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Abstract

Given a connected weighted undirected graph, the minimum span-
ning tree problem asks for a spanning subtree with the minimum sum
of edge weights. We consider a distributed version of the problem in
which each node of the graph is a processor knowing initially only the
weights of incident edges. To solve the problem the nodes exchange
messages with each other until each node knows, which incident edges
are in the spanning tree. We present and analyze a classical algorithm
solving the problem.

1 Introduction

A spanning tree of a connected, undirected graph is a connected acyclic
subgraph that contains all nodes of the graph. For a graph with weighted
edges, we define the minimum spanning tree (MST) as the spanning tree
with the minimum sum over the weights of its edges. Finding the minimum
spanning tree of a given graph is one of the oldest problems in computer
science and a central problem in combinatorial optimization and distributed
computing. Commonly used greedy centralized algorithms (e.g. Kruskal’s [3]
and Prim’s [4] algorithms) solve the problem in time O(E log V ), where V
and E are the sets of nodes and edges respectively (by convention, we write
V and E short for |V | and |E| here). For a more general treatment of the
problem and references to some faster algorithms, see e.g. [1].

In this report we consider the MST problem in a distributed setting.
Specifically, we consider an asynchronous message passing model in which
each node of the graph can do simple processing and send messages to its
neighbors. In the beginning each node knows only the weights of its incident
edges. The nodes must then cooperate by communicating with each other,
following an identical local algorithm, until each node knows which of its
incident edges are part of the MST. The cost of computation is measured in
the amount of communication required. In general, we are interested in the
number of messages that nodes must exchange (message complexity) as well
as to what extent the process can run in parallel (time complexity).
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Figure 1: A weighted graph and its unique minimum spanning tree.

The paper is organized as follows: In section 2 we give a more formal
definition of the problem and the model of computation. We also prove some
general properties of minimum spanning trees to motivate a general approach
to solving the problem. In section 3 we present a classical distributed
algorithm by Gallager et al. solving the problem with O(E + V log V )
messages and O(V log V ) time. We address correctness issues and give an
analysis of the complexity in sections 4 and 5, respectively. We assume the
reader is familiar with basic terminology of graph theory.

2 Preliminaries

2.1 Definitions and notation

A graph is an ordered pair (V,E), where V is a finite set of nodes and
E ⊆ V (2) is a set of edges between nodes. A sequence of nodes is called a
path if there’s an edge between all consecutive nodes. If there’s also an edge
between the first and last node, the sequence is called a cycle. A graph is
connected if there’s a path between all pairs of nodes. A tree is a connected
graph without any cycles. If E′ ⊆ E and T = (V,E′) is a tree, then T is
called a spanning tree of (V,E). In a weighted graph, we associate a weight
w(e) for each edge e ∈ E. For simplicity, we treat weights as being real
numbers, though they can be any objects with similar properties.

Throughout the report we consider a given connected graph with weighted
edges. If T = (V,E) is a spanning tree of the graph, we say the weight of T
is w(T ) =

∑
e∈E w(e), the sum of weights over the edges in E. If T has a

minimum weight over all spanning trees of the graph, it’s called a minimum
spanning tree (figure 1). A minimum spanning tree isn’t necessarily unique
as several spanning edge sets might have the same weight. In section 2.2 we
show that if edge weights are distinct, i.e., w(e) 6= w(e′) for all e 6= e′, then
the MST is unique. If F = (V ′, E′) is a tree and V ′ ⊆ V and E′ ⊆ E, then
we say F is a fragment of T . Further, any edge {u, v} of the graph with
u ∈ V ′ and v 6∈ V ′ is called an outgoing edge of F .
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To simplify the manipulation of graphs, we extend common notations as
follows: Let T = (V,E) and T ′ = (V ′, E′) be subgraphs and e = {u, v} an
edge. The graph produced by adding e and its endpoints to T is denoted
by T ∪ e = (V ∪ {u, v}, E ∪ {e}). Removing e from T is denoted by T \ e =
(V,E \ {e}). We write e ∈ T if e ∈ E, otherwise e 6∈ T . Finally, the
combination of T and T ′ is denoted by T ∪ T ′ = (V ∪ V ′, E ∪ E′).

