Dynamic programming

- Solves a complex problem by breaking it down into subproblems
- Each subproblem is broken down recursively until a trivial problem is reached
- Computation itself is not recursive: problems
 are solved from simple to more complex
 - Trivial problems are solved first
 - More complex solutions are composed from the simpler solutions already computed

Dynamic programming

- Applicable efficiently when
 - Composing more complex solutions from subproblems solutions is fast (linear time)
 - Subproblems are *overlapping*: a single solution is required to solve several other subproblems
 - Has a clear advantage over recursion
 - Has optimal substructure
 - Each level of subproblems is only slightly more complex than the lower level
 - See Principle of optimality, Bellman equation etc.

Polynomial time algorithms

- Floyd-Warshall algorithm
- CYK algorithm
- Levenshtein distance
- Viterbi algorithm
- Several string algorithms

Exponential time algorithms

- Useful for many problems where search space is superexponential in the input size n
 - Permutation problems, O*(n!)
 - Example: Travelling salesman problem
 - Partition problems, $O^*(n^n)$
 - Example: Graph coloring problem
- Typically solved dynamically by identifying subproblems on subsets of the original problem
 - The number of subsets is "only" exponential in n

Travelling salesman problem

- Given an undirected weighed graph (*V*, *E*) of *n* vertices, find a cycle of minimum weight that visits each vertex in *V* exactly once
- A permutation problem: brute-force search enumerates all permutations of vertices, running in time O*(n!)
- Associated decision problem is NP-complete
- With dynamic programming we can solve the problem in time $O^*(2^n)$

- We first choose an arbitrary starting vertex $s \in V$
- For each nonempty U ⊂ V and e ∈ U we compute OPT[U,e], the length of the shortest tour starting in s, visiting all vertices in U and ending in e
- For $|U| = \{e\}$ we trivially set OPT[U,e] = d(s,e)
- For |U| > 1, u ∈ U \ {e}, if a tour containing the edge (u,e) is optimal, the tour on U \ {e} ending in u must be optimal as well
- Thus, for |U| > 1, OPT[U,e] is the minimum of $OPT[U \setminus \{e\},u] + d(u,e)$ over all $u \in U \setminus \{e\}$

- To compute OPT[U,e], we need the values $OPT[U \setminus \{e\}, u]$ for all $u \in U \setminus \{e\}$
 - We compute *OPT* in the order of increasing size of *U* to ensure the values are already computed
 - Computing a single value takes *O*(*n*) time
- Finally, OPT[V,s] is the solution to the problem
- The number of subsets is $O(2^n)$ and for each we evaluate the recurrence O(n) times
- Total running time is $O(2^n n^2) = O^*(2^n)$

TSP in bounded degree graphs

- Despite its age the dynamic solution is still the best we have
- It's unknown whether a faster algorithm exists
- In some interesting special cases we can can solve TSP in time $O^*((2 \varepsilon)^n)$ for some $\varepsilon > 0$
- E.g. graphs with bounded maximum degree \varDelta
 - For cubic graphs ($\Delta = 3$) a branching algorithm solves TSP in time $O^*(1.251^n)$
 - For $\Delta = 4$ we can do it in $O^*(1.733^n)$

TSP in bounded degree graphs

- For $\Delta > 4$ a more recent result bounds the time by $O^*((2 - \varepsilon)^n)$ where $\varepsilon > 0$ depends only on Δ
- Observation: the dynamic algorithm needs to evaluate only tours on *connected sets*
 - $U \subset V$ is a connected set if G[U] is connected
 - Connectedness can be checked in O(n) time
- This yields the running time O*(|C|) where C is the family of connected sets of the graph
- Analysis is reduced to estimating the size of C

Connected sets

TSP in bounded degree graphs

- For an *n*-vertex graph of maximum degree Δ we can show that $|C| = O((2^{\Delta + 1} 1)^{n/(\Delta + 1)})$
- A lemma derived from Shearer's inequality:
 - Let V be a finite set with subsets $A_1, ..., A_k$ such that each $v \in V$ is in at least δ subsets
 - Let *F* be a family of subsets of *V*
 - Let $F_i = \{S \cap A_i : S \in F\}$ for all i = 1..k
 - Then, $|F|^{\delta}$ is at most the product of $|F_i|$ over i = 1..k

