
Heuristic search

Weighted A∗

Kustaa Kangas

October 17, 2013

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 1 / 47



Weighted A∗

Weighted A∗ search – unifying view and application

Rüdiger Ebendt, Rolf Drechsler, 2009

Weighted A∗

Weight the heuristic to quickly direct the search.

Save time, get bounded suboptimality in exchange.

Outline

1 Three approaches: WA∗, DWA∗, A∗ε
2 Unifying view

3 Monotone heuristic

4 Approximate BDD minimization

5 Experiments

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 2 / 47



Standard A∗

Standard A∗

f (q) = g(q) + h(q)

Finds an optimal path if h is admissible, i.e. h(q) ≤ h∗(q).

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 3 / 47



Constant inflation

WA∗: constant inflation

f ↑(q) = g(q) + (1 + ε)h(q)

where ε ≥ 0.

If h is admissible, then WA∗ is ε-admissible, i.e.

g(q) ≤ (1 + ε)C ∗

for all expanded q where C ∗ is the length of an optimal path.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 4 / 47



ε-admissibility

If h is admissible, then WA∗ is ε-admissible.

Proof.

Let s . . . q . . . t be an optimal path where q is the first node of the path in
the open list. Assume a goal state t is expanded. This can happen only if

g(t) = f (t) ≤ f (q)
= g(q) + (1 + ε)h(q)
≤ g∗(q) + (1 + ε)h∗(q)
≤ (1 + ε)(g∗(q) + h∗(q))
= (1 + ε)C ∗

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 5 / 47



Dynamic weighting

DWA∗: Dynamic weighting

f DW (q) = g(q) +

(
1 + ε ·

[
1− d(q)

N

])
h(q)

where

d(q) depth of q

N depth of optimal solution

Idea: as the search goes deeper, emphasize the heuristic less.

How do we get N?

Sometimes known beforehand: e.g. BDD minimization.

Generally not known: use an upper bound.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 6 / 47



A∗ε

Keep the original cost function

f (q) = g(q) + h(q)

Instead of expanding q with the smallest f (q), define

FOCAL =

{
q ∈ OPEN | f (q) ≤ (1 + ε) · min

r∈OPEN
f (r)

}
Use another heuristic hF to choose a minimum from FOCAL, i.e.

q̂ = arg min
q∈FOCAL

hF (q)

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 7 / 47



A∗ε

f (q) = g(q) + h(q)

q̂ = arg min
q∈FOCAL

hF (q)

Original idea:

h estimates solution cost

hF estimates remaining search effort

Suggestions for hF :

hF = h

hF (q) = N − d(q)

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 8 / 47



Unifying view

f (q) = g(q) + h(q)

FOCAL =

{
q ∈ OPEN | f (q) ≤ (1 + ε) · min

r∈OPEN
f (r)

}

WA∗ and DWA∗ are actually special cases of A∗ε

hF (q) = f ↑(q) = g(q) + (1 + ε)h(q) WA∗

hF (q) = f DW (q) = g(q) +
(

1 + ε ·
[
1− d(q)

N

])
h(q) DWA∗

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 9 / 47



Unifying view

A∗ε is a unifying framework.

Any result for A∗ε follows for WA∗ and DWA∗

I e.g. ε-admissibility

Makes the approaches comparable (same f )

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 10 / 47



Unifying view

Concern: what if weighted A∗ expands many q with

C ∗ ≤ f (q) ≤ (1 + ε)C ∗

Could overcome the advantages of directing the search.

General A∗ε makes no guarantees.

For WA∗ and DWA∗ this happens relatively rarely.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 11 / 47



Monotone heuristic

Monotone heuristic

If for every state q and its descendant q′

h(q) ≤ c(q, q′) + h(q′)

the heuristic is monotone or consistent.

A∗ with a monotone heuristic

When q is expanded, g(q) = g∗(q)

Expanded states are never reopened

Does this hold for weighted A∗?

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 12 / 47



Monotone heuristic

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 13 / 47



Monotone heuristic

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 14 / 47



Monotone heuristic

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 15 / 47



Monotone heuristic

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 16 / 47



Monotone heuristic

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 17 / 47



Monotone heuristic

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 18 / 47



Monotone heuristic

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 19 / 47



Monotone heuristic

Turns out no. However, we do get the bound

g(q) ≤ (1 + ε)g∗(q) + ε · h(q)

for all expanded q.

Weighted A∗ benefits less from a monotone heuristic.

Reopening may increase running times significantly.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 20 / 47



Without reopening

What if we don’t reopen states? Simply ignore any new better path.

Turns out the C ≤ (1 + ε)C ∗ bound no longer holds.

Instead, we can show

C ≤ (1 + ε)bN/2cC ∗

where N is the depth of the optimal solution.

Intuition: shortcutting requires always at least two states.

Each shortcut accumulates the error by a factor of (1 + ε).

WA∗ and DWA∗ are still ε-admissible without reopening.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 21 / 47



Without reopening

What if we don’t reopen states? Simply ignore any new better path.

Turns out the C ≤ (1 + ε)C ∗ bound no longer holds.

Instead, we can show

C ≤ (1 + ε)bN/2cC ∗

where N is the depth of the optimal solution.

Intuition: shortcutting requires always at least two states.

Each shortcut accumulates the error by a factor of (1 + ε).

WA∗ and DWA∗ are still ε-admissible without reopening.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 21 / 47



Without reopening

What if we don’t reopen states? Simply ignore any new better path.

