
Date of acceptance Grade

Instructor

Algorithm portfolios in constraint solving

Juho-Kustaa Kangas

Helsinki May 31, 2013

UNIVERSITY OF HELSINKI
Department of Computer Science

Faculty of Science Department of Computer Science

Juho-Kustaa Kangas

Algorithm portfolios in constraint solving

Computer Science

May 31, 2013 16 pages + 16 appendices

Although NP-hard problems are generally thought to be intractable in the worst case, in practice
many instances can be solved efficiently by heuristic algorithms. Typically, different algorithms
perform well on different instances and there is no single best algorithm. Indeed, while an algorithm
might solve many instances in a few seconds, solving other instances of same size may instead take
several weeks. One approach in such cases is to construct an algorithm portfolio that comprises
multiple algorithms and attempts to select the best one for a given problem instance.

In this report we present SATzilla, a generic process for constructing an algorithm portfolio that
utilizes so called empirical hardness models to predict an algorithm’s running time on given in-
stance. Such models are constructed by first identifying a set of instance features and then using
machine learning techniques to exploit correlations between features and algorithm performance.
While the SATzilla approach originally targets boolean satisfiability, the same techniques have been
successfully applied to various other constraint problems.

ACM Computing Classification System (CCS):

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

1.1 Algorithm portfolios . 1

1.2 SATzilla . 2

2 Portfolio construction 3

2.1 Overview . 3

2.2 Selecting instances . 4

2.3 Identifying initial features . 5

2.4 Selecting the final set of algorithms 6

3 Building empirical hardness models 7

3.1 Regression . 8

3.2 Feature selection . 9

3.3 Basis function expansion . 10

3.4 Dealing with terminated runs . 10

3.5 Hierarchical hardness models . 12

4 Discussion 13

4.1 Results . 13

4.2 Conclusion . 14

References 15

1

1 Introduction

For many problems it is recognized that there is no single best algorithm. Rather,
different algorithms perform well on different instances of the problem, with large
differences in running times between algorithms. This phenomenon is highlighted
among NP-hard constraint problems such as boolean satisfiability (SAT) [XHLB07],
which are unlikely to be tractable in general yet in many cases turn out to be solvable.
Specifically, many large instances can be solved with ”heuristic” algorithms that
solve some instances quickly but have no (reasonable) upper bounds for worst-case
complexity. Due to the inherent hardness of the problems, such heuristics tend
to exhibit a significant degree of variance in the running time between different
instances, even if the instances are of roughly equal size.

This raises a question commonly known as the ”algorithm selection problem”: given a
problem instance and a set of (heuristic) algorithms, which algorithm or algorithms
should be run to minimize the expected running time (or some other measure of
performance)? While ideally we would like to select the algorithm with the best
performance on the particular instance, predetermining the performance accurately
without actually running the algorithm is in general not possible. Instead, the
traditional approach has been to select for each class or distribution of instances
the algorithm known to have the best average-case performance on that particular
class, also known as the ”winner-take-all” approach. While this often achieves a good
performance, it has the drawback of dismissing algorithms that perform poorly on
the average but nevertheless excel on some particular instances. Conversely, the
algorithm that performs best on the average might be highly inefficient on some
instances of the class.

1.1 Algorithm portfolios

A more recent approach to the problem has been to use an algorithm portfolio that
makes the decision of algorithm selection ”online”, based on individual properties of
the problem instance, rather than a predetermined instance distribution. In a broad
sense of the term, an algorithm portfolio comprises a set of multiple component
algorithms and some strategy of running them to solve a given problem instance.
Originally named thus in [HLH97], algorithm portfolios have received a consider-
able amount of interest during the last decade and have demonstrated success on a
variety of NP-hard problems, such as SAT [NLBH+04, XHHLB08, NMJ11, SS12],

2

MaxSAT [MPLMS08], constraint satisfaction (CSP) [GS01, HHN08], mixed integer
programming [GS01], winner determination (WDP) [LBNS02, LBNA+03], answer
set programming [GKK+11], zero-one integer programming and A.I. planning [SS12].

The key idea behind most such portfolios is the use of empirical hardness models
[LBNS02] that produce approximate predictions of an algorithm’s performance on
a given problem instance, based on the algorithm’s past performance on similar
instances. An empirical hardness model is constructed by first identifying a set of
characteristic properties – or features – of problem instances, that exhibit correlation
with the performance of algorithms and are relatively cheap to compute. To train the
model, the features are computed for a set of problem instances and each algorithm’s
performance on those instances is measured. A machine learning method such as
classification or regression is then applied to predict an algorithm’s performance on
a given set of features.