TSP in bounded degree graphs

- For each v ∈ V we (initially) define A_v as the closed neighborhood of v
- For each $u \in V$ with the degree $d(u) < \Delta$ we add u in $\Delta d(u)$ sets A_v , chosen arbitrarily
 - Now each $v \in V$ is contained in Δ + 1 subsets
- Define $C' = C \setminus \{\{v\} : v \in V\}$
- And the projections C_v = {S ∩ A_v : S ∈ C} for each v ∈ V

TSP in bounded degree graphs

- Observe that for each $v \in V$ the set C_v does not contain $\{v\}$ since all sets in C' are connected
- Thus, the size of C_v is at most $2^{|Av|} 1$
- Shearer: $|C'|^{\Delta+1}$ is at most the product of $2^{|Av|} 1$ over $v \in V$
- With Jensen's inequality we can bound the product (and thus |C'|^{Δ+1}) by (2^{Δ+1} − 1)ⁿ
- Thus, the size of |C'| is at most $(2^{\Delta+1}-1)^{n/(\Delta+1)}$
- |C| = |C'| + n, yielding the claimed bound

Time-space tradeoff

- In practical applications space complexity is often a greater problem than time
 - Dynamic TSP needs exponential space
- A recursive algorithm that finds similar subtours runs in O*(4ⁿn^{log n}) time and polynomial space
 - By switching from recursion to dynamic programming for small subproblems we get a more balanced tradeoff
- Integer-TSP can also be solved in polynomial space and time within a polynomial factor of the number of *connected dominating* sets

Graph coloring

- A k-coloring of an undirected graph G = (V,E) assigns one of k colors to each v ∈ V such that all adjacent vertices have different colors
- The smallest k with a k-coloring is called the chromatic number of G and denoted by χ(G)
- The graph coloring problem asks for either $\chi(G)$ or an *optimal coloring*, using $\chi(G)$ colors
- A partition problem: brute-force search enumerates all partitions of vertices to color classes in O^{*}(χ(G)ⁿ) time
- In the worst case $\chi(G) = n$ and the running time is $O^*(n^n)$
- Dynamic programming solves the problem in O*(2.4423ⁿ)

Optimal coloring of Petersen graph

Dynamic graph coloring

- Recall independent sets
 - A subset of vertices *I* ⊂ *V* is an *independent set* if *I* contains no adjacent vertices
 - *I* is *maximal* if no proper superset of *I* is independent
- Observation:
 - A *k*-coloring is a partition of *V* into independent sets
 - Each *k*-coloring can be modified so that at least one set is maximally independent (without increasing *k*)
 - Consequently, there is an optimal coloring with a maximally independent set

Dynamic graph coloring

- For each $U \subset V$ we find $OPT[U] = \chi(G[U])$, the chromatic number of the subgraph induced by U
- Trivially, $OPT[\emptyset] = 0$
- For |U| > 0, an optimal coloring consists of a maximal independent set *I* and an optimal coloring on the remaining vertices in G[U \ I]
- Thus, OPT[U] is the minimum of 1 + OPT[U \ I] over the maximally independent sets I of G[U]
- By computing in the order of increasing size of U, we ensure we already have the values OPT[U \ I]

Dynamic graph coloring

- To compute *OPT[U*] we also need to enumerate all maximal independent sets of *G[U*]
- This can be done within a polynomial factor of the number of such sets, which for a subgraph of *i* vertices is at most 3^{i/3}
- The total number of maximal independent sets over all induced subgraphs of an *n*-vertex graph is at most $(1 + 3^{1/3})^n = O(2.4423^n)$, and for each we need $n^{O(1)}$ steps, yielding the claimed bound
- Finally, $OPT[V] = \chi(G)$

Conclusion

- Dynamic programming solves a complex problem by breaking it into simpler subproblems
- Subproblems overlap: we compute from simpler to more complex, storing solutions in memory to avoid recomputation
- We can sometimes solve problems with superexponential search space in exponential time, often running on subsets of the problem (e.g. TSP, graph coloring)
- Sometimes we can ignore special subsets and get a more efficient exponential time solution
- Space complexity is often the most restrictive factor