

Dynamic programming

● Solves a complex problem by breaking it down
into subproblems

● Each subproblem is broken down recursively
until a trivial problem is reached

● Computation itself is not recursive: problems
are solved from simple to more complex
● Trivial problems are solved first
● More complex solutions are composed from the

simpler solutions already computed

Dynamic programming

● Applicable efficiently when
● Composing more complex solutions from

subproblems solutions is fast (linear time)
● Subproblems are overlapping: a single solution is

required to solve several other subproblems
– Has a clear advantage over recursion

● Has optimal substructure
– Each level of subproblems is only slightly more complex

than the lower level
– See Principle of optimality, Bellman equation etc.

Polynomial time algorithms

● Floyd-Warshall algorithm
● CYK algorithm
● Levenshtein distance
● Viterbi algorithm
● Several string algorithms

Exponential time algorithms

● Useful for many problems where search space
is superexponential in the input size n
● Permutation problems, O*(n!)

– Example: Travelling salesman problem
● Partition problems, O*(nn)

– Example: Graph coloring problem

● Typically solved dynamically by identifying
subproblems on subsets of the original problem
● The number of subsets is ”only” exponential in n

Travelling salesman problem

● Given an undirected weighed graph (V, E) of n
vertices, find a cycle of minimum weight that
visits each vertex in V exactly once

● A permutation problem: brute-force search
enumerates all permutations of vertices,
running in time O*(n!)

● Associated decision problem is NP-complete
● With dynamic programming we can solve the

problem in time O*(2n)

Dynamic TSP

● We first choose an arbitrary starting vertex s V∈
● For each nonempty U ⊂ V and e ∈ U we compute

OPT[U,e], the length of the shortest tour starting in
s, visiting all vertices in U and ending in e

● For |U| = {e} we trivially set OPT[U,e] = d(s,e)
● For |U| > 1, u ∈ U \ {e}, if a tour containing the edge

(u,e) is optimal, the tour on U \ {e} ending in u must
be optimal as well

● Thus, for |U| > 1, OPT[U,e] is the minimum of
OPT[U \ {e},u] + d(u,e) over all u ∈ U \ {e}

Dynamic TSP

Dynamic TSP

Dynamic TSP

Dynamic TSP

Dynamic TSP

Dynamic TSP

● To compute OPT[U,e], we need the values
OPT[U \ {e},u] for all u ∈ U \ {e}
● We compute OPT in the order of increasing size of

U to ensure the values are already computed
● Computing a single value takes O(n) time

● Finally, OPT[V,s] is the solution to the problem
● The number of subsets is O(2n) and for each

we evaluate the recurrence O(n) times
● Total running time is O(2nn2) = O*(2n)

TSP in bounded degree graphs

● Despite its age the dynamic solution is still the
best we have

● It's unknown whether a faster algorithm exists
● In some interesting special cases we can can

solve TSP in time O*((2 − ε)n) for some ε > 0
● E.g. graphs with bounded maximum degree Δ

● For cubic graphs (Δ = 3) a branching algorithm
solves TSP in time O*(1.251n)

● For Δ = 4 we can do it in O*(1.733n)

TSP in bounded degree graphs

● For Δ > 4 a more recent result bounds the time
by O*((2 − ε)n) where ε > 0 depends only on Δ

● Observation: the dynamic algorithm needs to
evaluate only tours on connected sets
● U ⊂ V is a connected set if G[U] is connected
● Connectedness can be checked in O(n) time

● This yields the running time O*(|C|) where C is
the family of connected sets of the graph

● Analysis is reduced to estimating the size of C

Connected sets

TSP in bounded degree graphs

● For an n-vertex graph of maximum degree Δ
we can show that |C| = O((2Δ + 1 – 1)n / (Δ + 1))

● A lemma derived from Shearer's inequality:
● Let V be a finite set with subsets A1, ..., Ak such that

each v ∈ V is in at least δ subsets
● Let F be a family of subsets of V
● Let Fi = {S ∩ Ai : S ∈ F} for all i = 1..k