1.2 SATzilla

In this report we present SATzilla, an automated process for constructing an algo-
rithm portfolio that utilizes empirical hardness models [XHHLB08] for algorithm
selection. Given a new problem instance, the trained portfolio predicts the running
time of each algorithm based on the instance features and then runs the algorithm
predicted to have the best running time. The SATzilla process was most notably
used to construct a SAT portfolio by the same name, which has proven particularly
successful as verified in the 2007 SAT Competition.

We present the SATzilla process in a more general fashion, using SAT-specific de-
tails as examples along the way. We begin by outlining the portfolio construction
in Section 2, as well as discussing the task of selecting proper training instances,
features, and algorithms. In Section 3 we show to use the selected data to construct
the empirical hardness models for predicting algorithm performance. We present
some results and conclude the discussion in Section 4.

3

2 Portfolio construction

In this section we outline the SATzilla approach to constructing an algorithm port-
folio for any problem with several heuristic algorithms available. We follow closely
the original description presented in [XHHLB08], with supporting remarks incor-
porated from [LBNS02, NLBH+04, HHHLB06, XHLB07], all of which follow the
same main idea of portfolio construction. We use ”performance” and ”running time”
interchangeably, noting that the methods presented are applicable to any measure
of performance. In Section 2.1 we first present an overview of the entire process.
We then discuss the selection of training data, features and algorithms in 2.2, 2.3
and 2.4, respectively, leaving empirical hardness models for Section 3.

2.1 Overview

We consider the portfolio design in two parts. The offline phase is where the actual
portfolio construction happens, before seeing any instances that we are going to
solve with the portfolio. In this phase, the following steps are performed:

1. Select a set of problem instances from the target distribution.

2. Select a set of features that characterize problem instances.

3. Select a set of available algorithms for solving the problem.

4. Compute each feature for each instance.

5. Run each algorithm on each instance and measure the performance.

6. Using the data obtained in steps 4 and 5, train an empirical hardness model
for each algorithm to predict its performance on a given set of features.

7. Based on the observed performance, select the final set of algorithms to use in
the portfolio, as well as a set of pre-solvers and one backup solver.

In the online phase, we are given a new problem instance that we want solve with
the portfolio, utilizing the models constructed in the offline phase. Given this new
instance, the following steps are performed:

1. Run each pre-solver on the instance for a short while, sequentially. If a pre-
solver solves the instance, stop, otherwise proceed.

4

Figure 1: A flow chart of the work performed on each candidate algorithm A. Blue
and red arrows represent computation in the offline and online phase, respectively.

2. Compute all features of the instance. If the computation exceeds a given time
limit, run the backup solver, otherwise proceed.

3. Using the empirical hardness models trained in the offline phase, predict the
performance of each algorithm based on the features.

4. Run the algorithm predicted to have the best performance. If an algorithm
solves the instance, stop. If an algorithm fails (e.g. runs out of memory),
continue with the algorithm predicted to have the next best performance.

The work performed on each algorithm is illustrated in Figure 1.

2.2 Selecting instances

In order to build the empirical hardness models, in step 1 we need to identify a
set of problem instances to train and validate our models with. Ideally, we would
like to draw these instances uniformly at random from the same target distribution
of instances that we aim to solve in the online phase. If the target distribution is
synthetic or similar enough to such a distribution, it may be possible to generate
sample instances automatically. When this is not possible, we will typically consider
some available set of instances that we assume to be representative of the target

5

distribution. The instances are then randomly split into training data, which is
used to learn the empirical hardness models, and validation data, which is used for
selecting model parameters, such as the final set of algorithms used.

In case of SATzilla the target distribution was the set of benchmark instances used
in the 2007 SAT competition [XHHLB08]. Therefore, instances from all previous
competitions were used for constructing the models. All instances that were not
solved by any of the candidate algorithms within the competition time limit of 1200
seconds were omitted from the data set.

