

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Counting Linear Extensions of Sparse Posets

Kustaa Kangas, Teemu Hankala, Teppo Niinimäki, Mikko Koivisto July 13, 2016

University of Helsinki Department of Computer Science

A set P with an antisymmetric, transitive relation

Cover graph

A linear extension = order preserving permutation

#P-complete (Brightwell & Winkler, '91)

Applications: sequence analysis, preference reasoning, sorting, learning probabilistic models, ...

Counting linear extensions

Currently we can do $O(2^n n)$ time for *n* elements.

We give two algorithms, based on

- 1. recursion (exploiting low connectivity)
- 2. variable elimination (exploiting low treewidth)

Currently we can do $O(2^n n)$ time for *n* elements.

We give two algorithms, based on

- 1. recursion (exploiting low connectivity)
- 2. variable elimination (exploiting low treewidth)

 $\ell(P)$ = the number of linear extensions of poset P

Rule 1
$$\ell(P) = \sum_{x \in \min(P)} \ell(P \setminus x)$$
Rule 2 $\ell(P) = \sum_{(D,U)} \ell(D) \cdot \ell(U)$ Rule 3 $\ell(P) = \prod_{i=1}^{k} \ell(S_i)$ Rule 4 $\ell(P) = \ell(A) \cdot \ell(B) \cdot \binom{|P|}{|A|}$

Experiments on sparse posets for $n = 30, \ldots, 100$

Currently we can do $O(2^n n)$ time for *n* elements.

We give two algorithms, based on

- 1. recursion (exploiting low connectivity)
- 2. variable elimination (exploiting low treewidth)

 $\sum \phi_1(a,b,d) \phi_2(a,c) \phi_3(b,c,e) \phi_4(d,f)$ a.b,c,d,e,f

 $\sum \phi_1(a,b,d) \phi_2(a,c) \phi_3(b,c,e) \phi_4(d,f)$ a,b,c,d,e,f

 $\sum \phi_1(a,b,d) \phi_2(a,c) \phi_3(b,c,e) \phi_4(d,f)$ a,b,c,d,e,f

$$\sum_{a,b,c,d,e,f} \phi_1(a,b,d) \ \phi_2(a,c) \ \phi_3(b,c,e) \ \phi_4(d,f)$$

Polynomial time for bounded treewidth

For every permutation $\sigma : \mathbf{P} \rightarrow [\mathbf{n}]$ define

$$\Phi(\sigma) = \prod_{x \prec y} [\sigma_x < \sigma_y]$$

For every permutation $\sigma : \mathbf{P} \rightarrow [\mathbf{n}]$ define

$$\Phi(\sigma) = \prod_{x \prec y} [\sigma_x < \sigma_y]$$

 $\Phi(\sigma) = [\sigma_a < \sigma_c] [\sigma_a < \sigma_d] [\sigma_b < \sigma_d] [\sigma_c < \sigma_e] [\sigma_d < \sigma_e]$

For every permutation $\sigma: P \rightarrow [n]$ define

$$\Phi(\sigma) = \prod_{x \prec y} [\sigma_x < \sigma_y]$$

Then,

$$\Phi(\sigma) = \begin{cases} 1, \text{ if } \sigma \text{ is a linear extension,} \\ 0, \text{ otherwise.} \end{cases}$$

For every permutation $\sigma: P \rightarrow [n]$ define

$$\Phi(\sigma) = \prod_{x \prec y} [\sigma_x < \sigma_y]$$

Then,

$$\Phi(\sigma) = \begin{cases} 1, \text{ if } \sigma \text{ is a linear extension,} \\ 0, \text{ otherwise.} \end{cases}$$

As a consequence

$$\ell(\boldsymbol{P}) = \sum_{\substack{\boldsymbol{\sigma}: \, \boldsymbol{P} \to [n] \\ \text{bijection}}} \Phi(\boldsymbol{\sigma})$$

 $\sigma: P \rightarrow [n]$ bijection

 $\ell(P) = \sum_{\substack{\sigma: P \to [n] \\ \text{bijection}}} \Phi(\sigma)$

Can't apply variable elimination because of the bijectivity constraint.

Inclusion-exclusion principle

 $O(n^{t+4})$ time for treewidth *t*

VEIE: Variable elimination via inclusion-exclusion

- Recursion: often fast in practice
- Variable elimination: polynomial time for bounded treewidth

Thank you!