
  

Dynamic programming

● Solves a complex problem by breaking it down 
into subproblems

● Each subproblem is broken down recursively 
until a trivial problem is reached

● Computation itself is not recursive: problems 
are solved from simple to more complex
● Trivial problems are solved first
● More complex solutions are composed from the 

simpler solutions already computed



  

Dynamic programming

● Applicable efficiently when
● Composing more complex solutions from 

subproblems solutions is fast (linear time)
● Subproblems are overlapping: a single solution is 

required to solve several other subproblems
– Has a clear advantage over recursion

● Has optimal substructure
– Each level of subproblems is only slightly more complex 

than the lower level
– See Principle of optimality, Bellman equation etc.



  

Polynomial time algorithms

● Floyd-Warshall algorithm
● CYK algorithm
● Levenshtein distance
● Viterbi algorithm
● Several string algorithms



  

Exponential time algorithms

● Useful for many problems where search space 
is superexponential in the input size n
● Permutation problems, O*(n!)

– Example: Travelling salesman problem
● Partition problems, O*(nn)

– Example: Graph coloring problem

● Typically solved dynamically by identifying 
subproblems on subsets of the original problem
● The number of subsets is ”only” exponential in n



  

Travelling salesman problem

● Given an undirected weighed graph (V, E) of n 
vertices, find a cycle of minimum weight that 
visits each vertex in V exactly once

● A permutation problem: brute-force search 
enumerates all permutations of vertices, 
running in time O*(n!)

● Associated decision problem is NP-complete
● With dynamic programming we can solve the 

problem in time O*(2n)



  

Dynamic TSP

● We first choose an arbitrary starting vertex s  V∈
● For each nonempty U  ⊂ V and e  ∈ U we compute 

OPT[U,e], the length of the shortest tour starting in 
s, visiting all vertices in U and ending in e

● For |U| = {e} we trivially set OPT[U,e] = d(s,e)
● For |U| > 1, u  ∈ U \ {e}, if a tour containing the edge 

(u,e) is optimal, the tour on U \ {e} ending in u must 
be optimal as well

● Thus, for |U| > 1, OPT[U,e] is the minimum of 
OPT[U \ {e},u] + d(u,e) over all u  ∈ U \ {e}
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Dynamic TSP

● To compute OPT[U,e], we need the values 
OPT[U \ {e},u] for all u  ∈ U \ {e}
● We compute OPT in the order of increasing size of 

U to ensure the values are already computed
● Computing a single value takes O(n) time

● Finally, OPT[V,s] is the solution to the problem
● The number of subsets is O(2n) and for each 

we evaluate the recurrence O(n) times
● Total running time is O(2nn2) = O*(2n)



  

TSP in bounded degree graphs

● Despite its age the dynamic solution is still the 
best we have

● It's unknown whether a faster algorithm exists
● In some interesting special cases we can can 

solve TSP in time O*((2 − ε)n) for some ε > 0
● E.g. graphs with bounded maximum degree Δ

● For cubic graphs (Δ = 3) a branching algorithm 
solves TSP in time O*(1.251n)

● For Δ = 4 we can do it in O*(1.733n)



  

TSP in bounded degree graphs

● For Δ > 4 a more recent result bounds the time 
by O*((2 − ε)n) where ε > 0 depends only on Δ

● Observation: the dynamic algorithm needs to 
evaluate only tours on connected sets
● U  ⊂ V is a connected set if G[U] is connected
● Connectedness can be checked in O(n) time

● This yields the running time O*(|C|) where C is 
the family of connected sets of the graph

● Analysis is reduced to estimating the size of C



  

Connected sets



  

TSP in bounded degree graphs

● For an n-vertex graph of maximum degree Δ 
we can show that |C| = O((2Δ + 1 – 1)n  / (Δ + 1))

● A lemma derived from Shearer's inequality:
● Let V be a finite set with subsets A1, ..., Ak such that 

each v ∈ V is in at least δ subsets
● Let F be a family of subsets of V
● Let Fi = {S ∩ Ai : S ∈ F} for all i = 1..k