2.3 Identifying initial features

In order to predict an algorithm’s performance on a given problem instance, we
need to identify a set of features that characterize instances and are correlated with
algorithm performance. Furthermore, the features have to be relatively cheap to
compute so that the time spent in step 2 of the online phase is – on the average –
more than compensated by the time saved by making a good choice in step 4. In the
SATzilla approach, only such features that can be computed for any given instance
are considered. The task of selecting features can be split into two steps:

1. Identify an initial set of characteristic features that are cheap to compute.

2. Determine a subset of such features that are useful for making predictions.

In step 1 we can consider any features that we believe might be correlated with
empirical hardness. As most such features are specific to the problem, in general this
initial step cannot be performed automatically, and should instead be based on our
understanding of the problem domain [XHHLB08]. However, distinguishing between
informative and non-informative features in this phase is not crucial. Rather, a wide
selection is encouraged, with the aim of picking any features that seem reasonable
[NLBH+04]. While such an approach is likely to include many useless features in
the process, there are ways to exclude such features in step 2. Furthermore, even
seemingly useless features may turn out to be informative when used in conjunction
with other features.

Although features vary between domains, there are certain types of features are
common between prolems. For constraint problems in particular, a useful feature
identified in one problem may be directly applicable to another problem [NLBH+04].
One common feature is the size of the instance, described by some natural measure

6

such as the number of clauses and variables in a SAT formula or the number of
vertices and edges in a graph. Typically problems tend to become harder as the size
increases. Thus, one might wish to fix the size in order to find out which features
account for the remaining variations in the performance of algorithms [LBNS02].

In some cases it is possible to model the structure of the instance with a graph, as
demonstrated with SAT [XHHLB08] (clause–variable graphs) and WDP [LBNS02].
In such cases one can consider any graph theoretic properties such as the maximum
or average degree as features. Another method applicable to various optimization
problems (and problems where the quality of a partial solution can be measured) is
to use local search algorithms to probe the search space. A local algorithm is run for
a short while and statistics extracted from the search are treated as features. Such
features can include e.g. branching factors, the number of search steps to reach a
local optimum or the average improvement per step.

In SATzilla, a total of 84 initial features were considered, including features related
to problem size, balance, variable–clause graph, local search statistics and properties
of a related linear program. Some of the features were eventually dropped due to a
high computational cost. Others were dropped in step 2 due to being uninformative
or highly correlated with other features. We elaborate on the process of identifying
such features in Section 3.2. We also discuss the approach of combining base features
into new ones in Section 3.3.

2.4 Selecting the final set of algorithms

In step 3 we are free to consider any available algorithms for solving the problem.
If we could perfectly predict each algorithm’s performance on a given instance, in
theory we could use all of them as component solvers in the portfolio. However,
since in practice predictions cannot be completely accurate, we can achieve a better
expected performance by selecting only a subset of good algorithms in step 7. The
performances of these algorithms should be relatively uncorrelated and each algo-
rithm should achieve the best performance on at least some of the training instances.
In the construction of SATzilla this subset selection is automatized by performing
an exhaustive search over all possible choices: For each subset of algorithms, the
process considers the corresponding portfolio, which uses the empirical hardness
models trained in step 6 to select an algorithm from the subset. Each such portfolio
is evaluated by measuring its performance on the validation data set, and the subset
which yields the best performance is selected.

7

In addition to the main solvers, we select a set of pre-solvers, which are always run
for a short amount of time (typically a few seconds) before computing the features.
This enables the portfolio to solve easy instances quickly, without any overhead from
using the empirical hardness models. A good set of pre-solvers is such that a large
proportion of training instances is solved quickly by at least one solver in the set.
Consequently, the set should consists of solvers that solve many instances quickly
and are relatively uncorrelated with each other. For decision problems such as SAT,
pre-solvers may also include local search algorithms, which may find a solution fast
if it exists, but cannot solve all instances. In later versions of SATzilla, local search
methods were also considered among component solvers.

Finally, among all algorithms we choose one backup solver, which is run exclusively
in the case when the instance isn’t solved by pre-solvers and computing the features
takes too long. A sensible choice for a backup solver is the algorithm, which achieves
the best average-case performance on such instances in the validation set. In case
the number of such instances is too small to justify the choice, we can simply use
the best component solver as a backup solver.

3 Building empirical hardness models

Once the set of training instances and the set of candidate features have been se-
lected, the features are computed for each instance and the performance of each
algorithm on those instances is measured, as described in Section 2. Given this
data, the task is to build a predictive model that exploits correlations between
features and the performance of algorithms. There are various machine learning
techniques to do this, such as classification and regression. The specific method
used in SATzilla is ridge regression, a type of linear regression that penalizes for
large coefficients in the learned function.