2.2 Properties of minimum spanning trees

Minimum spanning trees have several well known properties that are exploited
by algorithms (see e.g. [1, 2]). We will now introduce some of them.

Lemma 1. Let T = (V,E) be a tree and e an edge in V (2) but not in E.
Then T ∪ e contains a cycle. If e′ is an edge in the cycle, then (T ∪ e) \ e′ is
a tree.

Essentially the lemma says that adding an edge to a tree produces a
cycle and removing any edge in the cycle produces a tree. This should be
intuitively clear so we omit the proof.

Theorem 2. Let F be a fragment of an MST and let e be a minimum-weight
outgoing edge of F . Then, F ∪ e is also a fragment of an MST.

Proof. Let T be an MST having F as a fragment. If e ∈ T , the claim follows
trivially. Otherwise T ∪e contains a cycle and an edge e′ 6= e in the cycle is an
outgoing edge of F . By lemma 1 T ′ = (T ∪ e)\ e′ is a spanning tree. Since by
definition w(e) ≤ w(e′), it follows that w(T ′) = w(T ) +w(e)−w(e′) ≤ w(T ).
Therefore T ′ is an MST and by construction F ∪ e is its fragment.

Theorem 3. If a graph has distinct edge weights, then its MST is unique.

Proof. Assume to the contrary that there are two distinct MSTs, T and T ′.
Let e be the minimum-weight edge contained in exactly one of the trees. By
symmetry assume e ∈ T . Since e 6∈ T ′, the graph T ′∪e necessarily contains a
cycle. Since T is a tree, at least one of the edges in the cycle is not in T . Let
e′ be such an edge. By lemma 1 T ′′ = (T ′∪e)\e′ is spanning tree. Since e′ is
in exactly one of T and T ′, and e has the minimum weight among such edges,
it follows that w(e) < w(e′). Then, w(T ′′) = w(T ′) + w(e)− w(e′) < w(T ′),
which is a contradiction since T ′ has minimum weight.

2.3 Model of computation

We consider the problem of finding an MST in a common asynchronous mes-
sage passing model. In this setting each node of the graph is a computation
unit, having a simple state of a few variables and running a local algorithm
identical to those of all other nodes. We assume that all nodes “wake up”
simultaneously to start the algorithm. At this initial stage each node is only
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aware of its incident edges and their weights. A node can communicate with
its neighbors by sending and receiving short messages over these edges. By
“short” we mean in the order of O(log V ) bits. The algorithm terminates
once each node has determined which of its incident edges are part of the
MST and will no longer send messages to other nodes.

Communication is asynchronous: Each node may send a message to
any of its neighbors at any time, independently of other nodes. Several
messages can be transmitted simultaneously on an edge, in both directions.
Each message sent is received without error, after a delay that is unknown
but bounded by some constant which does not depend on the graph. As a
consequence, a message sent later than another message may still be received
earlier. However, messages sent on the same edge in the same direction
always arrive in the same order.

Each message received by a node is appended to a first-in-first-out queue,
waiting to be processed. Whenever the queue is non-empty, the node picks
the message at the head of the queue and does some processing according to
its local algorithm. Depending on the message, the processing may consist
of simple modifications to the node’s internal state as well as sending new
messages to its neighbors. If a node determines it cannot process the message
yet, it may also reappend the message at the end of the queue.

While a node has no messages to process, it remains idle. The only
spontaneous processing happens when all nodes simultaneously run some
initiate procedure to start the algorithm. We assume this to be our initial
state and are not concerned with how the nodes reach it.

2.4 Distinct edge weights

In order to solve the problem using the model described, we have to assume
that the edge weights are distinct. This can be shown by considering a simple
case with three nodes, all connected to each other and all edges having
equal weights. Since the situation is symmetric, there is no deterministic
algorithm to resolve which of the two edges should constitute the MST. Any
solution can lead to all nodes continuously attempting to choose different
edges, resulting in a cycle. If nodes are allowed to make random choices,
then the expected number of attempts is likely to be low, but even then the
process could go on indefinitely.

