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Probabilistic graphical models

Graphical model

I Graph structure G on the vertex set V = {1, . . . , n}
I Represents conditional independencies in a joint distribution

p(X ) = p(X1, . . . ,Xn)

Advantages

I Easy to read

I Compact way to store a distribution

I Efficient inference
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Probabilistic graphical models

Directed models: Bayesian networks, ...

Undirected models: Markov networks, ...

Structure learning problem: Given samples from p(X1, . . . ,Xn),
find a model that best fits the sampled data.
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Probabilistic graphical models

Structure learning in chordal Markov networks: Find a chordal
Markov network that maximizes a given decomposable score.

Prior work:

I Constraint satisfaction, Corander et al.

I Integer linear programming, Bartlett and Cussens

Our result: Dynamic programming in O(4n) time and O(3n) space
for n variables.

I First non-trivial bound

I Competitive in practice

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Markov networks

I Joint distribution p(X ) = p(X1, . . .Xn)

I Undirected graph G on V = {1, . . . , n} with the Global
Markov property: For A,B, S ⊆ V it holds that

XA ⊥⊥ XB | XS

if S separates A and B in G.
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Markov networks

If p is strictly positive, it factorizes as

p(X1, . . . ,Xn) =
∏
C∈C

ψC (XC ) ,

where

I C is the set of (maximal) cliques of G

I ψC are mappings to positive reals

I XC = {Xv : v ∈ C}

(Hammersley–Clifford Theorem)

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Bayesian networks

I Directed acyclic graph
I Conditional independencies by d-separation
I Factorizes:

p(X1, . . . ,Xn) =
n∏

i=1

p(Xi | parents(Xi ))
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Bayesian and Markov networks

I Bayesian and Markov networks are not equivalent

I Chordal Markov networks are the intersection between the two
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Chordal graphs

I A chord is an edge between two non-consecutive vertices in a
cycle.

I An graph is chordal or triangulated if every cycle of at least 4
vertices has a chord.
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Clique tree decomposition
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Clique tree decomposition
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Running intersection property: For all C1,C2 ∈ C, every clique
on the path between C1 and C2 contains C1 ∩ C2.

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Clique tree decomposition

3

5

6
8

9

1

2

7

1

3

4

2

2

8

Running intersection property: For all C1,C2 ∈ C, every clique
on the path between C1 and C2 contains C1 ∩ C2.

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Clique tree decomposition

3

5

6
8

9

1

2

7

1

3

4

2

2

8

Running intersection property: For all C1,C2 ∈ C, every clique
on the path between C1 and C2 contains C1 ∩ C2.

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Clique tree decomposition
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Separator: Intersection of adjacent cliques in a clique tree. Every
clique tree has the same multiset of separators.
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Clique tree decomposition

1

3

4

2

5

6

7

8

9

3

5

6
8

9

1

2

7

1

3

4

2

2

8

Theorem: A graph is chordal if and only if it has a clique tree.
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Chordal Markov networks
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I ψi (XCi
) = p(Ci )/p(Si )

I Factorization becomes

p(X1, . . . ,Xn) =
∏
C∈C

ψC (XC ) =

∏
C∈C p(XC )∏
S∈S p(XS)

,

where C and S are the sets of cliques and separators.
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Structure learning

Given sampled data D from p(X1, . . .Xn), how well does a graph
structure G fit the data?

Common scoring criteria decompose as

score(G) =

∏
C∈C score(C )∏
S∈S score(S)

Each score(C ) is the probability of the data projected to C ,
possibly extended with a prior or penalization term.

e.g. maximum likelihood, Bayesian Dirichlet, ...

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Structure learning

Structure learning problem in chordal Markov networks:

Given score(C ) for each C ⊆ V , find a chordal graph G that
maximizes

score(G) =

∏
C∈C score(C )∏
S∈S score(S)

.

We assume each score(C ) can be efficiently computed and focus
on the combinatorial problem.

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Structure learning

Bruteforce solution:

I Enumerate undirected graphs

I Determine which are chordal

I For each chordal G, find a clique tree to evaluate score(G)

I O∗(2(n2))

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Structure learning

We denote score(T) = score(G) when T is a clique tree of G.

I Every clique tree T uniquely specifies a chordal graph G.

I We can search the space of clique trees instead.

Kustaa Kangas Learning chordal Markov networks by dynamic programming



Recursive characterization
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Let T be rooted at C with subtrees T1, . . . ,Tk rooted at
C1, . . . ,Ck . Then,

score(T) = score(C )
k∏

i=1

score(Ti )

score(C ∩ Ci )
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Recurrence

For S ⊂ V and ∅ ⊂ R ⊆ V \ S ,

let f (S ,R) be the maximum score(G) over chordal G on S ∪ R
such that S is a proper subset of a clique.

Then, the solution is given by f (∅,V ).
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Recurrence

score(T) = score(C )
k∏

i=1

score(Ti )

score(C ∩ Ci )
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∅ ⊂ C ⊆ R

{R1, . . . ,Rk} < R \ C
S1, . . . , Sk ⊂ C
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Recurrence
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Recurrence
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Recurrence
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Recurrence
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Recurrence

f (S ,R) = max
S⊂C⊆S∪R

score(C ) max
{R1,...,Rk}<R\C

k∏
i=1

h(C ,Ri )
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Recurrence

f (S ,R) = max
S⊂C⊆S∪R
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Recurrence

f (S ,R) = max
S⊂C⊆S∪R

score(C )g(C ,R \ C )

g(C ,U) = max
{R1,...,Rk}<U

k∏
i=1
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Recurrence
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Recurrence

g(C ,U) = max
{R1,...,Rk}<U

k∏
i=1

h(C ,Ri )

If U = ∅, then g(C ,U) = 1 (empty product).
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Recurrence

g(C ,U) = max
{R1,...,Rk}<U

k∏
i=1

h(C ,Ri )

If U = ∅, then g(C ,U) = 1 (empty product).
Otherwise
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Recurrence

We have the split into three simpler recurrences:

f (S ,R) = max
S⊂C⊆S∪R

score(C )g(C ,R \ C )

g(C ,U) = max
∅⊂R⊆U

h(C ,R)g(C ,U \ R)

h(C ,R) = max
S⊂C

f (S ,R)
/
score(S)

Dynamic programming in the increasing order of set size.

Space: O(3n)
Time: O(4n)
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Efficient indexing

For each pair (A,B) compute the index

n∑
v=1

3v−1 · Iv (A,B)

where

Iv (A,B) =


1 if v ∈ A,
2 if v ∈ B,
0 otherwise.
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Experiments
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Experiments

Dataset Abbr. n m
Tic-tac-toe X 10 958
Poker P 11 10000
Bridges B 12 108
Flare F 13 1066
Zoo Z 17 101

Dataset Abbr. n m
Voting V 17 435
Tumor T 18 339
Lymph L 19 148
Hypothyroid 22 3772
Mushroom 22 8124
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Thank you!
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