We detail the ridge regression technique in Section 3.1. In Section 3.2 we show how
to make regression stable by excluding non-informative features automatically. In
Section 3.3 we describe a way to extend linear regression to accommodate non-linear
correlations. In Section 3.4 we show how to include information from runs that take
too long to finish and have to be terminated prematurely. Finally, in Section 3.5 we
show how to combine the presented models into hierarchical hardness models that
take into account differences between fundamentally different types of instances.
Since a hardness model is trained separately for each algorithm, we consider a fixed

8

algorithm for the remainder of this section.

3.1 Regression

The basic idea in regression is to fit a function – based on the training data – that
takes as its input a set of explanatory variables (in our case, features) and outputs
a prediction of a dependent variable (running time). Regression is a natural choice
when all variables involved are continuous or at least numerical, as is the case with
running time and many features. The function is typically fitted with the objective
of minimizing an error metric that measures how much predictions on the training
instances differ from their actual running times. To avoid overfitting, the hypothesis
space, i.e. the set of all possible functions, should be kept relatively simple.

The most common type of regression is linear regression in which the predicted
variable is a linear function of all other variables. To define the technique formally,
let n be the number of training instances and m the number of features. Let Φ be an
n×m matrix where Φi,j is the value of feature j for instance i. Let t = [t1, . . . , tn] be
a vector where ti is a measure of the algorithm’s performance on instance i. Since
running times can be very large, in SATzilla each ti is actually a logarithm of the
true running time. Based on Φ and t, we fit a function fw of form

fw(ϕ) = wTϕ = w1ϕ1 + w2ϕ2 + · · ·+ wmϕm ,

where ϕ = [ϕ1, . . . , ϕm] is an input vector of feature values, and w = [w1, . . . , wm] is
a vector of free parameters. The parameters are fitted to minimize the error metric,
which in case of linear regression is typically

n∑
i=1

(f([Φi,1, . . . ,Φi,m])− ti)2 ,

that is, the sum of squared differences between predicted and true running times.
This is an appealing choice as it favors models that mispredict all instances equally
[LBNS02]. Furthermore, it can be minimized simply by setting w = (ΦTΦ)−1ΦT t,
which means the offline computation is dominated by the roughly cubic time required
by matrix inversion [NLBH+04].

A drawback with the squared errors metric is that it penalizes differences superlin-
early and may thus be unsuitable if there are many outliers [NLBH+04]. In SATzilla
this problem is addressed by using ridge regression, a variant of linear regression with
a slightly modified error metric that penalizes large coefficient in w and thus increases

9

numerical stability. Ridge regression is achieved by setting w = (δI + ΦTΦ)−1ΦT t,
where I is the identity matrix and δ is a small penalty constant. In SATzilla the
value δ = 10−3 was found to work well. Note that when δ = 0, this is just ”normal”
linear regression. The computational complexity is also essentially the same.

Other techniques such as lasso regression, SVN regression and Gaussian process
regression have also been considered in the development of SATzilla. However, all
of these are computationally more expensive while not offering substantially better
results than ridge regression [LBNS02, NLBH+04, HHHLB06, XHHLB08].

3.2 Feature selection

As mentioned in Section 2.3, in general we wish to discard useless features before
applying the regression techniques presented above. The main reason for this is the
fact that linear regression tends to become unstable when several features are highly
correlated with each other or have no correlation with algorithm performance. On
the other hand, eliminating useless features reduces the amount of computation re-
quired in the online phase and also makes the resulting model easier to interpret.
Specifically, we may be interested in discovering features useful to the model by com-
paring the corresponding coefficients in the linear function. This becomes difficult
in the presence of correlated features, as two correlated but uninformative features
could have arbitrarily large coefficients with opposite signs, thus appearing to be
important while having no actual contribution [NLBH+04].

Whereas the initial feature selection required specific domain expertise, the task of
identifying redundant features can be done automatically with statistical means. In
theory, the best subset of features could be selected by using exhaustive search with
cross-validation, in the same fashion as done with algorithms in Section 2.4. Unfor-
tunately, this becomes infeasible if the number of features is very large, especially
after applying expansion techniques discussed in Section 3.3. In practice, subset
selection is performed with heuristic methods, which may produce good sets even if
they fail to find the optimal choice.