If we modify the model to allow distinct identifiers for nodes, then it is
possible to break ties by appending those identifiers to edge weights. Sending
the node identifiers before starting the main algorithm requires at most 2E
messages. There are also some modifications to the algorithm we describe in
section 3 that work without doing the extra communication.
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Figure 2: A collection of MST fragments (left). Following the generic scheme,
we can choose an arbitrary fragment F and add its minimum-weight outgoing
edge (in red) to the MST. By combining the fragments joined by the edge
(right), we get a new larger fragment of the MST.

3 Algorithm

3.1 High level description

We present an algorithm by Gallager et al. [2] finding the MST under the
specified model. The algorithm follows a greedy scheme in which known
fragments of the MST are incrementally combined into larger fragments by
adding minimum-weight edges between them. It can be formulated as:

1: For each v ∈ V , construct a trivial fragment ({v}, ∅).
2: while there is more than one fragment do
3: Choose a fragment F . Denote by e the minimum-weight outgoing

edge of F and by F ′ the fragment at the other end of e.
4: Combine F and F ′ into a new fragment F ′′ = (F ∪ e) ∪ F ′.
5: end while
6: The single remaining fragment is the MST.

To see that this works, consider line 4. By Theorem 2, F ∪e is a fragment
of some MST. By Theorem 3 (since we assume edge weights to be distinct) the
MST is unique. Since fragments F ∪ e and F ′ share a node, F ′′ is connected
and therefore also a fragment of the MST (figure 2). The algorithm stops
when there is only one fragment left that contains the whole MST.

The generic scheme is shared by many centralized algorithms, which
differ mainly in how the fragment is chosen on line 3. Kruskal’s algorithm
[3], for example, always picks the minimum-weight outgoing edge over all
fragments, while Prim’s algorithm [4] keeps extending a single large fragment.
By using suitable data structures both can be made to run in O(E log V ).
However, neither of these admits an efficient distributed version since they
would require excessive communication: Kruskal’s algorithm requires global
knowledge of the graph to find the edge, while Prim’s algorithm requires
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communication within a fragment of size O(V ) after each expansion.
To avoid these problems we need to pick the edges so that they can be

found locally but only a few searches are performed in large fragments. To
achieve this, we assign to each fragment a property called level, an integer
ranging from 0 to an upper bound. We define a fragment of one node to be
at level zero and allow a larger fragment to be formed in two ways:

1. If two fragments have the same level L and the same minimum-weight
outgoing edge, they combine to produce a new fragment of level L + 1.

2. If a fragment is at level L and the fragment at the other of its minimum-
weight outgoing edge has level L′ > L, then the lower level fragment
joins the higher level fragment, which maintains level L′.

If a fragment cannot apply either of the two rules, then it must simply
wait until the level at the other end of its minimum-weight outgoing edge
increases substantially. Note that from the perspective of the generic scheme,
there is no difference between fragments combining or joining.

In section 4 we will show that at least one fragment can always apply
either of the rules and thus they cannot lead to a deadlock. As we will show
formally in section 5, the rules guarantee that each combination at least
doubles the fragment size, which intuitively means that there cannot be too
many large fragments. From this fact we derive the claimed upper bounds
for the time and message complexity.

The overall algorithm now works as follows: First a fragment is formed
for each individual node. Every time a new fragment is formed, it identifies
its minimum-weight outgoing edge – independently of other fragments – and
then informs the fragment at the other end of the edge. At some point after
this the two fragments form a larger fragment by applying one of the two
rules. The cycle continues until there is only one fragment. By the earlier
description it should be clear that this procedure works. It remains to show
how to implement it with local algorithms at each node. Specifically, we
have to elaborate how the nodes within a fragment communicate to find the
minimum-weight outgoing edges and handle fragment combinations.

