Define

– Z  ⁰ ≝ λfx.x (i.e. 0)

– S  ⁺ ≝ λnfx.f(nfx) (i.e. λnfx.f ⁿ ¹⁺ x)
● It can be verified that S⁺n = n+1 = (S )⁺ ⁿ  
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Side Note: Arithmetic in Church Encoding

● The structure of Church natural numbers can be exploited to 
define basic arithmetic operations without recursion
– n+m ≝ λfx.nf(mfx) (i.e. λfx.f ⁿ(fᵐx) = λfx.f ᵐ⁺ⁿx)
– n⋅m ≝ λfx.n(mf)x (i.e. λfx.(λy.f ᵐy)ⁿx =η λfx.f ᵐⁿx)
– nᵐ ≝ mn (i.e. m times multiplication with n)

● Actually, the recursion is there, but it’s built in the structure of 
the numerals, in meta language
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Subway Map

● Now that we know what can be done with LC, it’s time to have 
a look at what can’t be done
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The Limits of Lambda-Calculus

● Using the techniques presented so far, it is possible to define 
each and every (μ-)recursive function in LC

● Now that we’ve seen what can be done in LC, it’s time to ask: 
what can’t be done in LC?

● It turns out to be impossible to predict whether or not an 
arbitrary λ-expr has a normal form

● We’re going to prove this using combinators
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(Semi)Decidability

● Does a λ-expr have a β-nf?
– If so, what is it?

● Do two functions have equal 
graphs?

● Do we know when two real 
numbers are equal?

● We’ll need more machinery!

● Does a Turing Machine halt 
and accept/reject an input?

s0 s1

s3

( , ,→)⊳ ⊳
(0,0,→)
(1,1,→)

(⌷,⌷,←) ( , ,→)⊳ ⊳

(⌷,1,→)

s2

(0,⌷,←)
(1,⌷,←)
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A Little Bit More Machinery

● Let’s define two more standard combinators
– B ≝ K(SK)K, or equivalently B ≝ λxyz.x(yz)
– It follows that BMNO ↠ M(NO)

– C ≝ S(S(KS)(S(KK)S))(KK), or equivalently C ≝ λxyz.xzy
– It follows that CMNO ↠ MON
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Why These Are the Standard Combinators?

Combinator

•  Ix = x

•  Kx = λy.x

•  Sfg = λx.fx(gx)

•  Bfg = λx.f(gx)

•  Cfgh = fhg

Explanation

The identity function

Constant function

Distributes x to f and g

Function composition

Inverts if-then-else



153 / 252

Combinator Cheatsheet
Symbol Definition Redex* Reduct*

I λx.x IM M

K λxy.x KMN MN

T λxy.x TMN M

F λxy.y FMN N

S λxyz.xz(yz) SMNO MO(NO)

B λxyz.x(yz) BMNO M(NO)

C λxyz.xzy CMNO MON

Θ (λxy.y(xxy))(λxy.y(xxy)) ΘM M(ΘM)

Ω (λx.xx)(λx.xx) Ω Ω

* = When fully applied



154 / 252

Getting Ready For The Big Surprise

● We’re about to reach the famous Halting Problem
– The formulation in this presentation is taken from

https://en.wikipedia.org/wiki/Combinatory_logic#Undecidability_of
_combinatorial_calculus
(viewed in 2020-02-08)

– The problem is to decide whether an arbitrary λ-expr has a β-nf

● Let’s assume that there is such a λ-expr N that for any F:
– NF ↠ T, if F has a normal form; and NF ↠ F otherwise

● Let Z ≝ C(C(BN(SII))Ω)I

https://en.wikipedia.org/wiki/Combinatory_logic#Undecidability_of_combinatorial_calculus
https://en.wikipedia.org/wiki/Combinatory_logic#Undecidability_of_combinatorial_calculus
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The Halting Problem

● ZZ ≡ (C(C(BN(SII))Ω)I)Z↠ C(BN(SII))ΩZI↠ BN(SII)ZΩI↠ N((SII)Z)ΩI↠ N(IZ(IZ))ΩI↠ N(ZZ)ΩI
● ZZ asks N whether ZZ itself has a normal form or not

– A rather strange loop, isn’t it?
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The Halting Problem, Continued

● If N(ZZ) ↠ T, then ZZ = N(ZZ)ΩI ↠ TΩI ↠ Ω, which does 
not have a normal form
– This contradicts the decision N made. N didn’t see that coming!

● If N(ZZ) ↠ F, then ZZ = N(ZZ)ΩI ↠ FΩI ↠ I, which does 
have a normal form
– Again, N made a mistake

● Therefore, we must conclude that N cannot exist ∎
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So What?
● It’s important to understand both the potential and limitations of 

the system one’s working with
● Undecidability of certain questions, e.g. existence of a β-NF for an 

arbitrary λ-expr, termination of μ-recursive functions, or the Rice’s 
Theorem (saying that we can’t decide anything non-trivial for an 
arbitrary μ-recursive function) doesn’t mean that we should give up!

● We just need to ask the right questions (e.g. type checking, model 
checking, static/dynamic analysis, etc.) to make things decidable
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Summary on LC

● The fundamental concept of LC is lambda expressions
– Lambda expressions behave like anonymous functions

● Every λ-expr can be constructed using three rules
● Reducing lambda expressions is like performing arithmetics
● LC is the functional analogue to assembly language

– It provides only the minimal set of building blocks
– Recursion emerges in LC through self-application
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Subway Map

● Now that the beef of pure untyped LC has been chewed, we can 
discuss topics that are built on top of this foundation
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More About Combinators

● Abstraction is not necessary if we axiomatize the reducts for 
fully applied combinators (see the table on p. 153)

● Combinators can simulate other λ-exprs
– (We know the converse already)

● If we restrict the rules to only allow the use of combinators and 
free variables, we don’t need substitution at all
– Such restriction is called Combinatory Logic (CL)
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Removing Lambda Abstractions

1) [x]  ≝ x;

2) [λx.x] ≝ I;

3) [λx.M] ≝ (K[M]), if x is not free in M;

4) [λx.λy.M] ≝ [λx.[λy.M]], if x is free in M;

5) [λx.MN] ≝ (C [λx.M] [N]), if x is free only in M;

6) [λx.MN] ≝ (B [M] [λx.N]), if x is free only in N;

7) [λx.MN] ≝ (S [λx.M] [λx.N]), if x is free in M and N;

8) [MN] ≝ ([M] [N])
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Example Abstraction Elimination

[(λx.λz.zcy)d] = ([(λx.λz.zcy)][d]) (8)= ([λx.λz.zcy])d (1)= (K[λz.zcy])d (3)= (K(C[λz.zc][y]))d (5)= (K(C(C[λz.z][c])[y]))d (5)= (K(C(CI[c])[y]))d (2)= (K(C(CIc)[y]))d (1)= K(C(CIc)y)d (1)
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The Last Trees
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Formalising Combinatory Logic

● We’ve seen combinators in LC. Now we define CL independently
● The alphabet of CL contains parentheses, variable symbols (x0, 

x1, x2, ...), and constants K and S (remember p. 119?)
● CL-terms are defined inductively as follows:

1)  K, S, and x (for any variable symbol x) are CL-terms

2)  If X and Y are CL-terms, then so is (XY) (with XYZ ≝ (XY)Z)

3)  Nothing else is a CL-term
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The Equational Theory CLw

● CLw formalises CL with the 
following axiom schemes:

(K) KXY = X
(S) SXYZ = XZ(YZ)
(ρ) X = X

● These are templates for 
equations that are assumed 
to hold a priori

● Four rules of inference:

(σ) X = Y implies Y = X
(τ) X = Y and Y = Z implies 

Y = Z
(μ) X = Y implies ZX = ZY
(ν) X = Y implies XZ = YZ

● These rules work for any CL 
expressions X, Y, and Z
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Provability

● An equation X = Y in an equational theory T (e.g. CLw) is 
provable if and only if it can be derived using axioms and 
inference rules. We denote this with T ⊢ X = Y

● For example, CLw ⊢ SKSx = x:

1)  SKSx = Kx(Sx) (S)

2)  Kx(Sx) = x (K)

3)  SKSx = x (τ, 1, 2)
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Sidenote: Simulating β-Equality

● β-equality can be simulated with the following five axioms:
1)  K = S(S(KS)(S(KK)K))(K(SKK))

2)  S = S(S(KS)(S(K(S(KS)))(S(K(S(KK)))S)))(K(K(SKK)))

3)  S(KK) = S(S(KS)(S(KK)(SKK)))(K(SKK)))

4)  S(KS)(S(KK)) = S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK)))

5)  S((K(S(KS)))(S(KS))) = 
S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS)
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Sidenote: Simulating η-Equality

● (β)η-equality can be simulated with the following five axioms:

 3) S(KK) = S(S(KS)(S(KK)(SKK)))(K(SKK)))

 4) S(KS)(S(KK)) = S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK)))

 5) S((K(S(KS)))(S(KS))) = 

S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS)

 6) SKK = S(S(KS)K)(K(SKK))
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Applicative Structures

● A set D with at least two distinct elements and a binary 
operator  : ⦁ D² → D form an applicative structure (D,⦁) if
– D is closed under ⦁, i.e. for any elements x and y of D, x⦁y is 

an element of D
–  ⦁ associates to left, i.e. for all elements x, y, and z of D, 

(x⦁y)⦁z = x (⦁ y⦁z)
● An assignment f maps variables to elements of D
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Combinatory Algebras

● Combinatory algebra is an 
applicative structure with 
two distinct elements, k and 
s, such that
1)  k⦁x⦁y = x

2)  s⦁x⦁y⦁z = x⦁z (⦁ y⦁z)
● Looks familiar, doesn’t it?

● The interpretation of an CL 
expression M is defined 
inductively as
1) ⟦x⟧f ≝ f(x)

2) ⟦K⟧f ≝ k

3) ⟦S⟧f ≝ s; 

4) ⟦XY⟧f ≝ ⟦X⟧f⦁⟦Y⟧f
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Term Models

● Let [X] ≝ {Y | CLw ⊢ X = Y}. In other words, [X] is the 
equivalence class of X w.r.t. provability in CLw

● The term model of CLw is a combinatory algebra:
– D = {[X] | X is a CL-term}
– [X] [⦁ Y] = [XY]
– k = [K]

– s = [S]
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Semantical Example

● Consider SKx. Let f(x) ≝ [K]. Thus,
– ⟦SKx⟧f = ⟦SK⟧f⦁⟦x⟧f= (⟦S⟧f⦁⟦K⟧f)⦁⟦x⟧f= (s⦁k)⦁f(x)= ([S] [⦁ K]) [⦁ K]= ([SK]) [⦁ K]= [SKK]

● This model is rather boring, isn’t it?



173 / 252

Satisfaction

● A model M (e.g. a combinatory algebra) with assignment f 
satisfies the equation X = Y if and only if ⟦X⟧f = ⟦Y⟧f in M, 
denoted M, f ⊨ X = Y. We omit f if the equation holds for all f

● We saw that the term model TM satisfied SKx = SKK with 
the assignment f(x) ≝ [K]. Hence, TM, f ⊨ SKx = SKK

● If M, f ⊨ S = K, then the model breaks down as all its elements 
become equal. Soundness is built in the concept of a model
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Combinatory Completeness

● A combination of variables x1, x2, ..., xn is any combinatory term 
made of these variables, not containing K or S
– E.g. x1(x2x1)x4 is a combination of x1, x2, x3, and x4

● An applicative structure D is combinatory complete iff for any 
combination X of x1, x2, ..., xn, there are elements a, d1, d2, ..., dn 
in D s.t. a⦁d1⦁d2⦁...⦁dn = ⟦X⟧f[x1≔d1][x2≔d2]...[xn≔dn]

● An applicative structory is combinatory complete iff it’s a 
combinatory algebra
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Subway Map

● We’ll see later why combinatory algebras are a meaningful 
concept, and that there are non-trivial models of LC. But let’s 
switch to type theory
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Type Theory

● In untyped formal systems, self-application, self-reference, 
unbounded recursion, or undefined values often cause 
contradictions, paradoxes, infinite loops, crashes, or exploits

● Type theory (TT) is a foundational field of math and computer 
science that specialises in preventing these problems by finding 
necessary and sufficient restrictions to the object language
– TT has origins in set theory, though these days it mostly uses LC

● Type theory adds new primitives to LC (e.g. tuples)
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Why Types Matter in Programming?

● Non-sensible typing decisions in programming, such as 
representing strings as pointers to byte arrays, has often led into 
catastrophical failures and security vulnerabilities

● Debugging a program can be much harder than ensuring its type 
safety statically during compilation

● At its best, a type system can guide architectural and design 
choices and communication, and help finding canonical solutions

● Pre and postconditions can be often expressed as types
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Type Theory in Programming

● Type theory is often used (unwittingly) by programmers that 
use statically typed programming languages

● In statically typed programming languages, such as Haskell, 
Java, or C/C++, a type system is used as a partial formal 
verification tool for program code
– In these languages, untyped variable and function definitions 

are augmented with type signatures
– In modern languages, the compiler can infer most signatures
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Examples of Type Signatures

● Statically typed programming languages usually provide 
primitive types such as bool, byte, int, float, double, etc.
– In Java or C, int x = 0; defines an integer variable, whereas the 

Haskell syntax for it would be x = 0 (and optionally x :: Int)

● Many languages feature complex, often polymorphic and/or 
generic, types such as function, list, or record types
– A list in C++ would be initiated with list<int> xs{1,2,3}, whereas 

the Haskell syntax is xs = [1,2,3] (which permits xs :: [Int])
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Algebraic Datatypes

● Scott encoding generalises into Algebraic Data Types (ADTs)
● In Haskell, the following ADTs can be defined:

– data Bool       = True   | False, 
– data Either a b = Left a | Right b

– data List a     = Nil    | Cons a (List a)

● In a data equation, the left hand side defines a type 
constructor, and the right hand side provides (value) 
constructors. Note the similarity to the BNF notation (p. 37)
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Pattern Matching

● In Haskell, functions can be defined in parts in three ways
● Consider a case-expression:

– f e = case e of Left x -> g x; Right y -> h y

● Pattern maching allows deconstructing a value e of type Either 
and handling the different possibilities as separate cases

● We may conclude that
– g :: a -> c; h :: b -> c; f :: Either a b -> c
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Type Theory in Mathematics

● Type theory is also used by mathematicians to prove theorems 
using computer programs known as interactive proof assistants. 

● There are two main schools:
– Logic for Computable Functions (LCF): Types ensure well-

formedness of formulae, rules are implemented as functions
– Propositions as Types / Proofs as Terms (PAT): Types 

encode propositions, for which values provide witnesses
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● Type theory is also used by mathematicians to prove theorems 
using computer programs known as interactive proof assistants. 

● There are two main schools:
– Logic for Computable Functions (LCF): Types ensure well-

formedness of formulae, rules are implemented as functions
– Propositions as Types / Proofs as Terms (PAT): Types 

encode propositions, for which values provide witnesses
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Judgements and Deductions

● The basic notion in type theory is that of a typing judgement:
– Γ  ⊦ M : A means “assuming Γ, the value M has type A”
– Γ is a list (or ordered sequence) of hypotheses xi : Ai

– E.g. []  0 : ⊦ ℕ, []  1⊦ +1 : ℕ, [n : ℕ]  ⊦ n + 1 : ℕ
● Deductions in type theory chain judgements together:

premise

conclusion

[n : ℕ]  ⊦ n + 1 : ℕ
[n : ℕ]  ⊦ S (⁺ n + 1) : ℕ, e.g.
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Implication

Γ, x : A  ⊦ x : A

Γ  ⊦ λx.M : A⇒B

Γ, x : A  ⊦ M : B

Γ  ⊦ MN : B

Γ  ⊦ M : A⇒B Γ  ⊦ N : A

● Recall the formation rules in 
slide 38 
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Implication

Γ, x : A  ⊦ x : A

Γ  ⊦ λx.M : A⇒B

Γ, x : A  ⊦ M : B

Γ  ⊦ MN : B

Γ  ⊦ M : A⇒B Γ  ⊦ N : A

● (Intuitionistic) Implication is 
basically the same as logical 
consequence
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Implication

Γ, x : A  ⊦ x : A

Γ  ⊦ λx.M : A⇒B

Γ, x : A  ⊦ M : B

Γ  ⊦ MN : B

Γ  ⊦ M : A⇒B Γ  ⊦ N : A

● Recall the formation rules in 
slide 38

● (Intuitionistic) Implication is 
basically the same as logical 
consequence

● In intuitionistic logic, a proof 
of implication is a function of 
proofs of A to proofs of B



188 / 252

Conjunction

Γ  ⊦ 〈M,N〉 : A∧B

Γ  ⊦ M : A Γ  ⊦ N : B

Γ  ⊦ π0M : A

Γ  ⊦ M : A∧B
Γ ⊦ π1M : B

Γ  ⊦ M : A∧B

● Pair (or generally tuple) 
types correspond with 
conjunctions of logical 
propositions

● Cf. Scott encoding, p. 137
● Proofs of conjunctions are 

pairs of proofs of the 
conjuncts
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Disjunction

Γ  ⊦ [N,O] : A∨B⇒C

Γ  ⊦ N : A⇒C Γ  ⊦ O : B⇒C

Γ  ⊦ ι0M : A∨B

Γ  ⊦ M : A

Γ  ⊦ ι1M : A∨B

Γ  ⊦ M : B

● Disjunction is based on the 
concept of disjoint union

● Elements of type A or B can 
be injected into A∨B

● [N,O](ι0 M) → NM; and [N,O](ι1 M') → OM'

● This is pattern matching
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Example Deduction

● Let Γ ≝ p:A∧(B∨C), Γ' ≝ Γ,b:B, Γ'' ≝ Γ,c:C. Thus,

 ⊦ λp.[λb.ι0〈π0p, b〉, λc.ι1〈π0p, c〉](π1p) : A∧(B∨C)⇒(A∧B)∨(A∧C)

Γ  ⊦ [λb.ι0〈π0p, b〉, λc.ι1〈π0p, c〉](π1p) : (A∧B)∨(A∧C)

Γ⊦π1p:B∨C

Γ⊦p:A∧(B∨C)
Γ⊦[λb.ι0〈π0p,b〉,λc.ι1〈π0p,c〉]:(B∨C)⇒(A∧B)∨(A∧C)

Γ⊦λc.ι1〈π0p,c〉:C⇒(A∧B)∨(A∧C)

Γ''⊦ι1〈π0p,c〉:(A∧B)∨(A∧C)

Γ''⊦〈π0p,c〉:(A∧C)

Γ''⊦π0p:A

Γ''⊦p:A∧(B∨C)
Γ''⊦c:C

Γ⊦λb.ι0〈π0p,b〉:B⇒(A∧B)∨(A∧C)

Γ'⊦ι0〈π0p,b〉:(A∧B)∨(A∧C)

Γ'⊦〈π0p,b〉:(A∧B)

Γ'⊦π0p:A

Γ'⊦p:A∧(B∨C)
Γ'⊦b:B
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Products and Sums

● Conjunction and disjunction are also known as product and sum 
(or coproduct) types, respectively

● They’re dual to each other in the following sense:
– products: one rule for introduction, two for elimination
– coproducts: two rules for introduction, one for elimination

● However, they can’t be defined in terms of each other, because 
not all of de Morgan’s laws are intuitionistically valid
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Unit and Void Types

● Two special types, the unit 
type and the void type, are 
needed for logical and 
algebraic uses of type theory

● The unit type has only one 
constructor, ∗ : ⊤

● The void type doesn’t have 
any constructors!

Γ  ⊦ M : ¬A

Γ  ⊦ M : A⇒⊥
Γ  ⊦ M∗ : A

Γ  ⊦ M : ⊤⇒A

Γ  ⊦ λ() : ⊥⇒A

Γ  ⊦ ∗ : ⊤ ( )
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Products are Commutative

● Consider f ≝ λp.〈π1 p, π0 p〉
– f ∘f = λx.f(fx)= λx.〈π1 (fx), π0 (fx)〉= λx.〈π1 〈π1 x, π0 x〉, π0 〈π1 x, π0 x〉〉= λx.〈π0 x, π1 x〉

● f : A∧B⇒B∧A for any types A and B! f has infinitely many types
● f : B∧A⇒A∧B is the inverse of f : A∧B⇒B∧A!
● f is a polymorphic (or natural) isomorphism A∧B ≃ B∧A. ∎
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Unit is the Neutral Element of Product

● Let A be a type. Hence, π0 : ⊤∧A⇒A and λx.〈∗,x〉 : A⇒⊤∧A.
– π0 ∘ λx.〈∗,x〉 = λy.π0((λx.〈∗,x〉)y) = λy.π0〈∗,y〉 = λy.y (i.e. identity A⇒A)

– λx.〈∗,x〉 ∘ π0 = λy.(λx.〈∗,x〉)(π0 y)= λy.〈∗,π0 y〉 (identity ⊤∧A⇒⊤∧A)

● We see that π0 and λx.〈∗,x〉 are inverses. Therefore, A≃⊤∧A. ∎
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Products Are Associative up to Isomorphism

● Let f ≝ λp.〈π0 (π0 p), 〈π1 (π0 p), π1 p〉〉
– f 〈〈M, N〉, O〉 = 〈 π0 (π0 〈〈M, N〉, O〉), 〈 π1 (π0 〈〈M, N〉, O〉) 

      , π1 〈〈M, N〉, O〉       〉 〉
  = 〈π0 〈M, N〉, 〈π1 〈M, N〉, O〉〉
  = 〈M, 〈N, O〉〉

● Thus, f maps any type (A ∧ B) ∧ C to A ∧ (B ∧ C)
● It is to straightforward to show that f has an inverse. Therefore, 

(A ∧ B) ∧ C ≃ A ∧ (B ∧ C) for any types A, B, and C. ∎
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Types Form a Commutative Semiring

● The product of any two types is a type. Products have the 
following properties (i.e. they form a commutative monoid up to 
isomorphism):
– There is a neutral element;
– product is associative; and
– product is commutative

● The same also holds sum types. (Proof is as an exercise)
● Therefore, Types form a commutative semiring (cf. ℕ). ∎
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Law of the Excluded Middle

● Suppose that p : ¬(A∨¬A), i.e. p : (A∨¬A)⇒⊥
– For any x : A, ι0 x : A∨¬A, so p(ι0 x) : ⊥, i.e. ι0 x contradicts p

– λx.p(ι0 x) : A⇒⊥, i.e. λx.p(ι0 x) : ¬A

– ι0 (λx.p(ι0 x)) : (A∨¬A)

– p (ι0 (λx.p(ι0 x))) : ((A∨¬A)⇒⊥)

● Therefore, λp.p (ι0 (λx.p(ι0 x))) : ((A∨¬A)⇒⊥)⇒⊥,  so the type ¬¬(A∨¬A) is inhabited, meaning that LEM is irrefutable. ∎
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Dependent Type Theory

● We now move on to a more advanced form of type theory, 
known as Martin-Löf Type Theory (MLTT), originally devised 
by Per Martin-Löf in 1970’ies
– It is also called intuitionistic type theory or dependent type theory

● The PAT interpretation extends to predicate logic:
– For any type A and value x:A a proposition C(x) is a type whose 

values are proofs (or witnesses) demonstrating that x satisfies C
– Try not to get confused with the levels (types vs. values)!
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The Type of Natural Numbers

● The type of natural numbers 
is an inductive type

● For using the elimination 
rule, we need a type C that 
depends on a natural number

Γ  ⊦ 0 : ℕ
Γ  ⊦ S⁺M : ℕΓ  ⊦ M : ℕ

 Γ  ⊦ p0:C(0) Γ, n:ℕ, pn:C(n)  ⊦ pS⁺:C(S⁺n) Γ  ⊦ M:ℕ
 Γ  ⊦ indℕ(C,p0,pS⁺,M) : C(M)
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Pi Types

Γ  ⊦ λx.M : Πx:A.B(x)
Γ, x : A  ⊦ M : B(x)

Γ  ⊦ MN : B[x≔A]

Γ  ⊦ M : Πx:A.B(x) Γ  ⊦ N : A

● Basic function types can be 
generalised into dependent 
product types

● Using dependent products, 
universal quantification can 
be expressed as∀x.P(x) ≝ Πx.P(x)
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Sigma Types

● Somewhat confusingly, basic 
products can be generalised 
into dependent sum types
– (These are also sometimes 

called dependent products!)

● Existential quantification can 
be expressed as∃x.P(x) ≝ Σx.P(x)

Γ  ⊦ 〈x,M〉 : Σx:A.B(x)

Γ, x : A  ⊦ M : B(x)

Γ  ⊦ π0M : A

Γ  ⊦ M : Σx:A.B(x)

Γ  ⊦ π1M : B(π0M)

Γ  ⊦ M : Σx:A.B(x)
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(Intuitionistic) Axiom of Choice

● As an example, consider the type 
(Πx:A.Σy:B.R(x,y)) ⇒ (Σf:A⇒B.Πx:A.R(x,fx))

● This type has a value:
– Let g : Πx:A.Σy:B.R(x,y), so ga : Σy:B.R(x,y) for any a : A
– π0(ga) : B for any a : A, so λa.π0(ga) : A ⇒ B

– π1(ga) : R(a,π0(ga)) for all a : A, so λa.π1(ga) : Πx:A.R(x,π0(gx))

– 〈λa.π0(ga), λa.π1(ga)〉 : Σf:A⇒B.Πx:A.R(x,fx) ∎
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Propositional Equality

● So far, we’ve only discussed judgemental equality
● There are two equivalent notions of propositional equality used 

in type theories:
– Leibniz equality (identity of indiscernibles, ∀xy:A.(∀P.Px⇒Py)⇒x≐y)
– Martin-Löf equality (shown on the next slide)
– Given x,y of type A, the proposition of equality of x and y is a type

● Propositional equality is what mathematicians usually want
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Identity Types

● The basic proof of equality says that x is equal to itself:

● For using the elimination rule below, we need a type C that 
depends on two values of type A and their identity proof:

Γ, x : A   ⊦ refl : IdA(x,x)

 Γ, x:A  ⊦ P:C(x,x,refl x) Γ  ⊦ M:A, N:A Γ  ⊦ Q:IdA(M,N)

 Γ,a:A,b:A  ⊦ J(P,M,N,Q) : C(M,N,Q)



205 / 252

Interpreting Identity Types

● There are at least two ways to think about identity types
1) Two values are equal if and only if they’re interchangeable in all 

circumstances (Leibniz equality)

2) We can think of types as spaces, values as points, and equalities as 
contractible paths between points. We could even have paths between 
paths, paths between paths between paths, etc.!
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Sidenote: Fitch-Style Notation

● Consider the following proof. 
Let Γ ≝ f:A∧B⇒C, x:A, y:B

● The same proof in flag style 
(with trivial steps omitted):

f : A∧B⇒C  ⊦ λxy.f〈x,y〉 : A⇒B⇒C

f : A∧B⇒C, x:A  ⊦ λy.f〈x,y〉 : B⇒C

Γ  ⊦ f〈x,y〉 : C

Γ  ⊦ f : A∧B⇒C Γ  ⊦ 〈x,y〉 : A∧B

Γ⊦x:A Γ⊦y:B

λxy.f〈x,y〉 : A⇒B⇒C

λy.f〈x,y〉 : B⇒C

f〈x,y〉 : C

x : A

y : B

f : A∧B⇒C

〈x,y〉 : A∧B
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Side Note: Kinds, Sorts, Rules

● This presentation on type theory hasn’t been fully formal
– Every type A has kind *, denoted A : *
– Function types A ⇒ B have kind * ⇒ *, i.e. A ⇒ B : * ⇒ *
– For technical reasons, also * has sort , denoted * : □ □
– Some type systems even have an infinite hierarchy of universes
– The stuff above is needed for specifying type formation rules
– Types may also have uniqueness and computation rules
– Even typing contexts can be given formation rules
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Typical Type-Theoretic Questions

● There are three main types of questions in type theory:
1)  Type checking:

Given Γ, M, A, does Γ  ⊦ M : A hold?

2)  Type inferece:
Given Γ, M, find type A such that Γ  ⊦ M : A

3)  Type inhabitation: 
Given Γ, A, find term M such that Γ  ⊦ M : A

● We say that M and A are legal whenever Γ  ⊦ M : A for some Γ.
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Select Meta-Theoretic Questions

● Decidability/soundness of type checking/inference/inhabitation
● Weakening/strengthening: Can we add/remove hypotheses freely?
● Uniqueness of types: Are types unique up to αβ(ηΔ)-conversion?
● Weak normalisation: Does every well-formed type and/or value 

have a β-NF? (Lazy evaluation always works if there’s a β-NF)
– Strong normalisation: Is it reachable with all evaluation strategies?

● Confluence: Does the Church-Rosser theorem hold?
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The Lambda Cube

● There are eight so-called pure 
type systems, shown in the 
Barendregt cube to the right

● The arrows point from 
special to more general

● There are plenty of type 
systems not in the cube

λω

λP2

λP

λ2

λ→

λω λPω

λC



211 / 252

Applied Type Systems

● There are many more type systems than those in the 
Barendregt cube, including but not limited to:
– Martin-Löf Type Theory (based on λP)
– Calculus of (Inductive) Constructions (based on λC)
– Girard-Reynolds Type Theory, or System F (based on λ2)
– Hindley-Milner Type System (slight generalisation of λ→)
– The type system of the programming language Haskell extends the 

Hindley-Milner type system with type classes



212 / 252

More Type Systems

● There’s a whole zoo of type systems
– Linear types, handy for expressing side-effects and tracking object 

lifetimes (dependent types also work for this in imperative languages)
– Temporal types, which can be thought of as a typed alternative to 

macros
– Liquid (logically quantified) types seem to be an alternative to 

dependent types with a different type inference algorithm
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Why Type Theory Matters?

● A mathematician might wonder why bothering with all this 
constructive extra information in proofs

● Here are some points:
– Type theory is more precise (richer!) than classical math
– Efficient automation scales better than blackboard
– A success story: Homotopy Type Theory was developed in the 

Coq proof system first and only deformalised later
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Pros and Cons of Constructive Approach

Cons
● More restricted
● Proofs may become lengthy
● Can prove p  ⇒ ¬¬ p, but not 

¬¬p  p⇒  (broken symmetry)
● What kind of “calculus” 

doesn’t have real numbers?

Pros
● More restricted
● No need to speculate about 

“truth” or “existence”
● Proofs produce evidence
● Proofs are programs
● Classical axioms optional
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Subway Map

● Our journey is nearing its end. It’s time to flash some teasers on 
further topics
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A Peek at the Curry-Howard Correspondence

Simply Typed LC

Propositional Calculus

Dependent Type Theory

Monads

Continuations

Programs

Cartesian Closed Categories

Heyting Algebras

Intuitionistic Logic

Modal Logic

Gödel-Gentzen Translation

Proofs
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Categories

● A category (a type of multigraph that generalises monoids) has:
1)  objects and morphisms;

2)  domain and codomain objects x and y for each morphism f, denoted 
as f : x → y;

3)  composed morphisms g ∘ f when g : y → z and f : x → y;

4)  for each object x, the identity morphism 1x  s.t. f ∘ 1x = f and
1z ∘ g = g, when f : y → x, g : x → z; and

5)  associative composition: (h ∘ g) ∘ f = h ∘ (g ∘ f) (when defined)
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Products and Exponentials

C

A BA×B
π0 π1

f0 f1〈f0,f1〉

f0 = π0∘〈f0,f1〉
f1 = π1∘〈f0,f1〉 f = ϵ ∘ 〈f,1B〉

A

CB

f

A×B

C

f

CB×B
ϵ

f×1B
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Cartesian Closed Categories

● The left-hand side diagram on the previous slide is the limit (we 
don’t need the formal definition here) over an index category 
with two objects and zero non-identity morphisms

● The limit over the empty category is called a terminal object
– It’s an object that has exactly one incoming morphism from any 

other object in the category. It’s like the empty product

● A category that has (finite) products (including a terminal 
object) exponentials is called Cartesian closed
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STLC Forms a Cartesian Closed Category

● The category of types has:
– (Non-dependent or simple) types as objects
– β-equivalence classes [M]β ≝ {N|M=βN} of combinators as morphisms

– Identities [λx.x]β and compositions [M]β∘[N]β ≝ [λx.M(Nx)]β
– Products (see p.184), exponentials Bᴬ ≝ A→B, and terminal object ⊤
– eval ≝ λp.π0p(π1p) : Bᴬ×A→B

– curry ≝ λfxy.f〈x,y〉 : (A×B→C)→A→B→C
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Lambda Models

● A λ-model is an applicative structure (D,⦁) with with mapping -  ⟦ ⟧
such that for any assignments f and g:
1) ⟦x⟧f = f(x)

2) ⟦MN⟧f = ⟦M⟧f⦁⟦N⟧f

3) ⟦λx.M⟧f⦁d = ⟦M⟧f[x≔d] ((f[x≔d])(y) = d if x = y and f(y) o/w)

4) ⟦M⟧f = ⟦M⟧g, if f(x) = g(x) for every x in D

5) ⟦λx.M⟧f = ⟦λy.M[x≔y]⟧f , if y is not free in M (≡α implies = in D)

6) ⟦λx.M⟧f = ⟦λx.N⟧f, if ⟦M⟧f[x≔d] = ⟦N⟧f[x≔d] for every d in D
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Sidenote: Alternative Definition

● Alternatively, a λ-model can be defined as a combinatory 
algebra (D,⦁,k,s) such that
– It satisfies Curry’s axioms on p. 167
– It satisfies the following property (weak extensionality): For any X 

and Y s.t. XZ = YZ for all Z, D ⊨ S(KI)X = S(KI)Y
– In LC, this is expressed as the rule (ξ) M = N ⊢ λx.M = λx.M
– It’s the same as rule number 6 on the previous slide

● This version can be useful for theoretical purposes
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Challenges in Modelling

● Modelling λ-exprs naïvely as functions doesn’t work. Take λx.xx
– λx.xx is not the same as (λx.x ∘ x)
– E.g. (λx.xx) S  ⁺ = S⁺S  is neither a natural number, nor a function.⁺

(The closest sensible alternatives would be S (⁺ S⁺Z ) or ⁰ S⁺ ∘ S )⁺

– If the right x would be an element of a set A, then the left x would 
have to be an element of the function space Aᴬ = {f | f : A → A}

– At least we would need A ≅ Aᴬ, but this is impossible as there are 
more functions A → A than elements in A...
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How to Make A Non-Trivial λ-Model

● The trick is to add extra structure to the sets that we’re 
working with and use only structure-preserving functions

● A set D with binary relation ⊑ is partially ordered if and only if
– x ⊑ x for every x in D (reflexivity)
– If x ⊑ y and y ⊑ x, then x = y (antisymmetry)
– If x ⊑ y and y ⊑ z, then x ⊑ z (transitivity)