The specific technique employed by SATzilla is forward selection, which starts with
an empty feature set and then greedily adds features, always picking the feature
that minimizes the resulting cross-validation error. A dualistic approach known as
backward elimination instead starts with the complete set of features, removing one
feature in each step with the same objective. A third common technique is sequential

10

replacement, which extends forward selection by adding the possibility of replacing
a feature with another in each step. In previous work [NLBH+04], a combination
of all three has been considered, along with shrinkage techniques specific to linear
regression.

3.3 Basis function expansion

An obvious limitation of linear regression is that, as such, it cannot properly fit non-
linear correlations. While the technique can be generalized to fit e.g. polynomials
of higher degrees, an easier and more general method is to introduce new features
that are functions of the original ones. Specifically, if we wish to consider depen-
dencies expressed by function g, we can add g(x) for each feature x, thus allowing
such correlations to be ”noticed” by the regular linear regression. This technique
is generally known as basis function expansion and, in theory, allows the model to
take into account correlations expressed by any arbitrarily complex functions.

The basis functions need not be limited to mappings from one feature to another.
Indeed, SATzilla employs a special case known as quadratic expansion, which adds
all pairwise products of original features, thus allowing the model to fit quadratic
correlations. One problem with such an expansion is that the number of features can
quickly explode, thus making the regression task intractable. Furthermore, since the
expansion effectively broadens the hypothesis space, it can also lead to overfitting
[NLBH+04]. However, as most new features are likely to be either non-informative or
correlated with other features, the problem can be addressed by using the techniques
discussed in Section 3.2. In SATzilla, forward selection is applied both before and
after performing quadratic expansion, thus greatly reducing the final set of features
used in regression.

3.4 Dealing with terminated runs

While the high variance in running times of algorithms is the primary motivation
for constructing portfolios, the same fact unfortunately makes the necessary task of
measuring running times costly. This problem is particularly evident with NP-hard
problems such as SAT, where an algorithm could run for weeks without yielding a
solution. Spending this much time just to find out how long the algorithm runs is
naturally not feasible in practice. Instead, a common solution is to set up a fixed
cutoff time and terminate any algorithm exceeding it prematurely.

11

This raises the question of how the information that a run was terminated should
be used when training the empirical hardness models. One solution that has been
considered in experiments is to simply ignore terminated runs entirely. Intuitively,
this approach seems illogical, since having to terminate a run suggests that the
instance is potentially very hard for the algorithm. Naturally, we would like to use
this information to avoid running the algorithm on similar instances, just like we
use runs that terminate close to the cutoff time. Another proposed method is to
treat the cutoff time as the true running time of the algorithm. While this approach
takes the hardness of the instance into account, it’s nevertheless unsatisfactory as
it systematically underestimates the hardness of terminated instances, potentially
resulting in overoptimistic predictions [XHHLB07].

A more theoretically sound method is to construct a model that treats the cutoff
time as a lower bound on the true running times of terminated runs, thus making
as much use of the information available as possible. In statistics this is commonly
known as censoring the true value. The approach of using censored samples has
been studied e.g. in survival statistics, and was apparently first applied to SAT in
[GS06b]. In the SATzilla approach, censored samples are included using a method
presented in [SH79]. This technique first trains an empirical hardness model while
treating the cutoff times as if they were the true running times on the terminated
instances. Then, the following two steps are repeated.

1. The trained model is used to predict the running times of the terminated
instances.

2. A new empirical hardness model is trained, this time treating the predictions
made in the previous step as the true running times of the terminated instances
(for other instances the actual running times are still used).

Depending on the machine learning method used in model construction, the pre-
dictions in the first step will likely differ from the cutoff times. The two steps are
repeated until the predictions converge, i.e. do not significantly change between two
iterations. Empirically, this method has proven to clearly outperform both ignoring
the terminated runs and using the cutoffs times as true values. The theoretical
explanation is that, unlike the two other approaches, the iterative method does not
introduce bias into the model.

12

3.5 Hierarchical hardness models

It has been observed that empirical hardness models can achieve a better accuracy
in predictions when restricted to some fundamental ”class” of instances. In SAT,
specifically, there is a natural division into satisfiable and unsatisfiable instances. If
a given instance is known to be satisfiable, it makes sense to predict its hardness
using a model that has been trained on safisfiable instances only, and vice versa. In
practice, of course, we want to predict the hardness of instances even if we do not
have any knowledge of their classes a priori.

