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\.* Partially ordered set (poset)

A set P with an antisymmetric, transitive relation




v.* Partially ordered set (poset)

Cover graph




‘ Linear extensions

A linear extension = order preserving permutation




‘ Counting linear extensions

#P-complete (Brightwell & Winkler, '91)
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Applications: sequence analysis, preference
reasoning, sorting, learning probabilistic models, ...
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‘ Counting linear extensions

Currently we can do O(2"n) time for n elements.

We give two algorithms, based on

recursion (exploiting low connectivity)
variable elimination (exploiting low treewidth)
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‘ Recursive counting
¢(P) = the number of linear extensions of poset P

Rule1 ((P) = >  (P\x)

x € min(P)

Rule2  ((P) = ) ¢(D)-((U)

Rule3  ((P) = J]«S)

Ruled  ((P) = ((A)-((B)- <|P|)



‘ Recursive counting
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‘ Recursive counting

Experiments on sparse posets for n = 30,...,100
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‘ Counting linear extensions

Currently we can do O(2"n) time for n elements.

We give two algorithms, based on

recursion (exploiting low connectivity)
variable elimination (exploiting low treewidth)



»'* Variable elimination

Z ¢1 (aa b; d) ¢2(a7 C) ¢3(b> C, e) ¢4(d7 f)

a,b,c,d,e,f



‘. Variable elimination
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" Variable elimination

Z ¢1 (aa b; d) ¢2(a7 C) ¢3(b7 C, e) ¢4(d7 f)

a,b,c,d,e,f




»'* Variable elimination

Z ¢1(a> b; d) ¢2(a7 C) ¢3(b> C, e) ¢4(d7 f)

a,b,c,d,e,f
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Polynomial time for bounded treewidth



" Variable elimination

For every permutation o : P — [n] define

®(o) = H [ox < oy]

X<y



" Variable elimination

For every permutation o : P — [n] define

®(o) = H [ox < oy]

X<y

A

®(0) = [0a < 0o [0a < gq] [0b < 4] [0c < 0] [0 < T¢]



»'* Variable elimination

For every permutation o : P — [n] define

®(o) = H [ox < oy]

X<y

Then,

O(0) = 1, if o is a linear extension,
79771 0, otherwise.



‘ Variable elimination

For every permutation o : P — [n] define

®(o) = H [ox < oy]

X<y

Then,

O(0) = 1, if o is a linear extension,
79771 0, otherwise.

As a consequence

(Py= > &)

o:P—|n|
bijection



»'* Variable elimination

(P) = > o)

o:P—[n]
bijection



‘. Variable elimination

(Py = > o

o:P—|[n]
bijection

Can’t apply variable elimination because of the
bijectivity constraint.



»'* Variable elimination

(Py = > o

o:P—[n]

bijection

= DTN o)
X Cn] o:P—=X

= Y (e X e
k=0 o Pk

Inclusion—exclusion principle



‘. Variable elimination

(Py = > o
o:P—[n]
bijection
= DTN o)
X Cn] o:P—=X
= Y (e X e
k=0 o:P— k]

O(n*+4) time for treewidth ¢



»'* Variable elimination

VEIE: Variable elimination via inclusion—exclusion
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‘ Summary

Recursion: often fast in practice

Variable elimination: polynomial time for
bounded treewidth

Thank you!