3.2 Maintaining fragments on node level

To maintain fragments on node level, each node keeps track of which of its
incident edges are part of the MST. Initially, each edge is unlabeled. When
an edge is found to be part of the MST, it’s labeled Branch and the node
will attempt to connect with the fragment at the other end. If an edge is
found not to be part of the MST, it’s labeled Rejected instead and the node
will never consider the edge again. Note that both endpoints of an edge
maintain their own state of the edge and these two states can be temporarily
inconsistent.
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Figure 3: A possible state of the algorithm with four fragments. Dashed
lines represent unlabeled edges. Other edges are labeled Branch and rejected
edges are not depicted. Core edges are shown in bold red. An arrow from a
node represents the inbound edge of the node. The nodes incident to a core
have the core as their inbound edge, hence the double arrow.

In addition to the edge labels, each node contains a variable indicating
the level of its fragment. Further, we require that each fragment with more
than one node contain a special edge called the core of the fragment. When
two fragments combine into a larger fragment, the edge joining the two
original fragments always becomes the core of the new fragment.

The core has two purposes: Firstly, when nodes are searching for the
minimum-weight outgoing edge of their fragment, they do not necessarily
know which edges are outgoing: basically, they will need to query their
neighbors as to whether they belong to the same or a different fragment.
To answer such queries, each fragment must have a unique identifier known
to all of its nodes. Since each fragment has a unique core edge, and since
we assumed edge weights to be distinct, we can use the weight of the core
edge as the unique identifier of its fragment. We will refer to the weight of
the core edge simply as the identity of the fragment. Note that fragments
at level zero do not need identities, since any query they receive necessarily
comes from a different fragment.

Secondly, the core serves as a “hub” of computation within a fragment.
When a new fragment is formed, the nodes incident to the core initiate
the search for the minimum-weight outgoing edge by broadcasting the new
level and fragment identity to all other nodes. The nodes will report their
findings back to the core nodes, which then determine whether to connect
with another fragment or if the algorithm has finished. To this end, all nodes
must keep track of which one of their incident edges lead towards to core
(figure 3). We will refer to this edge as the inbound edge of a node. All other
edges within the fragment are called outbound edges (not to be confused
with outgoing edges, which span two different fragments).
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Figure 4: Two fragments combining by adding the red edge. The red arrows
represent Initiate messages carrying the new identity to all nodes.

Figure 5: The combination of figure 4 completed. All nodes have updated
their levels, fragment identities and inbound edges.

3.3 Finding the minimum-weight outgoing edge

We will now describe in detail how the fragments find their minimum-weight
outgoing edges. First consider the simple case of a level zero fragment
containing only one node. Trivially, the minimum-weight outgoing edge of
such a fragment is just the minimum-weight incident edge of the node. With
a simple local computation, the node identifies this edge, labels it as Branch
and then informs the node at the other end by sending a message called
Connect over the edge. This message carries the level of the fragment (zero)
as a single argument. Once done, the node will wait for a response.

Next consider the case when two fragments at level L combine into a
fragment of level L + 1 and the edge joining them becomes the core of the
new fragment. Initially only the two nodes incident to the core are aware of
the combination: the rest of the nodes in the two halves still remember the
levels and identities of the two original fragments. The nodes incident to the
core inform the other nodes by broadcasting a message called Initiate over
their outbound edges (figure 4). The message carries the identity and the
level of the new fragment as its arguments. Upon receiving the message, each
node updates its own fragment identity and level according to the message.
Each node also updates the inbound edge by marking it as the edge over
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Figure 6: The blue node sends a Test message over its minimum-weight
unlabeled edge (left). The red node receives the blue node’s fragment identity,
which matches to its own, so it responds with a Reject message (right).

which the Initiate message was received. Having updated its own state,
each node then broadcasts the same message on its own outbound edges. In
this fashion the message is ultimately propagated to all nodes of the new
fragment (figure 5).

In addition to updating fragment information, the Initiate message ini-
tiates the search for the minimum-weight outgoing edge of the new fragment.
This edge could be the minimum-weight outgoing edge of any node in the
fragment. Therefore, having updated its values and propagated the Initiate
message, each node proceeds to do a search in its local neighborhood.

