
Adjunct

Adjunct (Averaging Decomposable graphs via Junction Trees) is a program
for Bayesian learning of decomposable graphs from data. For background on
the problem and the algorithmic techniques used by Adjunct, see the related
papers:

• K. Kangas, M. Koivisto, and T. Niinimäki. Learning chordal Markov
networks by dynamic programming. In Advances in Neural Information
Processing Systems 27 (NIPS), pages 2357–2365. Curran Associates,
Inc., 2014.

• K. Kangas, T. Niinimäki, and M. Koivisto. Averaging of Decomposable
Graphs by Dynamic Programming. In Proceedings of the 31st Annual
Conference on Uncertainty in Artificial Intelligence (UAI), 2015 (to
appear).

1 Bayesian learning

A decomposable model is an undirected graphical model where the graph
structure is decomposable (or triangulated, or chordal).

Given data on a finite set of variables V , we are interested in learning graph
structures that fit the data well. In the Bayesian approach we evaluate a
graph by the probability of the data under the graph, the likelihood, obtained
by integrating out the model parameters.

For a decomposable graph G on V the likelihood is a decomposable function

ϕ(G) =

∏
C∈C(G) ϕc(C)∏
S∈S(G) ϕc(S)

, ϕc : 2V → R ,

where C(G) denotes the set of cliques of G and S(G) denotes the multiset of
separators arising from specific clique intersections. The function is induced
by the local component function ϕc defined for all subsets of V .

By multiplying the likelihood with a structure prior and dividing by a
normalizing constant, we obtain a posterior distribution over decomposable
graphs. Learning problems include finding graphs that maximize the posterior
probability and computing various marginals of the posterior, such as the
probability that an individual edge is present in the graph.

The input to Adjunct is a decomposable function ϕ given explicitly as its
local component ϕc, in a form a logarithmic “scores”. Adjunct comes with
a program dmscore (see section 4) for computing BDeu scores for a given
data set.

1

Given ϕ, Adjunct can perform the following learning tasks:

1. Compute the maximum of ϕ over all decomposable graphs,

max
G

ϕ(G) .

When ϕ is the likelihood function, this is the task of finding a maximum-
a-posteriori graph under the uniform prior over decomposable graphs.

2. Compute the sum of ϕτ over all decomposable graphs,∑
G
ϕ(G)τ(G) ,

where τ(G) is number of rooted junctions trees of G. This gives any
marginal of the posterior that can be expressed as a decomposable
function, under the uniform prior over rooted junction trees.

3. Draw independent samples from the distribution proportional to ϕτ .

4. Estimate edge posterior probabilities under the distribution propor-
tional to ϕ via importance sampling.

2 Building

Adjunct compiles as C++11 and has been tested on the GCC and clang

compilers. The simplest way to compile is to run the make program in the
subdirectory adjunct. You can change the default compiler (GCC) by editing
the first line in Makefile.

Alternatively, you can compile Adjunct manually, e.g.,

g++ -std=c++11 -O3 -o adjunct

adjunct.cpp common.cpp maximization.cpp sampling.cpp

sampling_adaptive.cpp sampling_naive.cpp tools.cpp

3 Usage

Running Adjunct with no arguments will produce usage instructions:

adjunct [-flags] <input file> [<maximum width>]

[<action [arg ...]>]

The only mandatory argument is input file, which specifies the input
function (see section 4).

2

The optional action argument determines what to do with the scores. If the
argument is “max” or not given, Adjunct will find a graph that maximizes
the function. For example, running

adjunct -tsh bridges.score

will produce

====================================== Tree

{0,1}

+--{1,2,4} {1}

+--{0,9} {0}

+--{8,9,10} {9}

+--{8,11} {8}

| +--{3,11} {11}

| | +--{3,5} {3}

| +--{7,11} {11}

+--{6,8} {8}

====================================== Score

-2630.457413

The optional -flags argument controls what is printed for the resulting
graph (see section 5). In this example, a junction tree of the graph and its
score are printed.

The maximum width argument restricts the maximum size of cliques. For
example, running

adjunct -t bridges.score 2

will produce the highest scoring network with at most two vertices per clique.

