
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Counting Linear
Extensions of
Sparse Posets

Kustaa Kangas, Teemu Hankala,
Teppo Niinimäki, Mikko Koivisto
July 13, 2016

University of Helsinki
Department of Computer Science

Partially ordered set (poset)

A set P with an antisymmetric, transitive relation

Partially ordered set (poset)

Cover graph

Linear extensions

A linear extension = order preserving permutation

Counting linear extensions

#P-complete (Brightwell & Winkler, ’91)

Applications: sequence analysis, preference
reasoning, sorting, learning probabilistic models, ...

Counting linear extensions

Currently we can do O(2nn) time for n elements.

We give two algorithms, based on

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

Counting linear extensions

Currently we can do O(2nn) time for n elements.

We give two algorithms, based on

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

Recursive counting

`(P) = the number of linear extensions of poset P

Rule 1 `(P) =
∑

x ∈min(P)

`(P \ x)

Rule 2 `(P) =
∑
(D,U)

`(D) · `(U)

Rule 3 `(P) =
k∏

i=1

`(Si)

Rule 4 `(P) = `(A) · `(B) ·
(
|P|
|A|

)

Recursive counting

P \ a P \ b

P

Recursive counting

P \ a P \ b

P

Recursive counting

A B

P

Recursive counting

Experiments on sparse posets for n = 30, . . . ,100

0 20 40 60 80 100
Percentage of posets solved

10−1

100

101

102

103

Ti
m

e
(s

)

R14-a
R134
R1
R24

Counting linear extensions

Currently we can do O(2nn) time for n elements.

We give two algorithms, based on

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

Variable elimination

∑
a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f)

Variable elimination

∑
a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f)

Variable elimination

∑
a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f)

Variable elimination

∑
a,b,c,d ,e,f

φ1(a,b,d) φ2(a, c) φ3(b, c,e) φ4(d , f)

Polynomial time for bounded treewidth

Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy]

Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy]

Φ(σ) = [σa < σc] [σa < σd] [σb < σd] [σc < σe] [σd < σe]

Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy]

Then,

Φ(σ) =

{
1, if σ is a linear extension,
0, otherwise.

Variable elimination

For every permutation σ : P → [n] define

Φ(σ) =
∏
x ≺ y

[σx < σy]

Then,

Φ(σ) =

{
1, if σ is a linear extension,
0, otherwise.

As a consequence

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

Can’t apply variable elimination because of the
bijectivity constraint.

Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

=
∑

X ⊆ [n]

(−1)n−|X |
∑

σ :P→X

Φ(σ)

=
n∑

k=0

(
n
k

)
(−1)n−k

∑
σ :P→ [k]

Φ(σ)

Inclusion–exclusion principle

Variable elimination

`(P) =
∑

σ :P→ [n]
bijection

Φ(σ)

=
∑

X ⊆ [n]

(−1)n−|X |
∑

σ :P→X

Φ(σ)

=
n∑

k=0

(
n
k

)
(−1)n−k

∑
σ :P→ [k]

Φ(σ)

O(nt+4) time for treewidth t

Variable elimination

VEIE: Variable elimination via inclusion–exclusion

30 40 50 60 70 80 90 100
Poset size (n)

10−1

100

101

102

103

Ti
m

e
(s

)

t = 2

VEIE
R1
R14-a

Summary

Recursion: often fast in practice
Variable elimination: polynomial time for
bounded treewidth

Thank you!

