
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI
MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN
FACULTY OF SCIENCE

LEARNING CHORDAL MARKOV NETWORKS BY DYNAMIC PROGRAMMING
Kustaa Kangas, Teppo Niinimäki, Mikko Koivisto Department of Computer Science

Motivation: Structure learning in Markov networks asks for an undi-
rected graph that maximizes a given decomposable scoring function.
A special interest is in learning graphs that are chordal, since chordal
Markov networks (CMNs) of low width admit efficient inference.

Our contribution: We present a dynamic programming algorithm
that finds optimal CMNs on n variables in O(4n) time. Experiments
demonstrate our implementation is competitive with recent algorithms
based on constraint satisfaction [1] and linear programming [2].

INTRODUCTION
CHORDAL MARKOV NETWORKS

A Markov network:

• Undirected graph G on V = {1, . . . , n}
• Represents a joint distribution

p(x1, . . . , xn) = ∏
C∈C

ψC(xC) ,

where C is the set of (maximal) cliques of
G and ψC are mappings to positive reals.

A chordal Markov network:

• Every cycle of length ≥ 4 has an edge
between two non-consecutive vertices.

• Admits a clique tree decomposition.

STRUCTURE LEARNING PROBLEM

Given data D, i.e., samples on x1, . . . , xn, a
scoring criterion sD(G) measures how well a
chordal graph G fits D.

Common scores (e.g. maximum likelihood,
Bayesian Dirichlet) decompose as

sD(G) =
∏C∈C sD(C)
∏S∈S sD(S)

,

where S is the (multi)set of separators.

Separator: intersection of adjacent cliques
in a clique tree decomposition of G.

1

3

4

2

5

6

7

8

9

sD(8, 9)sD(2, 8)sD(1, 2, 7)sD(1, 2, 3, 4)sD(3, 5, 6)
sD(8)sD(2)sD(1, 2)sD(3)

Input: sD(A) for every A ⊆ V.

Problem: find a chordal graph G of best fit,
i.e., maximizing sD(G).

RECURRENCE
Chordal graphs admit a recursive charac-
terization of the problem.

For S ⊂ V and ∅ ⊂ R ⊆ V \ S, let f (S, R)
be the maximum sD(G) over chordal G on
S ∪ R s.t. S is a proper subset of a clique.

Then, the solution is given by f (∅, V) and

f (S, R) = max
S ⊂ C ⊆ S ∪ R

{R1, . . . , Rk} @ R \ C
S1, . . . , Sk ⊂ C

sD(C)
k

∏
i=1

f (Si, Ri)

sD(Si)
.

Dynamic programming runs in O(4n) time
and O(3n) space on simplified recurrences:

C S

R 1. Given sets S and R, choose
a clique C within R that con-
tains S completely:

f (S, R) = max
S⊂C⊆S∪R

sD(C)g(C, R \ C)

R1

R2

R3
C

2. Partition the remaining
vertices into R1, . . . , Rk:

g(C, U) = max
∅⊂R⊆U

h(C, R)g(C, U \ R)

C S

R 3. For each part R choose a
separator S contained in C.
Recurse back to step 1:

h(C, R) = max
S⊂C

f (S, R)
/

sD(S)

EXPERIMENTS
Compared to a recent constraint satisfac-
tion based algorithm [1], our C++ imple-
mentation, Junctor (*), appears to be
faster by several orders of magnitude.

We also compared against the freely avail-
able GOBNILP (**) on several instances.

SYNTHETIC INSTANCES

The running times (median for GOBNILP)
as a function of n, on sparse (top) and dense
(bottom) instances with 100 (“small”), 1000
(“medium”), and 10,000 (“large”) data
samples, bounding clique size by w. The
top red line indicates timeout or memout.

w = 3 w = 6

8 10 12 14 16 18

1s

60s

1h Junctor, any
GOBNILP, large
GOBNILP, medium
GOBNILP, small

8 10 12 14 16 18

1s

60s

1h

8 10 12 14 16 18

1s

60s

1h

8 10 12 14 16 18

1s

60s

1h

BENCHMARK INSTANCES

The running times on the following bench-
mark instances from the UCI repository.

Dataset Abbr. n Samples
Tic-tac-toe X 10 958
Poker P 11 10000
Bridges B 12 108
Flare F 13 1066
Zoo Z 17 101
Voting V 17 435
Tumor T 18 339
Lymph L 19 148

w = 3 w = 6

1s 60s 1h
Junctor

1s

60s

1h

G
O

BN
IL

P

B
F L

P
X

T
V

Z

1s 60s 1h
Junctor

1s

60s

1h

G
O

BN
IL

P

B

F

L

P
X

TV

Z

Junctor can solve instances of up to 22
variables within a few days for w = 4.

(*) Junctor is publicly available to download at
www.cs.helsinki.fi/u/jwkangas/junctor/.

(**) GOBNILP by Bartlett and Cussens [2] uses in-
teger linear programming for learning optimal
Bayesian networks, but can also be restricted to
learning chordal Markov networks.

[1] J. Corander, T. Janhunen, J. Rintanen, H. J. Nyman and J. Pensa. Learning chordal Markov networks by constraint satisfaction. NIPS,
pages 1349–1357. 2013.

[2] M. Bartlett and J. Cussens. Advances in Bayesian network learning using integer programming. UAI, pages 182–191. 2013.