● Then, |F|δ is at most the product of |Fi| over i = 1..k



  

TSP in bounded degree graphs

● For each v ∈ V we (initially) define Av as the 
closed neighborhood of v

● For each u ∈ V with the degree d(u) < Δ we 
add u in Δ – d(u) sets Av, chosen arbitrarily
● Now each v ∈ V is contained in Δ + 1 subsets

● Define C' = C \ {{v} : v ∈ V}

● And the projections Cv = {S ∩ Av : S ∈ C'} for 
each v ∈ V



  

Projection, Δ = 3
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Projection, Δ = 3



  

TSP in bounded degree graphs

● Observe that for each v ∈ V the set Cv does not 
contain {v} since all sets in C' are connected

● Thus, the size of Cv is at most 2|Av | – 1

● Shearer: |C'|Δ + 1 is at most the product of 2|Av | – 1 
over v ∈ V

● With Jensen's inequality we can bound the 
product (and thus |C'|Δ + 1) by (2Δ + 1 – 1)n

● Thus, the size of |C'| is at most (2Δ + 1 – 1)n  / (Δ + 1)

● |C| = |C'| + n, yielding the claimed bound



  

Time-space tradeoff

● In practical applications space complexity is often 
a greater problem than time
● Dynamic TSP needs exponential space

● A recursive algorithm that finds similar subtours 
runs in O*(4nnlog n) time and polynomial space
● By switching from recursion to dynamic programming 

for small subproblems we get a more balanced tradeoff

● Integer-TSP can also be solved in polynomial 
space and time within a polynomial factor of the 
number of connected dominating sets



  

Graph coloring

● A k-coloring of an undirected graph G = (V,E) assigns one 
of k colors to each v  ∈ V such that all adjacent vertices 
have different colors

● The smallest k with a k-coloring is called the chromatic 
number of G and denoted by χ(G)

● The graph coloring problem asks for either χ(G) or an 
optimal coloring, using χ(G) colors

● A partition problem: brute-force search enumerates all 
partitions of vertices to color classes in O*(χ(G)n) time

● In the worst case χ(G) = n and the running time is O*(nn)
● Dynamic programming solves the problem in O*(2.4423n)



  

Optimal coloring of Petersen graph



  

Dynamic graph coloring

● Recall independent sets
● A subset of vertices I  ⊂ V is an independent set if I 

contains no adjacent vertices
● I is maximal if no proper superset of I is independent

● Observation:
● A k-coloring is a partition of V into independent sets
● Each k-coloring can be modified so that at least one 

set is maximally independent (without increasing k)
● Consequently, there is an optimal coloring with a 

maximally independent set



  

Dynamic graph coloring

● For each U  ⊂ V we find OPT[U] = χ(G[U]), the 
chromatic number of the subgraph induced by U

● Trivially, OPT[Ø] = 0
● For |U| > 0, an optimal coloring consists of a 

maximal independent set I and an optimal coloring 
on the remaining vertices in G[U \ I]

● Thus, OPT[U] is the minimum of 1 + OPT[U \ I] over 
the maximally independent sets I of G[U]

● By computing in the order of increasing size of U, 
we ensure we already have the values OPT[U \ I]



  

Dynamic graph coloring

● To compute OPT[U] we also need to enumerate 
all maximal independent sets of G[U]

● This can be done within a polynomial factor of 
the number of such sets, which for a subgraph of 
i vertices is at most 3i / 3

● The total number of maximal independent sets 
over all induced subgraphs of an n-vertex graph 
is at most (1 + 31 / 3)n = O(2.4423n), and for each 
we need nO(1) steps, yielding the claimed bound

● Finally, OPT[V] = χ(G)



  

Conclusion

● Dynamic programming solves a complex problem by 
breaking it into simpler subproblems

● Subproblems overlap: we compute from simpler to more 
complex, storing solutions in memory to avoid 
recomputation

● We can sometimes solve problems with superexponential 
search space in exponential time, often running on 
subsets of the problem (e.g. TSP, graph coloring)

● Sometimes we can ignore special subsets and get a 
more efficient exponential time solution

● Space complexity is often the most restrictive factor
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