All unlabeled incident edges of a node are possible candidates for the
minimum-weight outgoing edge. However, the node cannot know beforehand
if these edges are outgoing: the nodes at the other end could already belong
to the same fragment. The solution is to send queries to these nodes to
determine their fragments. The node picks the unlabeled edge of minimum
weight and sends a message called Test over the edge. The message carries
two arguments, the identity and the level of the node’s own fragment. The
node will then wait for a response from the other end.

A node receiving the Test message first compares its own fragment
identity to the one in the message. If the identities are equal, then the two
nodes must be in the same fragment, since two different fragments cannot
have the same identity. Then, the receiving node labels the edge Rejected

and sends a Reject message as a response (figure 6), to indicate that the
other node should also reject the edge. As a small optimization, if the
receiving node itself has sent a Test message to the other node, then it is
not necessary to send the Reject message since receiving the Test message
will already make the other node reject the edge.

On the contrary, if the identities are different, it is not obvious that
the nodes are in different fragments. This is because, when two fragments
combine, it takes some time until the Initiate message carrying the new
identity reaches all nodes in the fragment. Then it is possible that two nodes
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Figure 7: Having forgotten the rejected edge, the blue node sends a new
Test message (left). This time identities don’t match and the red node has
a greater or equal level. Therefore, an Accept message is sent and the blue
node marks the edge as its minimum-weight outgoing edge (right).

are in the same fragment but one of the nodes receiving a Test message
from the other hasn’t yet received the new identity. Note that in such a case
the receiving node necessarily has a lower level than the other node (since
levels increase only when identities are updated). Therefore the situation is
resolved by comparing the fragment levels instead. If the receiving node has
a level higher than or equal to that of the sending node, then it must be in a
different fragment and an Accept message is sent as a response (figure 7).
Otherwise the question cannot be decided yet and the receiving node will
reappend the Test message to its message queue, to be processed once the
node’s level has increased enough.

Consider again the node that sent the Test message. If it receives a
Reject message as a response (or a Test message with the same level), it
labels the queried edge Rejected and proceeds to the next unlabeled edge of
lowest weight, sending a new Test message. This procedure continues until
an Accept message is received over one of the edges, which is then marked
as the minimum-weight outgoing edge, or until the node no longer has any
unlabeled edges to query, which means it has no outgoing edges.

Once each node has identified its minimum-weight outgoing edge (or lack
thereof), the nodes must gather this information to the core so that the
minimum-weight outgoing edge of the entire fragment can be determined.
At first each leaf node, i.e., a node with no outbound edges, sends a message
called Report over its inbound edge. The message carries a single argument,
the weight of the minimum-weight outgoing edge, or a special value None

if the node has no outgoing edges. Each non-leaf node waits until it has
identified its own minimum-weight outgoing edge (if any) and received reports
over all of its outbound edges. The node then determines the minimum
weight w among the reported edges and its own minimum-weight outgoing
edge and marks the edge leading towards it, i.e., either its own outgoing
edge or one of the outbound edges. It then sends a Report message over its
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Figure 8: Nodes sending Report messages over their inbound edges. Each
message carries the minimum weight of an outgoing edge in the corresponding
subtree. Nodes shown in green send the weight of their own outgoing edge.

inbound edge carrying the weight w or None if neither the node nor any of
the outbound neighbors had outgoing edges (figure 8).

In this way the nodes propagate the reports towards the core, marking
the path leading towards the minimum-weight outgoing edge. Finally, the
reports reach the nodes incident to the core and they both learn the minimum
weight on their own side of the fragment. The core nodes then exchange
Report messages, allowing both of them to determine the minimum weight
of the entire fragment. Once determined, it only remains to inform the node
incident to the minimum-weight outgoing edge.

