Project in Practical Machine Learning

Johannes Verwijnen

Department of Computer Science
University of Helsinki

Spring 2015
Outline

Guest Lecture 1

Course Lecture 1
 Administrative Issues

Guest Lecture 2

Course Lecture 2
 Data
 Tools & Libraries
 Expected outcomes
Janne Sinkkonen, PhD
Senior Data Scientist at Reaktor
Welcome to the first iteration of this new project/lab course

I’m your lecturer, Johannes Verwijnen (a mouthful - I know). If you want to talk to me, you can

- visit me in B333 (very unlikely I’m there)
- visit me at Ekahau offices in Salmisaari (more likely I’m there, better reserve time beforehand)
- email me at jverwijn@cs.helsinki.fi
- find me on IRC as duvin
- call/SMS me on 0505731020
- book a time using doodle https://doodle.com/duvin (better book several alternative times)
This course counts as advanced studies in the Algorithms and machine learning subprogram.

The idea of this course is to introduce you to a more “realistic” setting of doing machine learning than what we’re currently offering in other courses.

Realism here refers to problematics with:
- live data
- choice & parametrization of ML method
- running a system in the networked world

Prerequisites: Intro to ML, Scientific Writing (or similar knowledge), programming knowledge in chosen environment.
How?

- You will
 - find a result that you wish to predict periodically
 - find the data that you wish to use for prediction
 - choose a suitable ML technique
 - implement and run an online system that will create periodic predictions and follow their accuracy
 - write a report of all that with reflection

in a group of 1-4 students

- There will be two general lectures (today and next week) with common content for all students

- Later, each group will have 2 formal meetings with the lecturer about their project to ensure mutual understanding of the tasks

- Peer support is available on IRC channel #tkt-ppml
Why?

- It's fun!
- Credit points (2-6)
 - Each credit point should represent ~ 27 hours of work
 - 4 hours of lectures
 - 4 hours of meetings with lecturer
 - Project work (needs to be documented)
- Grading (0-5)
 - Based on report & presentation
 - Weight on reflection and result presentation rather than prediction accuracy
 - Report is needed for a pass (1) grade
Lectures

- 2 lectures with visiting guest lecturers:
 - Wed 14.1. 16-18 C222
 - Guest lecturer: Janne Sinkkonen, PhD, Senior Data Scientist at Reaktor
 - Course lecture on administrative issues
 - Wed 21.1. 16-18 C222
 - Guest lecturer: Matti Aksela, DSc. (Tech), VP, Analytics and Technology at Comptel
 - Course lecture on data sources, dirtiness and context, existing tools & libraries and expected outcomes

- guest lectures are “motivational” in nature, giving context and ideas around usage of ML in the industry
- we’ll start with the guest lecture, having a break after it for networking
- attendance is voluntary, although course lecture content is expected to be known to all students (slides available on course page)
Group meetings

- 2 group meetings with the lecturer:
 - First meeting once the group has roughly worked out what it wants to do
 - You should have
 - your target variable (what to predict)
 - data source
 - programming environment
 figured out. You should also have looked at
 - what ML & web frameworks to use
 - where to host your system
 - what ML algorithm could work
 - You will get
 - feedback on your choices
 - an idea of what is needed for the amount of credit points you are targeting

- Please book this meeting from my doodle ASAP (remember to give several alternative options, length: 2 hours) https://doodle.com/duvin
Group meetings (2)

- Second meeting roughly halfway through the project
 - You should have
 - selected your ML algorithm and parametrized it
 - a working implementation of the whole system
 - an idea on how well you are doing
 - notes on how you selected your tools
 - be ready to “let go” of the system
 - You will get
 - to know what more is needed (if anything) that the system is acceptable
 - discussion around how to measure the “goodness” of your system
 - input on what to include in report and presentation, grading hints

- Please book this meeting from my doodle once you feel you are ready for it!
As a calendar
As a calendar

- **Work on implementation**
- **Book 1st meeting**
- **Work on implementation**
- **Run System**
- **Start writing report**
- **Book 2nd meeting**
- **Run System**
- **Freeze changes**
- **Book 2nd meeting**
- **Submit report**
- **Demo?**
A Machine Learning System

What the product should look like

- Concentrating on integration of a ML technique with periodic data in/output
- Handling live incoming data
- Storing and analyzing predictions
- **Not concentrating on**
 - Feature selection/extraction
 - Level of accuracy
 - Efficiency of implementation
Examples

- Predict stock markets (or indices or whatever)
 - Training data: old stock value data
 - Input: stock price, calculated features
 - Predict: index/stock up/down, individual stock scores

- Predict traffic data
 - Training data: old weather and traffic data
 - Input: daily weather measurements, calculated features
 - Predict: percentage of trains running, road traffic problems