Counting Linear Extensions of Sparse Posets

Kustaa Kangas, Teemu Hankala, Teppo Niinimäki, Mikko Koivisto July 13, 2016

University of Helsinki

Department of Computer Science

Partially ordered set (poset)

A set P with an antisymmetric, transitive relation

Partially ordered set (poset)

Cover graph

Linear extensions

A linear extension = order preserving permutation

Counting linear extensions

\#P-complete (Brightwell \& Winkler, '91)

Applications: sequence analysis, preference reasoning, sorting, learning probabilistic models, ...

Counting linear extensions

Currently we can do $O\left(2^{n} n\right)$ time for n elements.

We give two algorithms, based on

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

Counting linear extensions

Currently we can do $O\left(2^{n} n\right)$ time for n elements.

We give two algorithms, based on

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

Recursive counting

$\ell(P)=$ the number of linear extensions of poset P

Rule $1 \quad \ell(P)=\sum_{x \in \min (P)} \ell(P \backslash x)$
Rule $2 \quad \ell(P)=\sum_{(D, U)} \ell(D) \cdot \ell(U)$
Rule $3 \quad \ell(P)=\prod_{i=1}^{k} \ell\left(S_{i}\right)$
Rule $4 \quad \ell(P)=\ell(A) \cdot \ell(B) \cdot\binom{|P|}{|A|}$

Recursive counting

Recursive counting

Recursive counting

Recursive counting

Experiments on sparse posets for $n=30, \ldots, 100$

Counting linear extensions

Currently we can do $O\left(2^{n} n\right)$ time for n elements.

We give two algorithms, based on

1. recursion (exploiting low connectivity)
2. variable elimination (exploiting low treewidth)

Variable elimination

$$
\sum_{a, b, c, d, e, f} \phi_{1}(a, b, d) \phi_{2}(a, c) \phi_{3}(b, c, e) \phi_{4}(d, f)
$$

Variable elimination

Variable elimination

Variable elimination

$$
\sum_{a, b, c, d, e, f} \phi_{1}(a, b, d) \phi_{2}(a, c) \phi_{3}(b, c, e) \phi_{4}(d, f)
$$

Polynomial time for bounded treewidth

Variable elimination

For every permutation $\sigma: P \rightarrow[n]$ define

$$
\Phi(\sigma)=\prod_{x \prec y}\left[\sigma_{x}<\sigma_{y}\right]
$$

Variable elimination

For every permutation $\sigma: P \rightarrow[n]$ define

$$
\Phi(\sigma)=\prod_{x \prec y}\left[\sigma_{x}<\sigma_{y}\right]
$$

$$
\Phi(\sigma)=\left[\sigma_{a}<\sigma_{c}\right]\left[\sigma_{a}<\sigma_{d}\right]\left[\sigma_{b}<\sigma_{d}\right]\left[\sigma_{c}<\sigma_{e}\right]\left[\sigma_{d}<\sigma_{e}\right]
$$

Variable elimination

For every permutation $\sigma: P \rightarrow[n]$ define

$$
\Phi(\sigma)=\prod_{x \prec y}\left[\sigma_{x}<\sigma_{y}\right]
$$

Then,

$$
\Phi(\sigma)=\left\{\begin{array}{l}
1, \text { if } \sigma \text { is a linear extension, } \\
0, \text { otherwise } .
\end{array}\right.
$$

Variable elimination

For every permutation $\sigma: P \rightarrow[n]$ define

$$
\Phi(\sigma)=\prod_{x \prec y}\left[\sigma_{x}<\sigma_{y}\right]
$$

Then,

$$
\Phi(\sigma)=\left\{\begin{array}{l}
1, \text { if } \sigma \text { is a linear extension, } \\
0, \text { otherwise }
\end{array}\right.
$$

As a consequence

$$
\ell(P)=\sum_{\substack{\sigma: P \rightarrow[n] \\ \text { bijection }}} \Phi(\sigma)
$$

Variable elimination

$$
\ell(P)=\sum_{\substack{\sigma: P \rightarrow[n] \\ \text { bijection }}} \Phi(\sigma)
$$

Variable elimination

Can't apply variable elimination because of the bijectivity constraint.

Variable elimination

$$
\begin{aligned}
\ell(P) & =\sum_{\substack{\sigma: P \rightarrow[n] \\
\text { bijection }}} \Phi(\sigma) \\
& =\sum_{X \subseteq[n]}(-1)^{n-|X|} \sum_{\sigma: P \rightarrow X} \Phi(\sigma) \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \sum_{\sigma: P \rightarrow[k]} \Phi(\sigma)
\end{aligned}
$$

Inclusion-exclusion principle

Variable elimination

$$
\begin{aligned}
\ell(P) & =\sum_{\substack{\sigma: P \rightarrow[n] \\
\text { bijection }}} \Phi(\sigma) \\
& =\sum_{X \subseteq[n]}(-1)^{n-|X|} \sum_{\sigma: P \rightarrow X} \Phi(\sigma) \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \sum_{\sigma: P \rightarrow[k]} \Phi(\sigma)
\end{aligned}
$$

$O\left(n^{t+4}\right)$ time for treewidth t

Variable elimination

VEIE: Variable elimination via inclusion-exclusion

Summary

- Recursion: often fast in practice
- Variable elimination: polynomial time for bounded treewidth

Thank you!