To this end, the core node on the minimum-weight side sends a message
called Change-Core over the edge marked as leading towards the minimum-
weight outgoing edge. Any node receiving the message passes it on along the
marked path until the node incident to the minimum-weight outgoing edge
receives it (figure 9). This node then labels the edge as Branch and sends a
Connect message over it, carrying the level of the fragment as an argument. If
the core nodes both report None to each other, then the algorithm terminates.

Figure 9: Nodes propagating the Change-Core message to the node incident
to the minimum-weight outgoing edge (blue), which then sends a Connect

message over the edge.
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3.4 Handling connect messages

We have now described how each fragment identifies its minimum-weight
outgoing edge and finally sends a Connect message on this edge. To complete
the cycle, we will now describe how the Connect messages are handled to
initiate a new search.

First consider the case when two nodes with the same fragment level and
minimum-weight outgoing edge send Connect messages to each other. As
per the rules described in section 3.1, their fragments will combine. Upon
sending and receiving the messages, the two nodes initiate the fragment
combination by incrementing their levels and marking the core as their
inbound edge. From this point on everything proceeds as described in the
section 3.3, starting with the two nodes sending an Initiate message over
their outbound edges.

Next consider the case when a node receives a Connect message from a
node with a lower level. In this case the lower level fragment will join the
higher level fragment. To this end, the receiving node immediately sends an
Initiate message as a response, carrying its level and identity. The other
node will then propagate the message to all other nodes in the lower level
fragment. Each node receiving the message updates its fragment information
and (with one exception) starts searching for the minimum-weight outgoing
edge, in the same manner as when fragments combine.

The exception is that if the node receiving the Connect message has
already sent its Report message to its current core, it will respond with a
variant of the Initiate message instead. The only difference is that a node
receiving such a message will not start searching for its minimum-weight
outgoing edge, nor will the nodes to which the message is propagated. This
is because the Connect message was sent over the minimum-weight outgoing
edge of the lower level fragment. Since the receiving node reported without
considering that edge, the reported edge must have a lower weight than any
outgoing edge of the lower level fragment. Therefore it is not necessary for
the nodes in the lower level fragment to participate in the search.

In all other cases a node receiving the Connect message will simply
reappend it to the end of the queue to be processed as soon as either of the
two cases holds.

4 Correctness

We will now establish the correctness of the algorithm, i.e., that it always
halts and really finds the minimum spanning tree. By the description in
section 3.1, it should be clear that generic scheme is correct as long as either
of the two rules is always applicable. Further, from section 3.3 it should
be evident that if an edge is marked as Branch and a Connect message is
sent over it, then it is the minimum-weight outgoing edge of the fragment.
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It remains to show that deadlocks do not exist, i.e., each fragment with
outgoing edges does eventually send a Connect over some edge and each
such message leads to fragments combining or joining.

First note that Initiate, Report and Change-Core messages are always
propagated without delay (easily shown by induction). Likewise, receiving
a Reject or an Accept message will always trigger another Test or Report
message. The only case where a potential deadlock could arise is the handling
of Test and Connect messages: neither will be answered while the receiving
node has a higher level than the sending node.

To show that there are no deadlocks, assume some state of the algorithm
with an arbitrary collection of fragments. If there is only one fragment
then all Test messages are rejected without delay and no Connect messages
are sent. Therefore the algorithm will terminate. Assume now that there
are at least two fragments. We show that the collection of fragments will
change. Among the fragments with the lowest level, consider a fragment
with a minimum-weight outgoing edge of lowest weight. Since the fragment
has the lowest level, any Test message from it will be answered without
delay. Therefore the fragment will proceed to send a Connect message. If
the fragment at the other end has a higher level, the lower level fragment will
join it. Otherwise the fragment at the other end has the same level and same
minimum-weight outgoing edge (since it is the minimum among fragments
of the lowest level). Therefore the two fragments will combine. Either way,
the collection of fragments will change. Therefore there is no deadlock.

5 Analysis

In this section, we write V and E short for |V | and |E|. We show that any
run of the algorithm requires at most 5V log2 V + 2E messages to be sent
between nodes. Further, assuming that local computation is instant and the
transmission of each message requires one unit of time, we show that at most
5V log2 V time units are required.

