Heuristic search

Weighted A^*

Kustaa Kangas

October 17, 2013

K. Kangas ()

э

Weighted A*

Weighted A* search – unifying view and application

Rüdiger Ebendt, Rolf Drechsler, 2009

Weighted A*

- Weight the heuristic to quickly direct the search.
- Save time, get bounded suboptimality in exchange.

Outline

- Three approaches: WA*, DWA*, A_{ε}^{*}
- Onifying view
- Monotone heuristic
- Approximate BDD minimization
- Section 2 Sec

Standard A*

Standard A*

f(q) = g(q) + h(q)

Finds an optimal path if h is admissible, i.e. $h(q) \le h^*(q)$.

◆ 同 ▶ ◆ 目

Constant inflation

WA*: constant inflation

$$f^{\uparrow}(q) = g(q) + (1 + \varepsilon)h(q)$$

where $\varepsilon \geq 0$.

If *h* is admissible, then WA* is ε -admissible, i.e.

$$g(q) \leq (1 + \varepsilon)C^*$$

for all expanded q where C^* is the length of an optimal path.

ε -admissibility

If *h* is admissible, then WA* is ε -admissible.

Proof.

Let $s \dots q \dots t$ be an optimal path where q is the first node of the path in the open list. Assume a goal state t is expanded. This can happen only if

$$egin{array}{rcl} g(t) = f(t) &\leq f(q) \ &= g(q) + (1 + arepsilon) h(q) \ &\leq g^*(q) + (1 + arepsilon) h^*(q) \ &\leq (1 + arepsilon) (g^*(q) + h^*(q)) \ &= (1 + arepsilon) C^* \end{array}$$

Dynamic weighting

DWA*: Dynamic weighting

$$f^{DW}(q) = g(q) + \left(1 + \varepsilon \cdot \left[1 - \frac{d(q)}{N}\right]\right) h(q)$$

where

d(q)	depth of <i>q</i>
N	depth of optimal solution

Idea: as the search goes deeper, emphasize the heuristic less.

How do we get N?

- Sometimes known beforehand: e.g. BDD minimization.
- Generally not known: use an upper bound.

Keep the original cost function

$$f(q) = g(q) + h(q)$$

Instead of expanding q with the smallest f(q), define

$$\textit{FOCAL} = \left\{ q \in \textit{OPEN} \mid f(q) \leq (1 + \varepsilon) \cdot \min_{r \in \textit{OPEN}} f(r) \right\}$$

Use another heuristic h_F to choose a minimum from FOCAL, i.e.

$$\hat{q} = \mathop{\mathrm{arg\,min}}_{q\in FOCAL} h_F(q)$$

$$f(q) = g(q) + h(q)$$

$$\hat{q} = \mathop{\mathrm{arg\,min}}_{q\in FOCAL} h_F(q)$$

Original idea:

- h estimates solution cost
- h_F estimates remaining search effort

Suggestions for h_F :

•
$$h_F = h$$

•
$$h_F(q) = N - d(q)$$

э

Unifying view

$$f(q) = g(q) + h(q)$$

$$FOCAL = \left\{ q \in OPEN \mid f(q) \le (1 + \varepsilon) \cdot \min_{r \in OPEN} f(r) \right\}$$

WA* and DWA* are actually special cases of A_{ϵ}^*

$$h_F(q) = f^{\uparrow}(q) = g(q) + (1 + \varepsilon)h(q) \qquad \text{WA*}$$
$$h_F(q) = f^{DW}(q) = g(q) + \left(1 + \varepsilon \cdot \left[1 - \frac{d(q)}{N}\right]\right)h(q) \quad \text{DWA*}$$

< □ > < 同 > < 回 >

Unifying view

- $\mathsf{A}_{\varepsilon}^*$ is a unifying framework.
 - Any result for A_{ϵ}^{*} follows for WA* and DWA*
 - e.g. ε-admissibility
 - Makes the approaches comparable (same f)

Unifying view

Concern: what if weighted A^* expands many q with

$$C^* \leq f(q) \leq (1 + \varepsilon)C^*$$

- Could overcome the advantages of directing the search.
- General A_{ε}^* makes no guarantees.
- For WA* and DWA* this happens relatively rarely.

Monotone heuristic

If for every state q and its descendant q'

$$h(q) \leq c(q,q') + h(q')$$

the heuristic is monotone or consistent.

 A^* with a monotone heuristic

- When q is expanded, $g(q) = g^*(q)$
- Expanded states are never reopened

Does this hold for weighted A*?

