Learning chordal Markov networks by dynamic programming

Kustaa Kangas

Teppo Niinimäki Mikko Koivisto

NIPS 2014 (to appear)

November 27, 2014

Graphical model

- Graph structure \mathcal{G} on the vertex set $V = \{1, \dots, n\}$
- ▶ Represents conditional independencies in a joint distribution p(X) = p(X₁,...,X_n)

Advantages

- Easy to read
- Compact way to store a distribution
- Efficient inference

・ 同 ト ・ ヨ ト ・ ヨ ト

Directed models: Bayesian networks, ...

Undirected models: Markov networks, ...

Structure learning problem: Given samples from $p(X_1, \ldots, X_n)$, find a model that best fits the sampled data.

・ 同 ト ・ ヨ ト ・ ヨ ト

Structure learning in chordal Markov networks: Find a chordal Markov network that maximizes a given decomposable score.

Prior work:

- Constraint satisfaction, Corander et al.
- Integer linear programming, Bartlett and Cussens

Our result: Dynamic programming in $O(4^n)$ time and $O(3^n)$ space for *n* variables.

- First non-trivial bound
- Competitive in practice

- Joint distribution $p(X) = p(X_1, \ldots, X_n)$
- ► Undirected graph G on V = {1,..., n} with the Global Markov property: For A, B, S ⊆ V it holds that

$$X_A \perp\!\!\!\perp X_B \mid X_S$$

if S separates A and B in \mathcal{G} .

- Joint distribution $p(X) = p(X_1, \ldots, X_n)$
- ► Undirected graph G on V = {1,..., n} with the Global Markov property: For A, B, S ⊆ V it holds that

$$X_A \perp\!\!\!\perp X_B \mid X_S$$

if S separates A and B in \mathcal{G} .

- Joint distribution $p(X) = p(X_1, \ldots, X_n)$
- ► Undirected graph G on V = {1,..., n} with the Global Markov property: For A, B, S ⊆ V it holds that

$$X_A \perp\!\!\perp X_B \mid X_S$$

if S separates A and B in \mathcal{G} .

- Joint distribution $p(X) = p(X_1, \ldots, X_n)$
- ► Undirected graph G on V = {1,..., n} with the Global Markov property: For A, B, S ⊆ V it holds that

$$X_A \perp\!\!\perp X_B \mid X_S$$

if S separates A and B in G.

If p is strictly positive, it factorizes as

$$p(X_1,\ldots,X_n)=\prod_{C\in\mathcal{C}}\psi_C(X_C)\;,$$

where

- \mathcal{C} is the set of (maximal) cliques of \mathcal{G}
- $\psi_{\mathcal{C}}$ are mappings to positive reals
- $\blacktriangleright X_C = \{X_v : v \in C\}$

(Hammersley-Clifford Theorem)

Bayesian networks

- Directed acyclic graph
- Conditional independencies by d-separation
- Factorizes:

$$p(X_1,\ldots,X_n) = \prod_{i=1}^n p(X_i \mid parents(X_i))$$

Image: A image: A

э

Bayesian and Markov networks

- Bayesian and Markov networks are not equivalent
- Chordal Markov networks are the intersection between the two

Chordal graphs

- A chord is an edge between two non-consecutive vertices in a cycle.
- An graph is *chordal* or *triangulated* if every cycle of at least 4 vertices has a *chord*.

Chordal graphs

- A chord is an edge between two non-consecutive vertices in a cycle.
- An graph is *chordal* or *triangulated* if every cycle of at least 4 vertices has a *chord*.

Kustaa Kangas Learning chordal Markov networks by dynamic programming

A (10) > (10)

・ロト ・回ト ・ヨト

< E

э

Running intersection property: For all $C_1, C_2 \in \mathbb{C}$, every clique on the path between C_1 and C_2 contains $C_1 \cap C_2$.

Running intersection property: For all $C_1, C_2 \in \mathbb{C}$, every clique on the path between C_1 and C_2 contains $C_1 \cap C_2$.

Running intersection property: For all $C_1, C_2 \in \mathbb{C}$, every clique on the path between C_1 and C_2 contains $C_1 \cap C_2$.

< 🗇 🕨

Separator: Intersection of adjacent cliques in a clique tree. Every clique tree has the same multiset of separators.

Theorem: A graph is chordal if and only if it has a clique tree.

- R

Chordal Markov networks

$$\flat \ \psi_i(X_{C_i}) = p(C_i)/p(S_i)$$

Factorization becomes

$$p(X_1,\ldots,X_n)=\prod_{C\in\mathcal{C}}\psi_C(X_C)=\frac{\prod_{C\in\mathcal{C}}p(X_C)}{\prod_{S\in\mathcal{S}}p(X_S)},$$

where $\ensuremath{\mathbb{C}}$ and $\ensuremath{\mathbb{S}}$ are the sets of cliques and separators.

