
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI
MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN
FACULTY OF SCIENCE

COUNTING LINEAR EXTENSIONS OF
SPARSE POSETS Kustaa Kangas, Teemu Hankala, Teppo Niinimäki, Mikko Koivisto

Department of Computer Science

Counting the linear extensions of a partially ordered set (poset) is a
fundamental problem with several applications. We present two exact
algorithms that target sparse posets in particular. The first algorithm

breaks the counting task into subproblems recursively. The second
algorithm uses variable elimination via inclusion–exclusion and runs
in polynomial time for posets with a cover graph of bounded treewidth.

PROBLEM RECURSIVE COUNTING
A poset P is a set of n elements ordered by a
transitive asymmetric relation <P.

For all x, y ∈ P either

1. x <P y

2. y <P x

3. x and y incomparable

An element x with no y <P x is minimal.

The cover relation ≺P is the
transitive reduction of <P.

Represented visually by
the cover graph.

A linear extension is a bijection σ : P → [n]
such that

x ≺P y⇒ σx < σy

Problem: Compute `(P), the number of
linear extensions. (#P-complete)

Denoting minimal elements by min(P),

`(P) = ∑
x∈min(P)

`(P \ x)

If P can be partitioned into pairwise
disconnected sets A and B,

`(P) = `(A) · `(B) ·
(
|P|
|A|

)

Implementations [1]:

• R1: Applies rule I, runs in O(2n)

time in the worst case

• R14-a: Applies rules I and II, often
greatly expedites R1

• R24: Applies rule II together with
other techniques [2]

I

II

Rules I and II break the poset
into subproblems recursively.

The inverse may lead to
fewer subproblems.

0 20 40 60 80 100
Percentage of posets solved

10−1

100

101

102

103

Ti
m

e
(s

)

Small average degree

R14-a
R1
R24

0 20 40 60 80 100
Percentage of posets solved

10−1

100

101

102

103

Ti
m

e
(s

)

Small maximum indegree

0 20 40 60 80 100
Percentage of posets solved

10−1

100

101

102

103

Ti
m

e
(s

)

Bipartite

VARIABLE ELIMINATION VIA INCLUSION–EXCLUSION
For every mapping σ : P→ [n] let

Φ(σ) = ∏
x≺P y

[σx < σy] .

Then, if σ is a bijection, we have

Φ(σ) =

{
1, if σ is a linear extension,
0, otherwise.

Therefore, `(P) = ∑
σ : P→ [n]
bijection

Φ(σ) .

The inclusion–exclusion principle removes
the bijectivity constraint:

`(P) =
n

∑
k = 0

(
n
k

)
(−1)n−k ∑

σ : P→ [k]
Φ(σ)

︸ ︷︷ ︸
→ can use variable elimination (e.g. [3,4])

EXAMPLE

The summation task is

∑
a,b,c,d,e

[a<c] [a<d] [b<d] [c<e] [d<e]

where a = σa , b = σb , . . .

With the elimination order (d, b, e, a, c) the sum factorizes:

∑
d

(
∑
b

[b<d]

)
︸ ︷︷ ︸

λb(d)

 ∑
e

[d<e]

(
∑
a

[a<d]

(
∑
c

[a<c][c<e]

)
︸ ︷︷ ︸

λc(a,e)

)

︸ ︷︷ ︸
λa(d,e)

︸ ︷︷ ︸
λe(d)

• Good order→ the λ are small and fast to compute

• A cover graph of low treewidth has good orders

IMPLEMENTATION

The implementation VEIE
runs in O(nt+4) time for
n elements and a cover
graph of treewidth t.

30 40 50 60 70 80 90 100
Poset size (n)

10−1

100

101

102

103

Ti
m

e
(s

)

t = 2

VEIE
R1
R14-a

30 40 50 60 70 80 90 100
Poset size (n)

10−1

100

101

102

103

Ti
m

e
(s

)

t = 3

[1] Implementation available at www.cs.helsinki.fi/u/jwkangas/lecount/
[2] M. Peczarski. New results in minimum-comparison sorting. Algorithmica, 40(2):133–145, 2004.
[3] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113(12):41–85, 1999.
[4] U. Bertelè and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.

