
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI
MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN
FACULTY OF SCIENCE

PREDICTING THE HARDNESS OF LEARNING BAYESIAN NETWORKS
Brandon Malone, Kustaa Kangas, Matti Järvisalo, Mikko Koivisto, Petri Myllymäki

Motivation: There are various algorithms for finding a Bayesian network structure that is optimal with respect to a given scoring function. Due
to the chaotic nature of the running times of such algorithms, it is a priori not clear which algorithm will solve a given problem instance fastest.
Results: 1) We can train models that predict the running time of an algorithm on a given instance with reasonable accuracy based on features
of the instance. 2) Even very simple features admit an efficient hybrid algorithm, or portfolio, that runs the algorithm predicted to be fastest.

INTRODUCTION
BAYESIAN NETWORKS

A Bayesian network is a graphical model
on random variables X1, . . . , Xn.

The structure of a Bayesian network is a di-
rected acyclic graph (DAG) G.

A scoring function s measures how well G
fits observed data on the variables. Typical
scoring functions decompose into a sum

s(G) =
n

∑
i=1

si(Gi) ,

where Gi is the set of parents of Xi in G.

Common s: penalized likelihood, minimum
description length, BDeu, etc.

STRUCTURE LEARNING PROBLEM

Input: A set Gi of candidate parent sets for
each variable Xi and the local scores si(Gi)

for all Gi ∈ Gi.

Task: Find a DAG G such that Gi ∈ Gi and
the score s(G) is maximized. (NP-hard)

MODEL TRAINING
1. Select a set of training instances.

2. Select a set of instance features.

3. Compute the features of each instance.

4. Run all algorithms on all instances and
record their running times.

5. Using the data, learn for each algorithm
a model that maps a feature vector to a
running time prediction.

FEATURES

We consider 74 features of various types:

1. Number of variables n, number of can-
didate parent sets m = ∑n

i=1 |Gi| (typi-
cally |Gi| � 2n−1 due to pruning).

2. Sizes of Gi ∈ Gi: mean, variance, etc.

3. Properties of cyclic upper bound graphs:
average degree, number of leaves, etc.

4. Probing: Properties extracted by running
one algorithm for a few seconds: best
network found, lower bounds, etc.

PREDICTORS

We use REP trees to train two predictors:

Predictor A: Uses the features n and m.
Predictor B: Uses all features.

PORTFOLIO
Given a new instance, a simple portfolio
runs the algorithm predicted to be fastest
by predictor A. Comparison to individual
algorithms and the Virtual Best Solver that
makes perfect predictions:

 0

 100

 200

 300

 400

 500

 600

10
0

10
1

10
2

10
3

n
u

m
b

e
r

o
f

in
s
ta

n
c
e

s
 s

o
lv

e
d

time (s)

VBS
portfolio

ILP
A*
BB

Orthogonality between dominant solvers
w.r.t. n and m. Blue instances were solved
faster by ILP, red ones by A*:

 20

 30

 40

 50

 60

10
0

10
1

10
2

10
3

10
4

10
5

10
6

n
u

m
b

e
r

o
f

v
a

ri
a

b
le

s
 (

n
)

mean number of candidate parent sets (m/n)

PREDICTION
Although the simple predictor A already
admits an efficient portfolio algorithm, pre-
dictor B makes more accurate predictions:

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

p
re

d
ic

te
d
 r

u
n
ti
m

e
 (

s
)

true runtime of A* (s)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

p
re

d
ic

te
d
 r

u
n
ti
m

e
 (

s
)

true runtime of ILP (s)

ALGORITHMS
Various exact algorithms are guaranteed to
find an optimal G while avoiding exhaus-
tive search in the space of all DAGs:

Dynamic programming over variable sub-
sets finds an optimal ordering of variables
that is compatible with an optimal DAG.

A* search formulates the DP approach as a
shortest-path problem, uses admissible best-
first heuristics to prune the search space.

Integer linear programming searches a con-
vex polytope where each vertex is a feasible
solution. Cutting planes are added during
search to enforce acyclicity.

Branch and bound searches a relaxed space
of cyclic graphs and breaks cycles by branch-
ing on arcs to remove in best-first order.

