
Counting Linear Extensions of
Sparse Posets

Kustaa Kangas

October 20, 2016

Papers

I Kustaa Kangas, Teemu Hankala, Teppo Niinimäki,
and Mikko Koivisto. Counting linear extensions of
sparse posets, IJCAI’16

I Eduard Eiben, Robert Ganian, Kustaa Kangas, and
Sebastian Ordyniak. Counting linear extensions:
Parameterizations by treewidth, ESA’16

Partially ordered set (poset)

A finite set + a reflexive, antisymmetric, transitive relation

Partially ordered set (poset)

Cover relation / cover graph (transitive reduction)

Linear extensions

Linear order: all pairs are comparable

Linear extensions

A linear extension = order preserving permutation

Counting linear extensions

Determining the number of linear extensions of a given
poset is #P-complete (Brightwell & Winkler, ’91)

(by reduction from #3SAT)

Motivation

Classic application: sorting

Other uses: preference reasoning, planning, convex rank
tests, sequence analysis, ...

Motivation

Sampling Bayesian networks from a posterior distribution

Motivation

Markov Chain Monte Carlo
I States are DAGs
I Stationary distribution is the posterior

Order MCMC:
I States are linear orders
I Sample first an order, then a compatible DAG
I Faster mixing but requires bias correction via

counting linear extensions of sampled DAGs

Known algorithms

Trivial solution: enumerate all orders (factorial time)

The best we can do is O(2nn) time for n elements

Polynomial time for special cases:
I Polytrees
I Series-parallel
I Bounded width
I Bounded decomposition diameter
I N-free orders of bounded activity

A fpras also exists

First paper

We give two algorithms, exploiting sparsity of the poset

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

First paper

We give two algorithms, exploiting sparsity of the poset

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

Recursive counting

`(P) = the number of linear extensions of poset P

A simple observation:

`(P) =
∑

x ∈min(P)

`(P \ x)

Recursive counting

P \ a P \ b

P

Recursive counting

If A and B partition P and are mutually disconnected, then

`(P) = `(A) · `(B) ·
(
|P|
|A|

)

Recursive counting

A B

P

Recursive counting

Deciding whether to transpose is not trivial.

We consider two heuristics
1. Only count minimal and maximal elements
2. Estimate the size of subproblem space recursively

In practice both heuristics almost always make the better
choice.

Recursive counting

`(P) = the number of linear extensions of poset P

Rule 1 `(P) =
∑

x ∈min(P)

`(P \ x)

Rule 2 `(P) =
∑
(D,U)

`(D) · `(U)

Rule 3 `(P) =
k∏

i=1

`(Si)

Rule 4 `(P) = `(A) · `(B) ·
(
|P|
|A|

)

Recursive counting
Experiments on sparse posets for n = 30, . . . ,100

0 20 40 60 80 100
Percentage of posets solved

10−1

100

101

102

103

Ti
m

e
(s

)

R14-a
R134
R1
R24

Recursive counting
Experiments on sparse posets for n = 30, . . . ,100

10−1 100 101 102 103

Running time of R14-worst (s)

10−1

100

101

102

103

R
un

ni
ng

tim
e

of
R

14
-b

es
t(

s)

First paper

We give two algorithms, exploiting sparsity of the poset

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

Variable elimination
∑

a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f)

Variable elimination
∑

a,b,c,d ,e

φ1(a,b,d) φ2(a, c) φ3(b, c,e)
∑

f

φ4(d , f)

Variable elimination
∑

a,b,c,d ,e

φ1(a,b,d) φ2(a, c) φ3(b, c,e) λ1(d)

Variable elimination
∑

a,b,c,e

φ2(a, c) φ3(b, c,e)
∑

d

φ1(a,b,d) λ1(d)

Variable elimination
∑

a,b,c,e

φ2(a, c) φ3(b, c,e) λ2(a,b)

Variable elimination

∑
a

(∑
b

((∑
e
φ3(b, c, e)

(∑
c
φ2(a, c)

))(∑
d

φ1(a, b, d)

(∑
f

φ4(d , f)

))))

Elimination order matters!

Variable elimination
∑

a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f)

Variable elimination
∑

a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f)

Variable elimination
∑

a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f)

Polynomial time for bounded treewidth

Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy]

Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy]

Φ(σ) = [σa < σc] [σa < σd] [σb < σd] [σc < σe] [σd < σe]

Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy]

Then,

Φ(σ) =

{
1, if σ is a linear extension,
0, otherwise.

Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy]

Then,

Φ(σ) =

{
1, if σ is a linear extension,
0, otherwise.

As a consequence

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

Can’t apply variable elimination because of the bijectivity
constraint.

Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

=
∑

X ⊆ [n]

(−1)n−|X |
∑

σ :P→X

Φ(σ)

=
n∑

k=0

(
n
k

)
(−1)n−k

∑
σ :P→ [k]

Φ(σ)

Inclusion–exclusion principle

Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

=
∑

X ⊆ [n]

(−1)n−|X |
∑

σ :P→X

Φ(σ)

=
n∑

k=0

(
n
k

)
(−1)n−k

∑
σ :P→ [k]

Φ(σ)

O(nt+4) time for treewidth t

Variable elimination
VEIE: Variable elimination via inclusion–exclusion

30 40 50 60 70 80 90 100
Poset size (n)

10−1

100

101

102

103

Ti
m

e
(s

)

t = 2

VEIE
R1
R14-a

Parameterized complexity

Let n be input size and k an additional numerical
parameter of the input.

I XP: problems solvable in time nf (k)

I FPT: problems solvable in time f (k) · nO(1).

Problems in FPT are called fixed-parameter tractable.

Parameterized complexity

Results: Counting linear extensions is...

I W[1]-hard when parameterized by the treewidth of
the cover graph

I in FPT when parameterized by the treewidth of the
incomparability graph

A W[1]-hard problem is not in FPT unless FPT = W[1].

Summary

I Recursion: often fast in practice
I Variable elimination: polynomial time for bounded

treewidth

Thank you!

