
SEMINAR ON EXACT EXPONENTIAL ALGORITHMS –
DYNAMIC PROGRAMMING

JUHO-KUSTAA KANGAS

1. Introduction

A very general approach to solving a complex problem is to break it down
into simpler subproblems such that the solution can be efficiently composed
from subproblem solutions. Typically subproblems are further broken down
up until a trivial case, yielding a recurrence often expressed in a recursive
form. Techniques such as branching evaluate such recurrences directly, which
can be very efficient if the subproblem composition recursive in nature. When
this is not the case, a different method might yield a better solution.

Dynamic programming is a common method for solving a recurrence with
overlapping subproblems, where a single subproblem solution contributes to
those of several larger subproblems. Instead of recursive evaluation, dynamic
programming takes a bottom-up approach, solving the simplest subproblems
first, then iteratively composing more complex solutions from those already
computed. This requires storing each solution in memory, sometimes called
memoization, and often leading to an exponential space complexity.

Contrary to branching, dynamic programming is useful for designing both
polynomial and non-polynomial time algorithms. A well-known example of
the former is the Floyd-Warshall algorithm, which computes the shortest
paths between all vertices in a graph. In this paper we shall focus on non-
polynomial cases, where dynamic programming is typically used to solve
problems with a superexponential search space in exponential time.

The contents of this paper are mainly based on the chapters 1, 3 and 10
of Exact Exponential Algorithms (Fomin & Kratch, 2010). In section 2 we
present the classical dynamic algorithm for the travelling salesman problem.
In sections 3 and 4 we discuss solving TSP more efficiently in terms of time
and space, respectively. In section 5 we present the dynamic approach to
graph coloring and in section 6 we conclude with some exercises.

Date: 18 October, 2011.
1

2 JUHO-KUSTAA KANGAS

2. Travelling salesman problem

Given a city network and the distances between all pairs of cities, the
travelling salesman problem (TSP) asks for a tour of shortest length that
visits each city exactly once and returns to the starting city. Formally,
given a (usually undirected) graph (V,E) of n vertices and for each pair
of vertices (u, v) ∈ E a related cost d(u, v), the task is to find a bijection
π : {1, · · · , n} → V such that the sum

(
n−1∑
i=1

d(π(i), π(i+ 1))
)

+ d(π(n), π(1))

is minimized.
The TSP is a permutation problem; it asks for a permutation π of vertices

that minimizes the sum of edges costs between adjacent vertices. The trivial
solution is to evaluate the sum for all n! permutations, leading to O∗(n!)
running time, asymptotically worse than any exponential complexity. The
TSP is known to be NP-hard while the decision variant, determining whether
a tour under given length exist, is NP-complete. Thus, it is generally believed
that a polynomial time algorithm does not exist. However, we can still do
considerably better than the brute-force solution.

The fastest known algorithm for TSP was discovered independently by
Bellman and Held & Karp already in the 1960s. A classical example of
dynamic programming, it solves the problem in time O∗(2n) by computing
optimal tours for the subsets of the vertex set. Specifically, given an arbitrary
starting vertex s, for every nonempty U ⊂ V and every e ∈ U we compute
the length of the shortest tour that starts in s, visits each vertex in U exactly
once and ends in e. Denote the length of such tour by OPT [U, e]. All values
of OPT are stored in memory.

To solve the problem efficiently, we compute the subproblem solutions
in the order of increasing cardinality of U . For |U | = 1 the task is trivial:
the length of the shortest tour starting in s and visiting the single e ∈ U
is simply d(s, e). To obtain the shortest tour for |U | > 1, we consider all
vertices u ∈ U \ {e} for which the edge (u, e) may conclude the tour. If a
tour containing (u, e) is optimal, then necessarily the subtour on U \ {e}
ending in u is optimal as well. Since optimal tours on U \ {e} have already
been computed, we need only minimize over all u:

d(U, e) = min
u∈U\{e}

OPT [U \ {e}, u] + d(u, e).

SEMINAR ON EXACT EXPONENTIAL ALGORITHMS – DYNAMIC PROGRAMMING3

Finally, the value of OPT [V, s], the length of the shortest tour starting
and ending in s and visiting all vertices, is the solution of the entire problem.
The number of subproblem solutions computed is O(2nn). For each of them,
the evaluation of the recurrence runs in O(n) time. Thus, the algorithm runs
within a polynomial factor of 2n. