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1 Sequence Analysis with Python

Contact: Veli Mäkinen veli.makinen@helsinki.fi The following assignments introduce applica-
tions of hashing with dict() primitive of Python. While doing so, a rudimentary introduction
to biological sequences is given. This framework is then enhanced with probabilities, leading to
routines to generate random sequences under some constraints, including a general concept of
Markov-chains. All these components illustrate the usage of dict(), but at the same time intro-
duce some other computational routines to efficiently deal with probabilities.
The function collections.defaultdict can be useful.

1.1 DNA and RNA

A DNA molecule consist, in principle, of a chain of smaller molecules. These smaller molecules
have some common basic components (bases) that repeat. For our purposes it is sufficient to know
that these bases are nucleotides adenine, cytosine, guanine, and thymine with abbreviations A, C,
G, and T. Given a DNA sequence e.g. ACGATGAGGCTCAT, one can reverse engineer (with negligible
loss of information) the corresponding DNA molecule.

Parts of a DNA molecule can transcribe into an RNA molecule. In this process, thymine gets
replaced by uracil (U).

1. Write a function dna_to_rna to convert a DNA sequence into an RNA sequence. For the
sake of exercise, use dict() to store the symbol to symbol encoding rules. Create a program
to test your function.

In [ ]: from IPython.core import page
page.page=print # turn off the pager, so that %pycat prints inline

In [ ]: # exercise 1 DO NOT MODIFY THIS LINE
%pycat part07-e01_dna_to_rna/src/dna_to_rna.py

1.1.1 Idea of solution

fill in

1.1.2 Analysation of results

fill in
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1.2 Proteins

Like DNA and RNA, protein molecule can be interpreted as a chain of smaller molecules, where
the bases are now amino acids. RNA molecule may translate into a protein molecule, but instead
of base by base, three bases of RNA correspond to one base of protein. That is, RNA sequence is
read triplet (called codon) at a time.

2. Consider the codon to amino acid conversion table in http://www.kazusa.or.jp/codon/cgi-
bin/showcodon.cgi?species=9606&aa=1&style=N. Write a function get_dict to read the ta-
ble into a dict(), such that for each RNA sequence of length 3, say AGU, the hash table stores
the conversion rule to the corresponding amino acid. You may store the html page to your
local src directory, and parse that file.

In [ ]: # exercise 2 DO NOT MODIFY THIS LINE
%pycat part07-e02_rna_to_prot/src/rna_to_prot.py

1.2.1 Idea of solution

fill in

1.2.2 Analysation of results

fill in

3. Use the same conversion table as above, but now write function get_dict to read the table
into a dict(), such that for each amino acid the hash table stores the list of codons encoding
it.

In [ ]: # exercise 3 DO NOT MODIFY THIS LINE
%pycat part07-e03_prot_to_rna/src/prot_to_rna.py

1.2.3 Idea of solution

fill in

1.2.4 Analysation of results

fill in
With the conversion tables at hand, the following should be trivial to solve.

4. Fill in function dna_to_prot in the stub solution to convert a DNA sequence into a protein
sequence. You may copy-paste the result dictionaries from exercises 2 and 3. Run your
program with ATGATATCATCGACGATGTAG.

In [ ]: # exercise 4 DO NOT MODIFY THIS LINE
%pycat part07-e04_dna_to_prot/src/dna_to_prot.py

1.2.5 Idea of solution

fill in
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1.2.6 Analysation of results

fill in
You may notice that there are 43 = 64 different codons, but only 20 amino acids. That is, some

triplets encode the same amino acid.

1.3 Reverse translation

It has been observed that among the codons coding the same amino acid, some are more frequent
than others. These frequencies can be converted to probabilities. E.g. consider codons AUU, AUC,
and AUA that code for amino acid isoleucine. If they are observed, say, 36, 47, 17 times, respectively,
to code isoleucine in a dataset, the probability that a random such event is AUU → isoleucine is
36/100.

This phenomenon is called codon adaptation, and for our purposes it works as a good introduc-
tion to generation of random sequences under constraints.

5. Consider the codon adaptation frequencies in http://www.kazusa.or.jp/codon/cgi-
bin/showcodon.cgi?species=9606&aa=1&style=N and read them into a dict(), such that
for each RNA sequence of length 3, say AGU, the hash table stores the probability of that
codon among codons encoding the same amino acid. Put your solution in the get_dict
function.

In [ ]: # exercise 5 DO NOT MODIFY THIS LINE
%pycat part07-e05_codon_to_prob/src/codon_to_prob.py

1.3.1 Idea of solution

fill in

1.3.2 Analysation of results

fill in
Now you should have everything in place to easily solve the following.

6. Write a class ProteinToMaxRNA with a convert method which converts a protein sequence
into the most likely RNA sequence to be the source of this protein. Run your program with
LTPIQNRA.

In [ ]: # exercise 6 DO NOT MODIFY THIS LINE
%pycat part07-e06_protein_to_max_rna/src/protein_to_max_rna.py

1.3.3 Idea of solution

fill in
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1.3.4 Analysation of results

fill in
Now we are almost ready to produce random RNA sequences that code a given protein se-

quence. For this, we need a subroutine to sample from a probability distribution. Consider our earlier
example of probabilities 36/100, 47/100, and 17/100 for AUU, AUC, and AUA, respectively. Let us as-
sume we have a random number generator random() that returns a random number from interval
[0, 1). We may then partition the unit interval according to cumulative probabilities to [0,36/100),
[36/100,83/100), [83/100,1), respectively. Depending which interval the number random() hits,
we select the codon accordingly.

7. Write a function random_event that chooses a random event, given a probability distribu-
tion (set of events whose probabilities sum to 1). You can use function random.uniform to
produce values uniformly at random from the range [0, 1). The distribution should be given
to your function as a dictionary from events to their probabilities.

In [ ]: # exercise 7 DO NOT MODIFY THIS LINE
%pycat part07-e07_random_event/src/random_event.py

1.3.5 Idea of solution

fill in

1.3.6 Analysation of results

fill in
With this general routine, the following should be easy to solve.

8. Write a class ProteinToRandomRNA to produce a random RNA sequence encoding the input
protein sequence according to the input codon adaptation probabilities. The actual conver-
sion is done through the convert method. Run your program with LTPIQNRA.

In [ ]: # exercise 8 DO NOT MODIFY THIS LINE
%pycat part07-e08_protein_to_random_rna/src/protein_to_random_rna.py

1.3.7 Idea of solution

fill in

1.3.8 Analysation of results

fill in

1.4 Generating DNA sequences with higher-order Markov chains

We will now reuse the machinery derived above in a related context. We go back to DNA se-
quences, and consider some easy statistics that can be used to characterize the sequences. First,
just the frequencies of bases A, C, G, T may reveal the species from which the input DNA originates;
each species has a different base composition that has been formed during evolution. More inter-
estingly, the areas where DNA to RNA transcription takes place (coding region) have an excess
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of C and G over A and T. To detect such areas a common routine is to just use a sliding window of
fixed size, say k, and compute for each window position T[i..i + k − 1] the base frequencies, where
T[1..n] is the input DNA sequence. When sliding the window from T[i..i + k − 1] to T[i + 1..i + k]
frequency f (T[i]) gets decreases by one and f (T[i + k]) gets increased by one.

9. Write a generator sliding_window to compute sliding window base frequencies so that each
moving of the window takes constant time. We saw in the beginning of the course one way
how to create generators using generator expression. Here we use a different way. For the
function sliding_window to be a generator, it must have at least one yield expression, see
https://docs.python.org/3/reference/expressions.html#yieldexpr. See also exercise 13 for
an example of a generator all_kmers made with yield expressions. A yield expression can
be used to return a value and temporarily return from the function.

In [ ]: # exercise 9 DO NOT MODIFY THIS LINE
%pycat part07-e09_sliding_window/src/sliding_window.py

1.4.1 Idea of solution

fill in

1.4.2 Analysation of results

fill in
Our models so far have been so-called zero-order models, as each event has been independent of

other events. With sequences, the dependencies of events are naturally encoded by their contexts.
Considering that a sequence is produced from left-to-right, a first-order context for T[i] is T[i − 1],
that is, the immediately preceding symbol. First-order Markov chain is a sequence produced by
generating c = T[i] with the probability of event of seeing symbol c after previously generated
symbol a = T[i − 1]. The first symbol of the chain is sampled according to the zero-order model.
The first-order model can naturally be extended to contexts of length k, with T[i] depending on
T[i − k..i − 1]. Then the first k symbols of the chain are sampled according to the zero-order model.
The following assignments develop the routines to work with the higher-order Markov chains. In
what follows, a k-mer is a substring T[i..i + k − 1] of the sequence at an arbitrary position.

10. Write function context_list that given an input DNA sequence T associates to each k-mer
W the concatenation of all symbols c that appear after context W in T, that is, T[i..i+ k] = Wc.
For example, GA is associated to TCT in T = ATGATATCATCGACGATGTAG, when k = 2.

In [ ]: # exercise 10 DO NOT MODIFY THIS LINE
%pycat part07-e10_context_list/src/context_list.py

1.4.3 Idea of solution

fill in

1.4.4 Analysation of results

fill in
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11. With the above solution, write function context_probabilities to count the frequencies of
symbols in each context and convert these frequencies into probabilities. Run your program
with T = ATGATATCATCGACGATGTAG and k values 0 and 2.

In [ ]: # exercise 11 DO NOT MODIFY THIS LINE
%pycat part07-e11_context_probabilities/src/context_probabilities.py

1.4.5 Idea of solution

fill in

1.4.6 Analysation of results

fill in

12. With the above solution and the function random_event from the earlier exercise, write class
MarkovChain. Its generate method should generate a random DNA sequence following the
original k-th order Markov chain probabilities.

In [ ]: # exercise 12 DO NOT MODIFY THIS LINE
%pycat part07-e12_generate_markov/src/generate_markov.py

1.4.7 Idea of solution

fill in

1.4.8 Analysation of results

fill in
If you have survived so far without problems, please run your program a few more times with

different inputs. At some point you should get a lookup error in your hash-table! The reason for
this is not your code, but the way we defined the model: Some k-mers may not be among the
training data (input sequence T), but such can be generated as the first k-mer that is generated
using the zero-order model.

A general approach to fixing such issues with incomplete training data is to use pseudo counts.
That is, all imaginable events are initialized to frequency count 1.

13. Modify the previous solution 11 to use pseudo counts in order to obtain a k-th order Markov
chain that can assign a probability for any DNA sequence. You may use the provided gen-
erator all_kmers to iterate over all k-mer of given length.

In [ ]: # exercise 13 DO NOT MODIFY THIS LINE
%pycat part07-e13_pseudocounts/src/pseudocounts.py

1.4.9 Idea of solution

fill in
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1.4.10 Analysation of results

fill in

14. Write class MarkovChain that given the k-th order Markov chain developed above to the con-
structor, its method probability computes the probability of a given input DNA sequence.

In [ ]: # exercise 14 DO NOT MODIFY THIS LINE
%pycat part07-e14_markov_chain_probability/src/markov_chain_probability.py

1.4.11 Idea of solution

fill in

1.4.12 Analysation of results

fill in
With the last assignment you might end up in trouble with precision, as multiplying many

small probabilities gives a really small number in the end. There is an easy fix by using so-called
log-transform. Consider computation of P = s1s2 · · · sn, where 0 ≤ si ≤ 1 for each i. Taking log-
arithm in base 2 from both sides gives log2 P = log2(s1s2 · · · sn) = log2 s1 + log2 s2 + · · · log sn =

∑n
i=1 log si, with repeated application of the property that the logarithm of a multiplication of two

numbers is the sum of logarithms of the two numbers taken separately. The results is abbreviated
as log-probability.

15. Write class MarkovChain that given the k-th order Markov chain developed above to the con-
structor, its method log_probability computes the log-probability of a given input DNA
sequence. Run your program with T = ATGATATCATCGACGATGTAG and k = 2.

In [ ]: # exercise 15 DO NOT MODIFY THIS LINE
%pycat part07-e15_markov_chain_log_probability/src/markov_chain_log_probability.py

1.4.13 Idea of solution

fill in

1.4.14 Analysation of results

fill in
Finally, if you try to use the code so far for very large inputs, you might observe that the

concatenation of symbols following a context occupy considerable amount of space. This is un-
necessary, as we only need the frequencies.

16. Optimize the space requirement of your code from exercise 13 for the k-th order Markov
chain by replacing the concatenations by direct computations of the frequencies. Implement
this as the context_probabilities function.

In [ ]: # exercise 16 DO NOT MODIFY THIS LINE
%pycat part07-e16_low_space_requirement/src/low_space_requirement.py
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1.4.15 Idea of solution

fill in

1.4.16 Analysation of results

fill in
While the earlier approach of explicit concatenation of symbols following a context suffered

from inefficient use of space, it does have a benefit of giving another much simpler strategy to
sample from the distribution: observe that an element of the concatenation taken uniformly ran-
domly is sampled exactly with the correct probability.

17. Revisit the solution 12 and modify it to directly sample from the concatenation of symbols
following a context. You may use the function random.choice.

In [ ]: # exercise 17 DO NOT MODIFY THIS LINE
%pycat part07-e17_sample_from_concatenation/src/sample_from_concatenation.py

1.4.17 Idea of solution

fill in

1.4.18 Analysation of results

fill in

1.5 k-mer index

Our k-th order Markov chain can now be modified to a handy index structure called k-mer index.
This index structure associates to each k-mer its list of occurrence positions in DNA sequence T.
Given a query k-mer W, one can thus easily list all positions i with T[i..k − 1] = W.

18. Implement function kmer_index by modifying your earlier code for the k-th order Markov
chain. Test your program with T = ATGATATCATCGACGATGTAG and k = 2.

In [ ]: # exercise 18 DO NOT MODIFY THIS LINE
%pycat part07-e18_kmer_index/src/kmer_index.py

1.5.1 Idea of solution

fill in

1.5.2 Analysation of results

fill in
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1.6 Comparison of probability distributions

Now that we know how to learn probability distributions from data, we might want to compare
two such distributions, for example, to test if our programs work as intended.

Let P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} be two probability distributions for the same
set of n events. This means ∑n

i=1 pi = ∑n
i=1 qi = 1, 0 ≤ pj ≤ 1, and 0 ≤ qj ≤ 1 for each event j.

Kullback-Leibler divergence is a measure d() for the relative entropy of P with respect to Q defined
as d(P|Q) = ∑n

i=1 pi log pi
qi

.
This measure is always non-negative, and 0 only when P = Q. It can be interpreted as the gain

of knowing Q to encode P. Note that this measure is not symmetric.

19. Write function kullback_leibler to compute d(P||Q). Test your solution by generating a
random RNA sequence encoding the input protein sequence according to the input codon
adaptation probabilities. Then you should learn the codon adaptation probabilities from the
RNA sequence you generated. Then try the same with uniformly random RNA sequences
(which don’t have to encode any specific protein sequence). Compute the relative entropies
between the three distribution (original, predicted, uniform) and you should observe a clear
difference. Because d(P||Q) is not symmetric, you can either print both d(P||Q) and d(Q||P),
or their average.

In [ ]: # exercise 19 DO NOT MODIFY THIS LINE
%pycat part07-e19_kullback_leibler/src/kullback_leibler.py

1.6.1 Idea of solution

fill in

1.6.2 Analysation of results

fill in

1.7 Stationary and equilibrium distributions

Let us consider a Markov chain of order one on the set of nucleotides. Its transition probabilities
can be expressed as a 4 × 4 matrix P = (pij), where the element pij gives the probability of the jth
nucleotide on the condition the previous nucleotide was the ith. An example of a transition matrix
is

A C G T
A 0.30 0.0 0.70 0.0
C 0.00 0.4 0.00 0.6
G 0.35 0.0 0.65 0.0
T 0.00 0.2 0.00 0.8

.

A distribution π = (π1, π2, π3, π4) is called stationary, if π = πP (the product here is matrix
product).

20. Write function get_stationary_distributions that gets a transition matrix as parameter,
and returns the list of stationary distributions. You can do this with NumPy by first tak-
ing transposition of both sides of the above equation to get equation πT = PTπT. Using
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numpy.linalg.eig take all eigenvectors related to eigenvalue 1.0. By normalizing these vec-
tors to sum up to one get the stationary distributions of the original transition matrix. In the
main function print the stationary distributions of the above transition matrix.

In [ ]: # exercise 20 DO NOT MODIFY THIS LINE
%pycat part07-e20_stationary_distribution/src/stationary_distribution.py

1.7.1 Idea of solution

fill in

1.7.2 Analysation of results

fill in

21. Implement the following in the main function. Use again the above transition matrix. Choose
one stationary distribution as the initial distribution of the Markov chain. Using your mod-
ified Markov chain generator generate a nucleotide sequence s of length 10~000. Choose
prefixes of s of lengths 1, 10, 100, 1000, and 10 000. For each of these prefixes find out their
nucleotide distribution (of order 0) using your earlier tool. Use 1 as the pseudo count. Then,
for each prefix, compute the KL divergence between the initial distribution and the normal-
ized nucleotide distribution.

In [ ]: # exercise 21 DO NOT MODIFY THIS LINE
%pycat part07-e21_stationary_initial_distribution/src/stationary_initial_distribution.py

1.7.3 Idea of solution

fill in

1.7.4 Analysation of results

fill in

22. Implement the following in the main function. Find the stationary distribution for the
following transition matrix:

A C G T
A 0.30 0.10 0.50 0.10
C 0.20 0.30 0.15 0.35
G 0.25 0.15 0.20 0.40
T 0.35 0.20 0.40 0.05

Since there is only one stationary distribution, it is called the equilibrium distribution. Choose
randomly two nucleotide distributions. You can take these from your sleeve or sample them
from the Dirichlet distribution. Then for each of these distributions as the initial distribution of
the Markov chain, repeat the above experiment. The state distribution should converge to the
equilibrium distribution no matter how we start the Markov chain!

In [ ]: # exercise 22 DO NOT MODIFY THIS LINE
%pycat part07-e22_equilibrium_distribution/src/equilibrium_distribution.py
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1.7.5 Idea of solution

fill in

1.7.6 Analysation of results

fill in
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