▲ □ ► ▲ □ ►

Given sampled data *D* from $p(X_1, \ldots, X_n)$, how well does a graph structure \mathcal{G} fit the data?

Common scoring criteria decompose as

$$score(\mathcal{G}) = \frac{\prod_{C \in \mathcal{C}} score(C)}{\prod_{S \in \mathcal{S}} score(S)}$$

Each score(C) is the probability of the data projected to C, possibly extended with a prior or penalization term.

e.g. maximum likelihood, Bayesian Dirichlet, ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Structure learning problem in chordal Markov networks:

Given score(C) for each $C \subseteq V$, find a chordal graph \mathcal{G} that maximizes

$$score(\mathfrak{G}) = rac{\prod_{C \in \mathfrak{C}} score(C)}{\prod_{S \in \mathfrak{S}} score(S)} \;.$$

We assume each score(C) can be efficiently computed and focus on the combinatorial problem.

イロト イポト イヨト イヨト

Bruteforce solution:

- Enumerate undirected graphs
- Determine which are chordal
- ► For each chordal *G*, find a clique tree to evaluate *score*(*G*)
- $O^*(2^{\binom{n}{2}})$

We denote $score(\mathfrak{T}) = score(\mathfrak{G})$ when \mathfrak{T} is a clique tree of \mathfrak{G} .

- ► Every clique tree T uniquely specifies a chordal graph 9.
- We can search the space of clique trees instead.

・ 同・ ・ ヨ・

Recursive characterization

Let \mathcal{T} be rooted at C with subtrees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ rooted at C_1, \ldots, C_k . Then,

$$score(\mathcal{T}) = score(C) \prod_{i=1}^{k} \frac{score(\mathcal{T}_i)}{score(C \cap C_i)}$$

▲ □ ► ▲ □ ►

For $S \subset V$ and $\varnothing \subset R \subseteq V \setminus S$,

let f(S, R) be the maximum $score(\mathfrak{G})$ over chordal \mathfrak{G} on $S \cup R$ such that S is a proper subset of a clique.

Then, the solution is given by $f(\emptyset, V)$.

・ 同・ ・ ヨ・

For $S \subset V$ and $\varnothing \subset R \subseteq V \setminus S$,

let f(S, R) be the maximum $score(\mathfrak{G})$ over chordal \mathfrak{G} on $S \cup R$ such that S is a proper subset of a clique.

Then, the solution is given by $f(\emptyset, V)$.

$$f(S,R) = \max_{\substack{S \subset C \subseteq S \cup R \\ \{R_1, \dots, R_k\} \subseteq R \setminus C \\ S_1, \dots, S_k \subset C}} score(C) \prod_{i=1}^k \frac{f(S_i, R_i)}{score(S_i)}$$

- 4 同 6 4 日 6 4 日 6

$$score(\mathfrak{T}) = score(C) \prod_{i=1}^{k} \frac{score(\mathfrak{T}_i)}{score(C \cap C_i)}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

$$score(\mathfrak{T}) = score(C) \prod_{i=1}^{k} \frac{score(\mathfrak{T}_i)}{score(C \cap C_i)}$$

(ロ) (同) (E) (E) (E)

$$f(S,R) = \max_{\substack{S \subset C \subseteq S \cup R \\ \{R_1, \dots, R_k\} \subseteq R \setminus C \\ S_1, \dots, S_k \subset C}} score(C) \prod_{i=1}^k \frac{f(S_i, R_i)}{score(S_i)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$f(S,R) = \max_{\substack{S \subset C \subseteq S \cup R \\ \{R_1, \dots, R_k\} \sqsubset R \setminus C}} score(C) \prod_{i=1}^k \max_{S_i \subset C} \frac{f(S_i, R_i)}{score(S_i)}$$

$$f(S,R) = \max_{\substack{S \subset C \subseteq S \cup R \\ \{R_1, \dots, R_k\} \sqsubset R \setminus C}} score(C) \prod_{i=1}^k \max_{S_i \subset C} \frac{f(S_i, R_i)}{score(S_i)}$$

$$h(C,R) = \max_{S \subset C} \frac{f(S,R)}{score(S)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$f(S,R) = \max_{\substack{S \subset C \subseteq S \cup R \\ \{R_1, \dots, R_k\} \subseteq R \setminus C}} score(C) \prod_{i=1}^k h(C, R_i)$$

