HELSINGIN YLIOPISTO SN

HELSINGFORS UNIVERSITET 'I INSTITUTE FOR
INFORMATION

UNIVERSITY OF HELSINKI TECHNOLOGY

Counting Linear

Extensions of
Sparse Posets

Kustaa Kangas, Teemu Hankala,
Teppo Niinimé&ki, Mikko Koivisto
July 13, 2016

University of Helsinki
Department of Computer Science

\.* Partially ordered set (poset)

A set P with an antisymmetric, transitive relation

v.* Partially ordered set (poset)

Cover graph

‘ Linear extensions

A linear extension = order preserving permutation

‘ Counting linear extensions

#P-complete (Brightwell & Winkler, '91)

egé%’gz

Applications: sequence analysis, preference
reasoning, sorting, learning probabilistic models, ...

Q.

‘ Counting linear extensions

Currently we can do O(2"n) time for n elements.

We give two algorithms, based on

recursion (exploiting low connectivity)
variable elimination (exploiting low treewidth)

‘ Counting linear extensions

Currently we can do O(2"n) time for n elements.

We give two algorithms, based on

recursion (exploiting low connectivity)
variable elimination (exploiting low treewidth)

‘ Recursive counting
¢(P) = the number of linear extensions of poset P

Rule1 ((P) = > (P\x)

x € min(P)

Rule2 ((P) =) ¢(D)-((U)

Rule3 ((P) = J]«S)

Ruled ((P) = ((A)-((B)- <|P|)

‘ Recursive counting

‘ Recursive counting

‘ Recursive counting

ds E
A\f%i/s

‘ Recursive counting

Experiments on sparse posets for n = 30,...,100
108 ¢
102 |
2
o 10! |
E R14-a
l_
100 R134
| R1
! R24
10—1 4 r . . .]
0 20 40 60 80 100

Percentage of posets solved

‘ Counting linear extensions

Currently we can do O(2"n) time for n elements.

We give two algorithms, based on

recursion (exploiting low connectivity)
variable elimination (exploiting low treewidth)

»'* Variable elimination

Z ¢1 (aa b; d) ¢2(a7 C) ¢3(b> C, e) ¢4(d7 f)

a,b,c,d,e,f

‘. Variable elimination

Z ¢1 (aa b; d) ¢2(a7 C) ¢3(b> C, e) ¢4(d7 f)

a,b,c,d,e,f

<)

c/ d—f
AN

" Variable elimination

Z ¢1 (aa b; d) ¢2(a7 C) ¢3(b7 C, e) ¢4(d7 f)

a,b,c,d,e,f

»'* Variable elimination

Z ¢1(a> b; d) ¢2(a7 C) ¢3(b> C, e) ¢4(d7 f)

a,b,c,d,e,f

/\///_

Polynomial time for bounded treewidth

" Variable elimination

For every permutation o : P — [n] define

®(o) = H [ox < oy]

X<y

" Variable elimination

For every permutation o : P — [n] define

®(o) = H [ox < oy]

X<y

A

®(0) = [0a < 0o [0a < gq] [0b < 4] [0c < 0] [0 < T¢]

»'* Variable elimination

For every permutation o : P — [n] define

®(o) = H [ox < oy]

X<y

Then,

O(0) = 1, if o is a linear extension,
79771 0, otherwise.

‘ Variable elimination

For every permutation o : P — [n] define

®(o) = H [ox < oy]

X<y

Then,

O(0) = 1, if o is a linear extension,
79771 0, otherwise.

As a consequence

(Py= > &)

o:P—|n|
bijection

»'* Variable elimination

(P) = > o)

o:P—[n]
bijection

‘. Variable elimination

(Py = > o

o:P—|[n]
bijection

Can’t apply variable elimination because of the
bijectivity constraint.

»'* Variable elimination

(Py = > o

o:P—[n]

bijection

= DTN o)
X Cn] o:P—=X

= Y (e X e
k=0 o Pk

Inclusion—exclusion principle

‘. Variable elimination

(Py = > o
o:P—[n]
bijection
= DTN o)
X Cn] o:P—=X
= Y (e X e
k=0 o:P— k]

O(n*+4) time for treewidth ¢

»'* Variable elimination

VEIE: Variable elimination via inclusion—exclusion

3
1000 oo A
\ :“" -
102 | : -
@ T N
o 101 r :“," ///
= e
| —- VEIE
10 ’/:(\l - R-I
: — Ri4a
101

30 40 50 60 70 80 90 100
Poset size (n)

‘ Summary

Recursion: often fast in practice

Variable elimination: polynomial time for
bounded treewidth

Thank you!

