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Constraint problems

Boolean satisifiability, integer linear programming etc.

NP-hard

Many instances solvable with heuristic algorithms

High variance in performance, from milliseconds to weeks

Different algorithms are fast on different instances

Typically no single best algorithm
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Algorithm selection

Algorithm selection problem

Given a problem instance, which algorithm should we run?

Ideally: run the algorithm that’s fastest on the instance

Problem: we cannot know without running the algorithms

Traditional solution: run the average-case best algorithm

Might be reasonably good

Can be very bad on some instances

Ignores algorithms that are good on some instances
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Algorithm portfolios

Idea: Use several algorithms to improve expected performance.

Algorithm portfolio

1 a collection of algorithms

2 a strategy for running them

A variety of strategies

Run all algorithms (sequentially / in parallel)

Select one algorithm based on the instance

Anything from between
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SATzilla

A highly successful SAT portfolio solver

Uses state-of-the-art SAT solvers

Trains an empirical hardness model for each algorithm

I explains how hard instances are and why
I an approximate predictor of running time
I predicts hardness based on instance features

Selects the algorithm predicted to be fastest

Performed well in 2007 SAT Competition
I 1st place in 3 categories, one 2nd place and one 3rd place
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Empirical hardness models

Where do empirical hardness models come from?

They must be learned from data:
1 a set of algorithms
2 a set of training instances
3 a set of instance features

We use machine learning to exploit correlations between features and
algorithm performance
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Empirical hardness models

problem instance x1 x2 x3 x4 x5 x6 running time

instance 1
instance 2
instance 3
instance 4
instance 5
instance 6
instance 7
instance 8
instance 9

instance 10
instance 11
instance 12

...
...

...
...

...
...

...
...
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Empirical hardness models

problem instance x1 x2 x3 x4 x5 x6 running time

instance 1 18 101 1222 6 1 16
instance 2 23 8124 241 2 1 8
instance 3 57 32 683 3 5 42
instance 4 17 435 153 4 1 10
instance 5 46 76 346 3 4 30
instance 6 57 32 327 2 11 12
instance 7 26 62149 2408 3 2 15
instance 8 70 226 498 3 4 30
instance 9 30 194 20060 5 2 25

instance 10 13 108 614 8 4 3
instance 11 36 307 556 2 5 11
instance 12 56 100 728 4 13 7

...
...

...
...

...
...

...
...
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Empirical hardness models

problem instance x1 x2 x3 x4 x5 x6 running time

instance 1 18 101 1222 6 1 16 15698
instance 2 23 8124 241 2 1 8 129
instance 3 57 32 683 3 5 42 14680
instance 4 17 435 153 4 1 10 14
instance 5 46 76 346 3 4 30 493
instance 6 57 32 327 2 11 12 7332
instance 7 26 62149 2408 3 2 15 31709
instance 8 70 226 498 3 4 30 214
instance 9 30 194 20060 5 2 25 131

instance 10 13 108 614 8 4 3 1
instance 11 36 307 556 2 5 11 2026
instance 12 56 100 728 4 13 7 60

...
...

...
...

...
...

...
...

K. Kangas (U. Helsinki) Constraint solving meetsmachine learning and data mining Algorithm portfoliosNovember 8, 2012 9 / 29



Empirical hardness models

problem instance x1 x2 x3 x4 x5 x6 running time

instance 1 18 101 1222 6 1 16 15698
instance 2 23 8124 241 2 1 8 129
instance 3 57 32 683 3 5 42 14680
instance 4 17 435 153 4 1 10 14
instance 5 46 76 346 3 4 30 493
instance 6 57 32 327 2 11 12 7332
instance 7 26 62149 2408 3 2 15 31709
instance 8 70 226 498 3 4 30 214
instance 9 30 194 20060 5 2 25 131

instance 10 13 108 614 8 4 3 1
instance 11 36 307 556 2 5 11 2026
instance 12 56 100 728 4 13 7 60

...
...

...
...

...
...

...
...

new instance

K. Kangas (U. Helsinki) Constraint solving meetsmachine learning and data mining Algorithm portfoliosNovember 8, 2012 10 / 29



Empirical hardness models

problem instance x1 x2 x3 x4 x5 x6 running time

instance 1 18 101 1222 6 1 16 15698
instance 2 23 8124 241 2 1 8 129
instance 3 57 32 683 3 5 42 14680
instance 4 17 435 153 4 1 10 14
instance 5 46 76 346 3 4 30 493
instance 6 57 32 327 2 11 12 7332
instance 7 26 62149 2408 3 2 15 31709
instance 8 70 226 498 3 4 30 214
instance 9 30 194 20060 5 2 25 131

instance 10 13 108 614 8 4 3 1
instance 11 36 307 556 2 5 11 2026
instance 12 56 100 728 4 13 7 60

...
...