< /□ > <

э

3

< 同 ▶

∢ /∄ ▶

э

3

< 同 ▶

A ▶

3

A ►

Turns out no. However, we do get the bound

$$g(q) \leq (1 + \varepsilon)g^*(q) + \varepsilon \cdot h(q)$$

for all expanded q.

- Weighted A* benefits less from a monotone heuristic.
- Reopening may increase running times significantly.

What if we don't reopen states? Simply ignore any new better path.

What if we don't reopen states? Simply ignore any new better path.

• Turns out the $C \leq (1 + \varepsilon)C^*$ bound no longer holds.

What if we don't reopen states? Simply ignore any new better path.

- Turns out the $C \leq (1 + \varepsilon)C^*$ bound no longer holds.
- Instead, we can show

$$C \leq (1+\varepsilon)^{\lfloor N/2 \rfloor} C^*$$

where N is the depth of the optimal solution.

What if we don't reopen states? Simply ignore any new better path.

- Turns out the $C \leq (1 + \varepsilon)C^*$ bound no longer holds.
- Instead, we can show

$$C \leq (1+\varepsilon)^{\lfloor N/2 \rfloor} C^*$$

where N is the depth of the optimal solution.

• Intuition: shortcutting requires always at least two states.

What if we don't reopen states? Simply ignore any new better path.

- Turns out the $C \leq (1 + \varepsilon)C^*$ bound no longer holds.
- Instead, we can show

$$C \leq (1+\varepsilon)^{\lfloor N/2 \rfloor} C^*$$

where N is the depth of the optimal solution.

- Intuition: shortcutting requires always at least two states.
- Each shortcut accumulates the error by a factor of $(1 + \varepsilon)$.

What if we don't reopen states? Simply ignore any new better path.

- Turns out the $C \leq (1 + \varepsilon)C^*$ bound no longer holds.
- Instead, we can show

$$C \leq (1+\varepsilon)^{\lfloor N/2 \rfloor} C^*$$

where N is the depth of the optimal solution.

- Intuition: shortcutting requires always at least two states.
- Each shortcut accumulates the error by a factor of $(1 + \varepsilon)$.
- WA* and DWA* are still ε -admissible without reopening.

Experiments

All variants were evaluated on a number of problems:

- BDD minimization
- Blocksworld
- Sliding-tile puzzle
- Depots
- Logistics
- PSR
- Satellite
- Freecell
- Driverlog

Experiments

All variants were evaluated on a number of problems:

- BDD minimization
- Blocksworld
- Sliding-tile puzzle
- Depots
- Logistics
- PSR
- Satellite
- Freecell
- Driverlog

Boolean functions

A Boolean function is a function

 $f: \{0,1\}^n \to \{0,1\}$

Can be represented as a table, e.g. n = 3:

X_1	X_2	X_3		Y
0	0	0	\mapsto	1
0	0	1	\mapsto	0
0	1	0	\mapsto	0
0	1	1	\mapsto	0
1	0	0	\mapsto	1
1	0	1	\mapsto	0
1	1	0	\mapsto	1
1	1	1	\mapsto	1

P.

< / → <

26 / 47

э

< / → <

Several applications

- Model checking
- Sparse-memory applications
- Planning
- Symbolic heuristic search
- Enchancing heuristic search (e.g. A*)

In general we want BDDs to be as small as possible.

- Easier to read
- Take less memory
- Faster to evaluate

BDDs are not unique and can often be simplified.

BDDs are not unique and can often be simplified.

BDDs are not unique and can often be simplified.

- For a fixed permutation of variables, applying merge and deletion iteratively yields a minimal BDD.
- However, the permutation determines how small BDDs we can achieve.

Optimal BDD for permutation X_1, X_2, X_3 .

Optimal BDD for permutation X_2, X_1, X_3 (and X_2, X_3, X_1)

BDD minimization problem: find an ordering of variables that yields a minimal BDD (least nodes)

- NP-hard (decision version is NP-complete)
- Can be solved exactly in $O(3^n n)$.
- Can often be solved fast with heuristic search.

In particular, we can formulate it as a path search problem.

- A state is a set of variables whose position in the order has been fixed.
- Each transition fixes the position of a variable.
- A path of length k defines the first k variables in the ordering.

Finding an optimal path is equivalent to finding an optimal BDD.

g: For a path of length k, the size of the first k levels of the BDD.h: The number of cofactors: a lower bound on the size of the BDD.

Weighted A^* used for approximate BDD mimimization.

Experiments

Experimental results.

< 🗇 🕨 <

э

Questions?