LEARNING CHORDAL MARKOV NETWORKS BY DYNAMIC PROGRAMMING
Kustaa Kangas, Teppo Niinimäki, Mikko Koivisto
Department of Computer Science

Motivation: Structure learning in Markov networks asks for an undirected graph that maximizes a given decomposable scoring function. A special interest is in learning graphs that are chordal, since chordal Markov networks (CMNs) of low width admit efficient inference.

Our contribution: We present a dynamic programming algorithm that finds optimal CMNs on n variables in $O(4^n)$ time. Experiments demonstrate our implementation is competitive with recent algorithms based on constraint satisfaction [1] and linear programming [2].

INTRODUCTION

CHORDAL MARKOV NETWORKS

A Markov network:
- Undirected graph $G = (V, E)$ on $V = \{1, \ldots, n\}$
- Represents a joint distribution $p(x_1, \ldots, x_n) = \prod_{C \subseteq V} \psi_C(x_C)$, where C is the set of (maximal) cliques of G and ψ_C are mappings to positive reals.

A chordal Markov network:
- Every cycle of length ≥ 4 has an edge between two non-consecutive vertices.
- Admits a clique tree decomposition.

STRUCTURE LEARNING PROBLEM

Given data D, i.e., samples on x_1, \ldots, x_n, a scoring criterion $s_D(G)$ measures how well a chordal graph G fits D.

Common scores (e.g. maximum likelihood, Bayesian Dirichlet) decompose as $s_D(G) = \prod_{C \in V} s_D(C)$, where C is the (multi)set of separators. Separator: intersection of adjacent cliques in a clique tree decomposition of G.

RECURRENCE

Chordal graphs admit a recursive characterization of the problem.

For $S \subseteq V$ and $\emptyset \subset R \subset V \setminus S$, let $f(S, R)$ be the maximum $s_D(G)$ over chordal G on $S \cup R$ s.t. S is a proper subset of a clique.

Then, the solution is given by $f(\emptyset, V)$ and

$$f(S, R) = \max_{S \subset C \subset S \cup R} s_D(C) g(C, R \setminus C)$$

Dynamic programming runs in $O(4^n)$ time and $O(3^n)$ space on simplified recurrences:

1. Given sets S and R, choose a clique C within R that contains S completely:

$$f(S, R) = \max_{S \subset C \subset S \cup R} s_D(C) g(C, R \setminus C)$$

2. Partition the remaining vertices into R_1, \ldots, R_k:

$$g(C, U) = \max_{\emptyset \subset R \subset U} h(C, R) g(C, U \setminus R)$$

3. For each part R choose a separator S contained in C. Recurse back to step 1:

$$h(C, R) = \max_{S \subset C} f(S, R) / s_D(S)$$

EXPERIMENTS

Compared to a recent constraint satisfaction based algorithm [1], our C++ implementation, Junctor (**), appears to be faster by several orders of magnitude.

We also compared against the freely available GOBNILP (**) on several instances.

SYNTHETIC INSTANCES

The running times (median for GOBNILP) as a function of n, on sparse (top) and dense (bottom) instances with 100 (“small”), 1000 (“medium”), and 10,000 (“large”) data samples, bound clique size by w. The top red line indicates timeout or memout.

BENCHMARK INSTANCES

The running times on the following benchmark instances from the UCI repository.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Abbr.</th>
<th>n</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tic-tac-toe</td>
<td>X</td>
<td>10</td>
<td>958</td>
</tr>
<tr>
<td>Fisher</td>
<td>F</td>
<td>11</td>
<td>1000</td>
</tr>
<tr>
<td>Bridges</td>
<td>B</td>
<td>12</td>
<td>108</td>
</tr>
<tr>
<td>Flare</td>
<td>F</td>
<td>13</td>
<td>1066</td>
</tr>
<tr>
<td>Zoo</td>
<td>Z</td>
<td>17</td>
<td>101</td>
</tr>
<tr>
<td>Voting</td>
<td>V</td>
<td>17</td>
<td>435</td>
</tr>
<tr>
<td>Tumor</td>
<td>T</td>
<td>18</td>
<td>339</td>
</tr>
<tr>
<td>Lymph</td>
<td>L</td>
<td>19</td>
<td>148</td>
</tr>
</tbody>
</table>

Junctor can solve instances of up to 22 variables within a few days for $w = 4$.

(*) Junctor is publicly available to download at www.cs.helsinki.fi/u/jekangas/junctor/.

(**) GOBNILP by Bartlett and Cussens [2] uses integer linear programming for learning optimal Bayesian networks, but can also be restricted to learning chordal Markov networks.