...
...

...
...

...
...

new instance 62 3190 1716 3 14 5
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Empirical hardness models

problem instance x1 x2 x3 x4 x5 x6 running time

instance 1 18 101 1222 6 1 16 15698
instance 2 23 8124 241 2 1 8 129
instance 3 57 32 683 3 5 42 14680
instance 4 17 435 153 4 1 10 14
instance 5 46 76 346 3 4 30 493
instance 6 57 32 327 2 11 12 7332
instance 7 26 62149 2408 3 2 15 31709
instance 8 70 226 498 3 4 30 214
instance 9 30 194 20060 5 2 25 131

instance 10 13 108 614 8 4 3 1
instance 11 36 307 556 2 5 11 2026
instance 12 56 100 728 4 13 7 60

...
...

...
...

...
...

...
...

new instance 62 3190 1716 3 14 5 ?
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Linear regression

Not limited to just one variable

For features x1, x2, . . . , xm we fit a hyperplane fw of form

fw (x) = w1x1 + w2x2 + · · ·+ wmxm

We fit w1,w2, . . . ,wm to minimize prediction error, e.g.

n∑
i=1

(fw (xi )− yi )
2

where yi is the running time on instance i .
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Linear regression

Easily minimized by setting

w = (ΦTΦ)−1ΦT y

where Φ is the feature matrix.

Dominated by matrix inversion, which is O(n3)

Used by SATzilla

Simple and works well in practice
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Identifying features

Success of the model depends crucially on the features.

Features must be

Correlated with running time

Cheap to compute
I Feature computation is part of portfolio’s running time!

How do we find such features?

Features are problem-specific

No automatic way to find them

Requires domain expertise
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SAT features

SATzilla uses 84 features related to e.g.

instance size
I number of variables, number of clauses
I ratio between these two

balance
I ratio of positive and negative literals
I fraction of binary and ternary clauses

variable–clause graph
I variable degrees: average, min, max
I clause degrees: average, min, max

local search probe statistics
I number of steps to a local optimum
I average improvement per step

proximity to Horn formula
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Feature selection

Features can be

uninformative: no correlation with running time

redundant: highly correlated with other features

Problematic:

Unnecessary feature computation

Learned models are harder to interpret

Regression becomes unstable
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Feature selection

Useless features can be pruned automatically

A subset of features can be evaluated by cross-validation

Exhaustive search of all subsets
I Infeasible for many features

Greedy heuristic search

I Forward selection: start with no features, add greedily
I Backward elimination: start with all features, remove greedily
I Sequential replacement: add and replace greedily
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Basis function expansion

Linear regression is limited to linear correlations.

Problematic: not all useful correlations are linear

Generalizing regression gets complicated

Quadratically dependent on x
⇐⇒ linearly dependent on x2

Solution: add functions of original features

Known as basis function expansion
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Basis function expansion

SATzilla uses quadratic expansion:

Add all pairwise products of features

Number of features can explode: 842 = 7056

Regression becomes slow

Can lead to overfitting

Many new features are useless: feature selection before and after
expansion!
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Terminated runs

What if gathering running time data takes too long?

Algorithms can run literally for weeks

Such runs must be terminated prematurely

How to use these runs to build models?
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Terminated runs

Solution 1: discard all such runs

Not very sensible

We want to learn that such instances are hard

Solution 2: pretend they stopped at the cutoff limit

Better: takes hardness into account

Still systematically underestimates hardness
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Terminated runs

Solution 3: treat cutoff times as lower bounds

Known as censoring in statistics

Makes use of all information available
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Algorithm portfolios

Have been applied to various constraint problems:

Boolean satisfiability (SAT)

MaxSAT

Mixed integer programming

Constraint satisfaction (CSP)

Combinatorial auctions

Answer set programming

Zero-one integer programming
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Conclusions

Algorithm portfolios can improve expected performance when no
single algorithm is dominant.

Particularly useful for NP-hard constraint problems where the running
times exhibit high variance.

In addition to predicting running time, empirical hardness models are
valuable tools for understanding the hardness of problems.
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