This motivates the use of hierarchical hardness models as employed by SATzilla
[XHLB07, XHHLB08]. Let Z be the set of instance classes. Offline, we first train
for each z ∈ Z a so called conditional model Mz. Each Mz is trained using the
same methods as presented above, but with instances of class z only. We then train
a classifier to predict the class of a given instance, based on the same features as
used by the conditional models to predict running times. Specifically, the classifier
returns a vector p = [p1, . . . , p|Z|], where each pz is the probability that the instance
belongs to class z. In SATzilla, Sparse Multinomial Logistic Regression is used for
classification, though any method which returns probabilities would do as well.

Online, given an instance with a feature vector ϕ, we first use the classifier to obtain
the probabilities p based on ϕ. Then, based on ϕ and p, we must somehow combine
predictions given by the conditional models. One possibility would be to simply
use the model Mz for which the probability pz is highest. However, this approach
doesn’t take into account the accuracy of models and thus ignores the potentially
high cost of making a bad choice. Indeed, in SAT it has been observed that, while
selecting a good conditional model may significantly improve predictions, making
a wrong choice can have an even greater negative impact [XHLB07]. Furthermore,
even if we could perfectly guess the class of a given instance, the best conditional
model for that instance (i.e. the one that selects the best algorithm) isn’t necessarily
the one trained on the same class.

A more theoretically justified approach is to treat the hierarchical hardness model
as a probabilistic model, in which the feature vector ϕ and the classifier probabilities
p are observed variables and the running time τ is an unknown variable. Under this
interpretation, we can get the expected running time by averaging over predictions
of all conditional models, weighting each model by how likely it is to yield the best
predictions. To this end, let ẑ be an additional variable that denotes (the class of)
the best conditional model for a given instance. Our belief in the value of ẑ depends

13

exclusively on ϕ and p. Thus, the expected running time conditional on the observed
variables is

E[τ | ϕ, p] =
∑
z∈Z

P (ẑ = z | ϕ, p) · wT
z ϕ

where wz is the coefficient vector for the linear function of model Mz.

The only problem with evaluating this formula is that we do not know the weighting
functions P (ẑ = z | ϕ, p). However, just like we learned the prediction functions
in Section 3.1, we can the learn the weighting functions by considering a suitable
hypothesis space and fitting free parameters to minimize some error metric between
the predicted and true running times of training instances. In SATzilla the weighting
functions are so called softmax functions commonly used in similar cases, and the
error metric is the sum of squared differences. We omit further discussion of these
choices.

An early version of SATzilla employs only two conditional models, one for satisfiable
and another unsatisfiable instances. A later version uses six models, each trained or
satisfiable or unsatisfiable instances of three different target distributions, which has
turned out to improve predictions greatly. We remark that the approach presented
here is (at least theoretically) applicable to machine learning techniques other than
linear regression and performance measures other than expected running time.

4 Discussion

4.1 Results

The performance of SATzilla was measured in the 2007 SAT Competition, where
it competed in all of the four different categories: industrial instances, handmade
instances, randomly generated instances, and one category comprising all instances
in the other three categories. Each category was further divided into satisfiable,
unsatisfiable, and all instances.

In each category, SATzilla was able to clearly outperform its component solvers,
achieving a better average running time than any component solver would have
achieved alone. The greatest improvement over component solvers was achieved for
random and all instances, where the heterogenous instance distribution emphasized
differences between solvers and thus made good algorithm selection more significant.
For random instances the performance was very close to a hypothetical oracle that

14

always selects the best algorithm, with an option of not running pre-solvers and
with with no overhead from feature computation. Such an oracle provides a lower
bound on the performance that SATzilla can hope to achieve.

Classification into satisfiable and unsatisfiable instances also turned out to be quite
accurate, with 92%, 70%, 94% and 78% of instances from the respective categories
(industrial, handmade, random, all) classified correctly. In a closer analysis it was
noted that an unsatisfiable instance was far more commonly misclassified as satisfi-
able than vice versa, most clearly in the the handmade category.

4.2 Conclusion

Algorithm portfolios comprise a broad range of techniques for utilizing multiple
algorithms to achieve a better average performance than any single algorithm. Such
approaches can be useful when there is no single best algorithm for a problem and the
performance of different algorithms is relatively uncorrelated. Algorithm portfolios
are particularly appealing for NP-hard problems where the choice of an algorithm
can have a huge impact on the time required to solve an instance.