Turns out the C ≤ (1 + ε)C ∗ bound no longer holds.

Instead, we can show

C ≤ (1 + ε)bN/2cC ∗

where N is the depth of the optimal solution.

Intuition: shortcutting requires always at least two states.

Each shortcut accumulates the error by a factor of (1 + ε).

WA∗ and DWA∗ are still ε-admissible without reopening.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 21 / 47



Without reopening

What if we don’t reopen states? Simply ignore any new better path.

Turns out the C ≤ (1 + ε)C ∗ bound no longer holds.

Instead, we can show

C ≤ (1 + ε)bN/2cC ∗

where N is the depth of the optimal solution.

Intuition: shortcutting requires always at least two states.

Each shortcut accumulates the error by a factor of (1 + ε).

WA∗ and DWA∗ are still ε-admissible without reopening.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 21 / 47



Without reopening

What if we don’t reopen states? Simply ignore any new better path.

Turns out the C ≤ (1 + ε)C ∗ bound no longer holds.

Instead, we can show

C ≤ (1 + ε)bN/2cC ∗

where N is the depth of the optimal solution.

Intuition: shortcutting requires always at least two states.

Each shortcut accumulates the error by a factor of (1 + ε).

WA∗ and DWA∗ are still ε-admissible without reopening.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 21 / 47



Without reopening

What if we don’t reopen states? Simply ignore any new better path.

Turns out the C ≤ (1 + ε)C ∗ bound no longer holds.

Instead, we can show

C ≤ (1 + ε)bN/2cC ∗

where N is the depth of the optimal solution.

Intuition: shortcutting requires always at least two states.

Each shortcut accumulates the error by a factor of (1 + ε).

WA∗ and DWA∗ are still ε-admissible without reopening.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 21 / 47



Experiments

All variants were evaluated on a number of problems:

BDD minimization

Blocksworld

Sliding-tile puzzle

Depots

Logistics

PSR

Satellite

Freecell

Driverlog

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 22 / 47



Experiments

All variants were evaluated on a number of problems:

BDD minimization

Blocksworld

Sliding-tile puzzle

Depots

Logistics

PSR

Satellite

Freecell

Driverlog

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 23 / 47



Boolean functions

A Boolean function is a function

f : {0, 1}n → {0, 1}

Can be represented as a table, e.g. n = 3:

X1 X2 X3 Y

0 0 0 7→ 1
0 0 1 7→ 0
0 1 0 7→ 0
0 1 1 7→ 0
1 0 0 7→ 1
1 0 1 7→ 0
1 1 0 7→ 1
1 1 1 7→ 1

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 24 / 47



Boolean decision diagrams

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 25 / 47



Boolean decision diagrams

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 26 / 47



Boolean decision diagrams

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 27 / 47



Boolean decision diagrams

Several applications

Model checking

Sparse-memory applications

Planning

Symbolic heuristic search

Enchancing heuristic search (e.g. A∗)

In general we want BDDs to be as small as possible.

Easier to read

Take less memory

Faster to evaluate

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 28 / 47



Boolean decision diagrams

BDDs are not unique and can often be simplified.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 29 / 47



Boolean decision diagrams

BDDs are not unique and can often be simplified.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 30 / 47



Boolean decision diagrams

BDDs are not unique and can often be simplified.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 31 / 47



Boolean decision diagrams

For a fixed permutation of variables, applying merge and deletion
iteratively yields a minimal BDD.

However, the permutation determines how small BDDs we can
achieve.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 32 / 47



Boolean decision diagrams

Optimal BDD for permutation X1,X2,X3.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 33 / 47



Boolean decision diagrams

Optimal BDD for permutation X2,X1,X3 (and X2,X3,X1)

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 34 / 47



Boolean decision diagrams

BDD minimization problem: find an ordering of variables that yields a
minimal BDD (least nodes)

NP-hard (decision version is NP-complete)

Can be solved exactly in O(3nn).

Can often be solved fast with heuristic search.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 35 / 47



Boolean decision diagrams

In particular, we can formulate it as a path search problem.

A state is a set of variables whose position in the order has been fixed.

Each transition fixes the position of a variable.

A path of length k defines the first k variables in the ordering.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 36 / 47



Variable orderings
A permutation corresponds to a path in the subset lattice.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 37 / 47



Variable orderings
A permutation corresponds to a path in the subset lattice.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 38 / 47



Variable orderings
A permutation corresponds to a path in the subset lattice.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 39 / 47



Variable orderings
A permutation corresponds to a path in the subset lattice.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 40 / 47



Variable orderings
A permutation corresponds to a path in the subset lattice.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 41 / 47



Variable orderings
A permutation corresponds to a path in the subset lattice.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 42 / 47



Variable orderings
A permutation corresponds to a path in the subset lattice.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 43 / 47



Variable orderings
A permutation corresponds to a path in the subset lattice: 4,1,3,2

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 44 / 47



Variable orderings

Finding an optimal path is equivalent to finding an optimal BDD.

g : For a path of length k, the size of the first k levels of the BDD.

h: The number of cofactors: a lower bound on the size of the BDD.

Weighted A∗ used for approximate BDD mimimization.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 45 / 47



Experiments

Experimental results.

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 46 / 47



Questions?

K. Kangas () Heuristic search Weighted A∗ October 17, 2013 47 / 47