Sampling

If the action argument is “sample”, Adjunct will first compute the sum
tables and then draw independent samples of decomposable graphs. The full
arguments are:

adjunct [-flags] <input file> [<maximum width>]

sample [<n> [<seed>]]

Here, n is the number of samples to draw (1 by default) and “seed” is a
seed for the random number generator. If no seed is specified, Unix time in
seconds is used. For example,

adjunct -c asia.score sample 5 0

3

will produce five samples in a compact form:

50{49{37{164}}}{24}{96}

164{38{7}{50{24}}}{96}

38{7}{50{24}{96}}{164}

38{7}{50{24}}{164{96}}

50{38{7}{164}}{56}{96}

Producing output in this form (e.g. into a file) is convenient since Adjunct

can parse the form and later display it in other formats.

Reading trees from a file/command line

If the action argument is “file”, Adjunct expects an additional file ar-
gument, which must contain trees in the compact form. Adjunct will read
those trees and display them according to the output flags. For example, if
the trees of the previous section are in trees.txt, running

adjunct -s asia.score file trees.txt

will produce the scores of the sampled trees:

-22483.301209

-22478.557123

-22478.557123

-22478.557123

-22481.641032

A single tree argument can also be given directly on the command line with
the action argument “tree”. For example,

adjunct -s asia.score tree 50{49{37{164}}}{24}{96}

will produce

-22483.301209

Enumerating decomposable graphs

Finally, the action argument “enum” will perform a bruteforce enumeration
of all decomposable graphs and compute the true edge probabilities under the
uniform prior over decomposable models. This enumeration is feasible only
up to around 8 vertices (a few minutes on a standard desktop computer).

4

4 Input format and DMscore

Adjunct comes with three example input files, asia.score, bridges.score
and flare.score. Each input file contains the target function in a form of
logarithmic scores corresponding to (unnormalized) probabilities, one score
for each subset of the variables.

The first four lines of an input file are

DMST

n

subset_scores

colex_order m

where n is the number of variables and m is the maximum clique size for
which the scores have been computed.

The rest of the input file contains the scores themselves, in the order specified
by the fourth line. Currently, the only supported order is the colexicographic
order (also known as the binary lexicographic order). An example of the
order for n = 4, m = 2:

0000 = {}

0001 = {1}

0010 = {2}

0011 = {1,2}

0100 = {3}

0101 = {1,3}

0110 = {2,3}

1000 = {4}

1001 = {1,4}

1010 = {2,4}

1100 = {3,4}

Note that the first score line belongs to the empty set and the score should
always be equal to 0 (probability 1). In fact, certain optimizations of Adjunct
rely on this assumption.

Cliques larger than m are treated as having 0 probability and they will not
appear in any produced networks (assuming at least ome network has a
positive probability).

DMscore

The program DMscore produces BDeu (Bayesian Dirichlet equivalent uniform)
score files from data sets. The program can be compiled similarly by running

5

make in the directory dmscore. To produce score files, run

dmscore <datafile> <equivalent sample size>

[<max clique size>]

See example.dat for an example of a data file on 8 variables and 200 records.
Each record is on a separate line and contains numeric values starting from
0 for each variable, separated by spaces.

Run e.g.

dmscore example.dat 1

to produce BDeu scores with equivalent sample size 1.

5 Output flags

Output flags control what is printed for each produced graph, i.e., the graphs
produced by maximization or sampling, or graphs read from a file or the
command line. The output is printed in the same order as the flags are
specified.

Supported flags are:

s: the decomposable score of the graph

k: the cliques and separators of the graph and their local scores

t: a textual junction tree representation of the graph

c: a compact representation of the graph, readable by Adjunct

j: the number of distinct junction trees of the graph

r: the number of distinct rooted junction trees of the graph

m: the adjacency matrix of the graph

d: a .dot file of the graph

Additional control flags may appear anywhere among the output flags:

h: print a header line before each type of output

v: verbose, print information on the progress of the computation

e: print estimates of edge probabities after sampling is complete

n: use naive sampling instead of the default adaptive sampling (this is
slower but uses no extra memory)

Default flags are -ksthv.

6

	Bayesian learning
	Building
	Usage
	Input format and DMscore
	Output flags