$$h(C,R) = \max_{S \subset C} \frac{f(S,R)}{score(S)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$f(S,R) = \max_{\substack{S \subset C \subseteq S \cup R \\ \{R_1, \dots, R_k\} \subseteq R \setminus C}} score(C) \prod_{i=1}^k h(C, R_i)$$

$$f(S,R) = \max_{S \subset C \subseteq S \cup R} score(C) \max_{\{R_1, \dots, R_k\} \sqsubset R \setminus C} \prod_{i=1}^k h(C, R_i)$$

$$f(S,R) = \max_{S \subset C \subseteq S \cup R} score(C) \max_{\{R_1, \dots, R_k\} \subseteq R \setminus C} \prod_{i=1}^k h(C, R_i)$$
$$g(C, U) = \max_{\{R_1, \dots, R_k\} \subseteq U} \prod_{i=1}^k h(C, R_i)$$

$$f(S,R) = \max_{S \subset C \subseteq S \cup R} score(C)g(C, R \setminus C)$$
$$g(C, U) = \max_{\{R_1, \dots, R_k\} \subset U} \prod_{i=1}^k h(C, R_i)$$

$$g(C, U) = \max_{\{R_1, \dots, R_k\} \sqsubset U} \prod_{i=1}^k h(C, R_i)$$

$$g(C, U) = \max_{\{R_1, \dots, R_k\} \subset U} \prod_{i=1}^k h(C, R_i)$$

<ロ> (日) (日) (日) (日) (日)

$$g(C, U) = \max_{\{R_1, \dots, R_k\} \sqsubset U} \prod_{i=1}^k h(C, R_i)$$

$$g(C, U) = \max_{\{R_1, ..., R_k\} \sqsubset U} \prod_{i=1}^k h(C, R_i)$$

・ロン ・回と ・ヨン ・ヨン

$$g(C, U) = \max_{\{R_1, ..., R_k\} \subset U} \prod_{i=1}^k h(C, R_i)$$

$$g(C, U) = \max_{\emptyset \neq R_1 \subseteq U} \max_{\{R_2, \dots, R_k\} \sqsubset U \setminus R_1} \prod_{i=1}^k h(C, R_i)$$

・ロン ・回と ・ヨン ・ヨン

$$g(C, U) = \max_{\{R_1, ..., R_k\} \subset U} \prod_{i=1}^k h(C, R_i)$$

$$g(C, U) = \max_{\varnothing \neq R_1 \subseteq U} h(C, R_1) \max_{\{R_2, \dots, R_k\} \subseteq U \setminus R_1} \prod_{i=2}^k h(C, R_i)$$

・ロン ・回と ・ヨン ・ヨン

$$g(C, U) = \max_{\{R_1, \dots, R_k\} \sqsubset U} \prod_{i=1}^k h(C, R_i)$$

$$g(C, U) = \max_{\varnothing \neq R_1 \subseteq U} h(C, R_1)g(C, U \setminus R_1)$$

イロン イヨン イヨン イヨン

$$g(C, U) = \max_{\{R_1, \dots, R_k\} \sqsubset U} \prod_{i=1}^k h(C, R_i)$$

$$g(C, U) = \max_{\varnothing \neq R \subseteq U} h(C, R)g(C, U \setminus R)$$

イロン イヨン イヨン イヨン

We have the split into three simpler recurrences:

$$f(S, R) = \max_{S \subset C \subseteq S \cup R} score(C)g(C, R \setminus C)$$
$$g(C, U) = \max_{\emptyset \subset R \subseteq U} h(C, R)g(C, U \setminus R)$$
$$h(C, R) = \max_{S \subset C} f(S, R)/score(S)$$

Dynamic programming in the increasing order of set size.

Space: $O(3^n)$ Time: $O(4^n)$

- ∢ ⊒ →

For each pair (A, B) compute the index

$$\sum_{\nu=1}^n 3^{\nu-1} \cdot I_{\nu}(A,B)$$

where

$$I_{v}(A,B) = \begin{cases} 1 \text{ if } v \in A, \\ 2 \text{ if } v \in B, \\ 0 \text{ otherwise.} \end{cases}$$

- - 4 回 ト - 4 回 ト

Dataset	Abbr.	п	т
Tic-tac-toe	Х	10	958
Poker	Р	11	10000
Bridges	В	12	108
Flare	F	13	1066
Zoo	Z	17	101

Abbr.	n	т
V	17	435
Т	18	339
L	19	148
	$\bar{22}$	3772
	22	8124
	Abbr. V T L	Abbr. n V 17 T 18 - - $\frac{19}{22}$ 22

・ロト ・回ト ・ヨト ・ヨト

Thank you!

・ロン ・回 と ・ ヨン ・ ヨン