● Then, |F|δ is at most the product of |Fi| over i = 1..k

TSP in bounded degree graphs

● For each v ∈ V we (initially) define Av as the
closed neighborhood of v

● For each u ∈ V with the degree d(u) < Δ we
add u in Δ – d(u) sets Av, chosen arbitrarily
● Now each v ∈ V is contained in Δ + 1 subsets

● Define C' = C \ {{v} : v ∈ V}

● And the projections Cv = {S ∩ Av : S ∈ C'} for
each v ∈ V

Projection, Δ = 3

Projection, Δ = 3

Projection, Δ = 3

Projection, Δ = 3

Projection, Δ = 3

TSP in bounded degree graphs

● Observe that for each v ∈ V the set Cv does not
contain {v} since all sets in C' are connected

● Thus, the size of Cv is at most 2|Av | – 1

● Shearer: |C'|Δ + 1 is at most the product of 2|Av | – 1
over v ∈ V

● With Jensen's inequality we can bound the
product (and thus |C'|Δ + 1) by (2Δ + 1 – 1)n

● Thus, the size of |C'| is at most (2Δ + 1 – 1)n / (Δ + 1)

● |C| = |C'| + n, yielding the claimed bound

Time-space tradeoff

● In practical applications space complexity is often
a greater problem than time
● Dynamic TSP needs exponential space

● A recursive algorithm that finds similar subtours
runs in O*(4nnlog n) time and polynomial space
● By switching from recursion to dynamic programming

for small subproblems we get a more balanced tradeoff

● Integer-TSP can also be solved in polynomial
space and time within a polynomial factor of the
number of connected dominating sets

Graph coloring

● A k-coloring of an undirected graph G = (V,E) assigns one
of k colors to each v ∈ V such that all adjacent vertices
have different colors

● The smallest k with a k-coloring is called the chromatic
number of G and denoted by χ(G)

● The graph coloring problem asks for either χ(G) or an
optimal coloring, using χ(G) colors

● A partition problem: brute-force search enumerates all
partitions of vertices to color classes in O*(χ(G)n) time

● In the worst case χ(G) = n and the running time is O*(nn)
● Dynamic programming solves the problem in O*(2.4423n)

Optimal coloring of Petersen graph

Dynamic graph coloring

● Recall independent sets
● A subset of vertices I ⊂ V is an independent set if I

contains no adjacent vertices
● I is maximal if no proper superset of I is independent

● Observation:
● A k-coloring is a partition of V into independent sets
● Each k-coloring can be modified so that at least one

set is maximally independent (without increasing k)
● Consequently, there is an optimal coloring with a

maximally independent set

Dynamic graph coloring

● For each U ⊂ V we find OPT[U] = χ(G[U]), the
chromatic number of the subgraph induced by U

● Trivially, OPT[Ø] = 0
● For |U| > 0, an optimal coloring consists of a

maximal independent set I and an optimal coloring
on the remaining vertices in G[U \ I]

● Thus, OPT[U] is the minimum of 1 + OPT[U \ I] over
the maximally independent sets I of G[U]

● By computing in the order of increasing size of U,
we ensure we already have the values OPT[U \ I]

Dynamic graph coloring

● To compute OPT[U] we also need to enumerate
all maximal independent sets of G[U]

● This can be done within a polynomial factor of
the number of such sets, which for a subgraph of
i vertices is at most 3i / 3

● The total number of maximal independent sets
over all induced subgraphs of an n-vertex graph
is at most (1 + 31 / 3)n = O(2.4423n), and for each
we need nO(1) steps, yielding the claimed bound

● Finally, OPT[V] = χ(G)

Conclusion

● Dynamic programming solves a complex problem by
breaking it into simpler subproblems

● Subproblems overlap: we compute from simpler to more
complex, storing solutions in memory to avoid
recomputation

● We can sometimes solve problems with superexponential
search space in exponential time, often running on
subsets of the problem (e.g. TSP, graph coloring)

● Sometimes we can ignore special subsets and get a
more efficient exponential time solution

● Space complexity is often the most restrictive factor

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

