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Partially ordered set (poset)

A set P with an antisymmetric, transitive relation



Partially ordered set (poset)

Cover graph



Linear extensions

A linear extension = order preserving permutation



Counting linear extensions

#P-complete (Brightwell & Winkler, ’91)

Applications: sequence analysis, preference
reasoning, sorting, learning probabilistic models, ...



Counting linear extensions

Currently we can do O(2nn) time for n elements.

We give two algorithms, based on

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)
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Recursive counting

`(P) = the number of linear extensions of poset P

Rule 1 `(P) =
∑

x ∈min(P)

`(P \ x)

Rule 2 `(P) =
∑
(D,U)

`(D) · `(U)

Rule 3 `(P) =
k∏

i=1

`(Si)

Rule 4 `(P) = `(A) · `(B) ·
(
|P|
|A|

)



Recursive counting

P \ a P \ b

P



Recursive counting
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Recursive counting
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Recursive counting

Experiments on sparse posets for n = 30, . . . ,100
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Counting linear extensions

Currently we can do O(2nn) time for n elements.

We give two algorithms, based on

1. recursion (exploiting low connectivity)
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Variable elimination

∑
a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f )
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Variable elimination

∑
a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f )

Polynomial time for bounded treewidth



Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy ]



Variable elimination
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Φ(σ) = [σa < σc] [σa < σd ] [σb < σd ] [σc < σe] [σd < σe]
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Φ(σ) =
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1, if σ is a linear extension,
0, otherwise.



Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy ]

Then,

Φ(σ) =

{
1, if σ is a linear extension,
0, otherwise.

As a consequence

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)



Variable elimination

`(P) =
∑
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Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

Can’t apply variable elimination because of the
bijectivity constraint.



Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

=
∑

X ⊆ [n]

(−1)n−|X |
∑

σ :P→X

Φ(σ)

=
n∑

k=0

(
n
k

)
(−1)n−k

∑
σ :P→ [k ]

Φ(σ)

Inclusion–exclusion principle



Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

=
∑

X ⊆ [n]

(−1)n−|X |
∑

σ :P→X

Φ(σ)

=
n∑

k=0

(
n
k

)
(−1)n−k

∑
σ :P→ [k ]

Φ(σ)

O(nt+4) time for treewidth t



Variable elimination

VEIE: Variable elimination via inclusion–exclusion
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Summary

Recursion: often fast in practice
Variable elimination: polynomial time for
bounded treewidth

Thank you!