First observe by induction that a fragment of level L has at least 2L

nodes. A zero level fragment by definition has one node. Assuming the
claim holds for fragments of level L, when two such fragments combine, the
resulting fragment of level L + 1 has at least 2L + 2L = 2L+1 nodes. Since a
fragment may only grow when other fragments join it, the claim will continue
to hold. Consequently, (since 2L ≤ V ) the highest level is at most log2 V .

5.1 Message complexity

Since the total number of messages sent equals the total number of messages
received, we can count each message type from either perspective: we use the
sender’s point of view for Connect, Test, Reject, Report and Change-Core

and the receiver’s for Initiate and Accept.
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First, all edges not part of the MST are rejected at some point. The
rejection of an edge requires two messages, either one Test message followed
by a Reject message or two independent Test messages. Hence, 2E is an
upper bound for the number of Reject or Test messages sent over rejected
edges. This does not cover successful Test messages, i.e., those sent over
accepted edges.

At level zero a node may send at most one Connect message and receive
at most one Initiate message. At the last level each node may send at most
one Report message. Together these add at most 3V messages. Excluding
the zeroth and the last, each node can go through at most log2 V − 1 levels.
At each such level a node may send at most one successful Test message and
receive at most one Accept message as a response. It may send at most one
Report message and either a Change-Root or a Connect message. Finally, it
may receive at most one Initiate message. These add at most 5 messages
per node and level, a total of 5V (log2 V − 1) messages.

Summing all these up, we get at most 2E + 3V + 5V (log2 V − 1) <
2E + 5V log2 V messages. Also note that the most complex messages contain
only a few bits to indicate the type of the message, one fragment level using
at most dlog2 V e bits and one edge weight of some constant size.

5.2 Time complexity

First observe that if all fragments are at level L and send their Connect

messages, it takes at most V time units until all nodes advance to level
L+ 1: Two nodes sending a Connect message to each other will immediately
exchange Initiate messages and after that at least one node receives an
Initiate message by propagation during each time unit.

We show by induction that for each L ≤ log2 V , once 5V L − 3V time
units have passed since the start of the algorithm, each node is at level L or
higher. By the previous observation all nodes are at level 1 or higher by V
units so the claim holds for L = 1.

Consider now L > 1 and assume that 5V L− 3V time units have passed.
It suffices to show that any nodes still at level L will be at level L + 1 by
5V additional units (since by then 5V (L + 1)− 3V units will have passed).
By now all nodes at level L will have started sending their Test messages.
By the assumption, all nodes are at level L or higher and therefore the Test

messages are answered without delay. Each node can send at most V Test

messages so it takes at most 2V units until all of them are answered (one
unit for Test and another for the response). After this it takes at most V
messages until the Report messages are propagated and at most V more
until Change-Core is propagated. Summing these up, after 2V +V +V = 4V
units all fragments at level L will have sent a Connect message. By our first
observation, it takes at most V time units after this until the nodes at level
L advance to level L+ 1. Therefore all nodes at level L will reach level L+ 1
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after at most 4V + V = 5V units, which we wanted to show.
As a result, all nodes will reach the last level by at most 5V log2 V − 3V

time units. At the last level all Test messages are answered in at most 2V
units and Report messages propagated in at most V units. Therefore, the
final number of time units required is no greater than 5V log2 V −3V + 3V =
5V log2 V .

6 Conclusion

We have presented a distributed algorithm for finding the minimum spanning
tree in an asynchronous model of computation. Starting out with only
the knowledge of their own incident edges, all nodes learn which of these
edges are part of the MST. The algorithm works by maintaining known
fragments of the MST and combining them into larger fragments by adding
minimum-weight edges between two fragments iteratively. All fragments find
these edges locally and to some extent in parallel. By adding the edges in a
suitable order, the algorithm uses O(E + V log V ) messages and O(V log V )
time. The restriction of requiring distinct edge weights can be broken by
probabilistic means or unique node identifiers.
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