Constructing a successful portfolio depends crucially on the ability to estimate each
algorithm’s (relative or absolute) performance on a given instance. This estimation
should be relatively cheap so that the overhead is adequately compensated by making
good choices on which algorithms to run. The SATzilla approach presented uses
machine learning to train empirical hardness models, which predict an algorithm’s
performance based on hardness-related features of the problem instance. Aside from
offering a solution to the algorithm selection problem, such models are also useful
for gaining understanding of a problem’s hardness. This is particularly useful for
NP-hard constraint problems, which can be otherwise very difficult to analyze.

In recent years there have also been other approaches to building SAT portfolios
that are competitive and much more simple than the SATzilla approach. One such
portfolio [NMJ11] uses k-means to select an algorithm that has performed well
on close neighbors of the given instance. Other techniques involve using meta-level
classifiers to assess the accurracy of predictions, as well as sharing knowledge between
sequential solvers [MSSS13]. Such techniques have previously been used in parallel
solvers and, as some of them enhance the behavior of individual solvers, they can
result in portfolios that outperform the hypothetical oracle.

15

References

GKK+11 Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T.
and Ziller, S., A portfolio solver for answer set programming: Prelimi-
nary report. LPNMR, 2011, pages 352–357.

GS01 Gomes, C. P. and Selman, B., Algorithm portfolios. Artificial Intelli-
gence, 126,1-2(2001), pages 43–62.

GS06a Gagliolo, M. and Schmidhuber, J., Dynamic algorithm portfolios.
ISAIM, 2006.

GS06b Gagliolo, M. and Schmidhuber, J., Impact of censored sampling on the
performance of restart strategies. CP, 2006, pages 167–181.

HHHLB06 Hutter, F., Hamadi, Y., Hoos, H. H. and Leyton-Brown, K., Perfor-
mance prediction and automated tuning of randomized and parametric
algorithms. Proceedings of the 12th international conference on Prin-
ciples and Practice of Constraint Programming, CP’06, Berlin, Heidel-
berg, 2006, Springer-Verlag, pages 213–228.

HHN08 Hebrard, E., Holl, A. and Nugent, C., Using case-based reasoning in an
algorithm portfolio for constraint solving. Irish Conference on Artificial
Intelligence and Cognitive Science, 2008.

HLH97 Huberman, B. A., Lukose, R. M. and Hogg, T., An economics approach
to hard computational problems. Science, 27, pages 51–53.

LBNA+03 Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J. and
Shoham, Y., A portfolio approach to algorithm selection. IJCAI, 2003,
pages 1542–1542.

LBNS02 Leyton-Brown, K., Nudelman, E. and Shoham, Y., Learning the em-
pirical hardness of optimization problems: The case of combinatorial
auctions. CP, 2002, pages 556–572.

MPLMS08 Matos, P. J., Planes, J., Letombe, F. and Marques-Silva, J., A MAX-
SAT algorithm portfolio. ECAI, 2008, pages 911–912.

MSSS13 Malitsky, Y., Sabharwal, A., Samulowitz, H. and Sellmann, M., Boost-
ing sequential solver portfolios: Knowledge sharing and accuracy pre-
diction. LION, 2013.

16

NLBH+04 Nudelman, E., Leyton-Brown, K., Hoos, H. H., Devkar, A. and Shoham,
Y., Understanding random SAT: Beyond the clauses-to-variables ratio.
CP, 2004, pages 438–452.

NMJ11 Nikolic, M., Maric, F. and Janicic, P., Simple algorithm portfolio for
SAT. CoRR, abs/1107.0268.

SH79 Schmee, J. and Hahn, G. J., A Simple Method for Regression Analysis
with Censored Data. Technometrics, 21,4(1979), pages 417–432.

SS12 Streeter, M. J. and Smith, S. F., New techniques for algorithm portfolio
design. CoRR, abs/1206.3286.

XHHLB07 Xu, L., Hutter, F., Hoos, H. H. and Leyton-Brown, K., The design and
analysis of an algorithm portfolio for SAT. CP, 2007, pages 712–727.

XHHLB08 Xu, L., Hutter, F., Hoos, H. H. and Leyton-Brown, K., SATzilla:
Portfolio-based algorithm selection for SAT. Journal of Artificial Intel-
ligence Research (JAIR), 32, pages 565–606.

XHLB07 Xu, L., Hoos, H. H. and Leyton-Brown, K., Hierarchical hardness mod-
els for SAT. CP, 2007, pages 696–711.