● We call (D,⊑) a partially ordered set, or poset among friends



227 / 252

Directed-Complete Partial Orders

● A set X⊆D is directed iff for every x,y ∊ X, there is z ∊ D s.t. 
x ⊑ z and y ⊑ z
– An element z∊D s.t. x ⊑ z for every x∊X is called an upper bound of X

● The least upper bound of a set X, denoted ⊔X, is an upper bound 
z of X such that z ⊑ w for any other upper bound w of X

● A poset (D,⊑) is called (directed-)complete if and only if 
– D has a least element, i.e. an element ⊥ s.t. ⊥⊑x for every x∊D
– every directed subset X of D has a least upper bound ⊔X∊D
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Posets Over Natural Numbers

● The usual poset of the 
natural numbers is defined as

n ≤ 0 ∧ (n ≤ k ⇒ S⁺n ≤ S⁺k)

● (ℕ,≤) is not complete. For 
instance, there’s no biggest 
prime number

● Flat natural numbers are the 
set ℕ⁺≝ℕ∪{⊥} ordered with

n ⊑ k ⇔ (n = ⊥ ∨ n = k)

● This poset is complete as 
every natural number n is a 
least upper bound of {n,⊥}

0 ⊑ 1 ⊑ 2 ⊑ 3 ⊑ 4 ⊑ 5 ⊑ ... ⊥ ⊑ 0, ⊥ ⊑ 1, ⊥ ⊑ 2, ...
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Continuous Function Spaces

● Let (D,⊑) and (E,≼) be DCPOs. Denote the set of continuous 
functions from D to E as [D→E]. It’s a proper subset of Eᴰ

● f:D→E is continuous iff f(⊔X) = ⊔f[X], for every directed X⊆D
● f:D→E is monotone (increasing) iff x ⊑ y implies f(x) ≼ f(y)
● Under Scott Topology, continuity implies monotonicity
● [D→E] can be made a DCPO by defining

f ≤ g if and only if f(x) ≼ g(x) for every x in D
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Why Flat Natural Numbers?

● The ordering ⊑ measures “definedness” of functions
– e.g. ⟦λn.⊥⟧f  ⊏ ⟦λn.1/n⟧f  ⊏ ⟦λn.n⟧f (consider n = 0, n = ⊥)

● Bottom (⊥) represents an undefined/non-normalising value
● The graph F of a function f (representing some λ-expr) is:

– F ≝ ⋃n∊ℕFn, where F0 ≝ ∅ and Fn+1 ≝ {(n, f(n))}∪Fn

– Fn ⊑ Fn+1 for every n∊ℕ, so the sequence (Fn) is monotone

– F is the least fixpoint of the sequence (Fn), “Fn → F as n → ∞”
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Products, Application, and Abstraction

● Let (D,⊑) and (E,≼) be DCPOs. Their Cartesian product D×E 
is a DCPO with the following ordering:

(x,y) ≤ (x',y') if and only if x ⊑ x' and y ≼ x'
● Theorem: A function D×E→F is continuous iff it’s continuous 

w.r.t. its both arguments separately
● Let eval(f,x) ≝ f(x). It’s continuous.
● Let curry(g)(x)(y) ≝ g(x,y) for g:D×E→F. It’s also continuous.
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DCPOs Form a Cartesian Closed Category

● For any f ∊ [D×E→F], x ∊ D, and y ∊ E,
eval(curry(f)(x), 1Ey) = curry(f)(x)(y) = f(x,y),

so F  ᴱ ≝ [E→F] is an exponential
● A singleton DCPO D has exactly one incoming (continuous) 

function from any other DCPO, so D a terminal object
● The category of DCPOs and continuous functions is a Cartesian 

closed Category (CCC)
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D∞: The First Non-Trivial Model of Untyped LC

● The model D∞ was invented by Dana Scott in early 1970’ies, 
almost 40 years after LC was first introduced!
– Let D0 ≝ ℕ⁺ and Di+1 ≝ [Di→Di]

– D∞ consists of infinite sequences (x0, x1, x2, ...) of D0, D1, D2, ...

– The rough idea is that if ⟦M⟧f = x and ⟦N⟧f = y, then 
⟦MN⟧f = x⦁y = (x1(y0), x2(y1), x3(y2), ...)

– The interesting part is how to convert xi to xi+1 and back as every Di+1 
needs to be projected into Di
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Moving Between Levels

● Define
– φ0(x) ≝ fx, with fx(y) ≝ x;
– ψ0(z) ≝ z(⊥);

– φi(x) ≝ φi–1 ∘ x ∘ ψi–1; and

– ψi(x) ≝ ψi–1 ∘ x ∘ φi–1

● These properties hold:
– φi ∊ [Di →Di+1]

– ψi ∊ [Di+1→Di] 

– φi ∘ ψi ⊑ 1Di+1

– ψi ∘ φi = 1Di

...
φ0 φ1 φ2 φ3 φ4

D0 D1 D2 D3 D4
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More Machinery

● Define
– D∞ ≝ {(x0, x1, x2, ...) ∊ Πi∊ℕDi | ψi(xi+1) = xi}

– Φi+p,i(x) ≝ (ψi ∘ ψi+1 ∘ ... ∘ ψi+j–1)(x) (Φi+j,i ∊ [Di+j→Di])

– Φi,i(x) ≝ x (Φi,i  ∊ [Di→Di])

– Φi,i+j(x) ≝ (φi+j–1 ∘ φi+j ∘ ... ∘ φi)(x) (Φi,i+j ∊ [Di→Di+j])

– Φi,∞(x) ≝ (Φi,0(x), Φi,1(x), Φi,2(x), ...) (Φi,∞ ∊ [Di→D∞])

– Φ∞,i(x) ≝ x (Φ∞,i ∊ [D∞→Di])
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Interpretation of LC in D∞

● D∞ ≅ [D∞ → D∞], which is witnessed by certain functions 
F : D∞ → [D∞ → D∞] and G : [D∞ → D∞] → D∞ 

● Now we can define application in D∞ as x⦁y ≝ ⊔i∊ℕΦi,∞(xi+1(yi))

● The interpretation with assingment f is the following:
1) ⟦x⟧f ≝ f(x)

2) ⟦MN⟧f ≝ ⟦M⟧f⦁⟦N⟧f

3) ⟦λx.M⟧f ≝ G(d ↦ ⟦M⟧f[x≔d])
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Other Models

● Lambda-Calculus/Type theories have numerous models, such as
– Graph models Pω, DA

– Tree models , ℬ Tω
– Categorical Abstract Machine (CAM) models
– Runtime systems of purely functional programming languages

● Generally, type theories are easier to model than pure untyped 
LC, because the problem with A ≅ Aᴬ is avoided
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Bicartesian Closed Categories

● A Bicartesian Closed 
Category is a Cartesian 
Closed Category which also 
has all finite coproducts

● Coproduct is a colimit of type 
∙ , i.e. the ∙ dual of a product 
(cf. P 166), which is a limit

f0 = [f0,f1]∘ι0
f1 = [f0,f1]∘ι1

C

A BA+B
ι0 ι1

f0 f1
[f0,f1]
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Equalizers and Coequalizers

A BE

C

f

g

e

u
z

f∘e = g∘e
z = e∘u

AB E

C

f

g

e

u
z

e∘f = e∘g
z = u∘e
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Pullbacks and Pushouts

X

C

g

B

A

pA

pB

f

Y
u

h

k

f∘h = f∘pA∘u
g∘k= g∘pB∘u

X

C

g

B

A

pA

pB

f

Y
u

h

k

h∘f = u∘pA∘f
k∘g= u∘pB∘g
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Topoi

f ⁿ ∘ x = sⁿ ∘ z

A

N

h

N
z

x

s

f
χf ∘ f = ⊤ ∘ !

A

Ω

χf

B

1

!

f

⊤
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Subway Map

● It’s time to wrap up
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Local Map

λ-exprs

Strings are

define
FunctionsReduction

utilize

com
poses

Normal Form

chases

Identity
determines

Substitution

Catenation

us
es

generalizes
Combinators

Recursion
express

transforms

have

generate

requires

build

combines

Conversion

produces

need

supplements

enables
process

identifies

evaluate
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Programming Terminology Inspired by LC

Concept Definition

Higher-Order Function A function that returns (or takes) another function.

Function Composition A higher-order function that composes two functions.

Partial Application Applying a single argument to a higher-order function.

Currying Defining a higher-order function.

Recursion Defining a function in terms of its own values.

Evaluation Strategy Determines the order of reduction steps for an expression.

Pattern Matching A generalization of the if-then-else construct.

Type A proposition about the structure of an object.
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Conclusion

● We now (hopefully) understand the concept of a function from a 
computational (LC/CL) perspective.
– Extensional equality of functions is undecidable in general case.
– Halting problem is the computational analogue to the Gödel’s 

incompleteness theorems.

● Lambda-Calculus is a deep field of mathematics with 
connections to many other disciplines. 
– This presentation barely scratched the surface.
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Related Topics

● So, what next? We can extend LC into many directions. E.g.:
– Q: When does an application make sense? A: Type Theory
– Q: What kind of algebra is behind LC? A: Category Theory
– Q: What kind of calculus is behind LC? A: Domain Theory
– Q: How can we profit from LC in logic? A: Proof Theory
– Q: What kind of programming is LC? A: Functional Programming
– Q: Why is LC future-proof? A: Non-Classical Computing
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https://xkcd.com/1270/

Thank You!
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Warm-Up Excercises

1) Draw a parse tree (see p. 39 and 47–50) for (λx.λy.λz.zxw)cdI

2) Reduce this tree, step by step, to a normal form. (Cf. p. 79–82.)

3) Prove the claims about combinators on p. 118

4) Draw your own World/Local Map of LC/CL. (See p. 28, 234.)

5) Convert (K(C(CIc)y))d back to LC and find its normal form

6)  Y ≝ λf.(λx.f(xx))(λx.f(xx)) is another fixed point combinator 
Can you tell the subtle behavioral difference between Y and Θ?
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Advanced Excercises

1) Develop an example that uses all the rules given in p. 161

2) Consider the Euclidean algorithm flowchart in p. 9 (and 10). 
Describe it using the techniques using provided in these slides
– Hint: You may take elementary artihmetics as granted in LC

3) Can you encode the algorithm shown in p. 161 using LC/CL?

4) Can you analyze the MIU-system (see p. 3) in LC/CL?

5) Construct a Turing Machine or other interpreter for LC/CL
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Type Theory Excercises

1) Consider the proofs on p. 193–197. Show that types and 
disjunction also form a commutative monoid

2) Show that sum types are associative and commutative. 

3) Show that that ⊥ is the neutral type. Hint: λ(), [_,_]

4) Define a lambda expression that is not polymorphic (i.e. 
monomorphic). Can you explain the difference between 
polymorphic and monomorphic functions?
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Further Reading

● J. Roger Hindley and Jonathan P. Seldin: Lambda-Calculus and 
Combinators: an Introduction. Cambridge University Press,2008

● Nederpelt, Rob; Geuvers, Herman: Type Theory and Formal 
Proof : An Introduction, 2014

● Henk. P. Barendregt. The Lambda-Calculus: Its Syntax and 
Semantics, Volume 40 of Studies in Logic: Mathematical Logic 
and Foundations. College Publications, 2012

● Steve Awodey: Category Theory. Second Edition. 2010.

https://xkcd.com/1270/
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Further Reading
● The Univalent Foundations Program: Homotopy Type Theory. 

Univalent Foundations of Mathematics, 2013. Available at: 
https://homotopytypetheory.org/book

● Wadler, Philip and Wen Kokke. Programming Language Foundations 
in Agda. Available at http://plfa.inf.ed.ac.uk. 2019.

● The Standford Encyclopaedia of Philosophy has excellent articles on 
LC and CL at https://plato.stanford.edu/

● The nLab wiki sketches some advanced topics at https://ncatlab.org
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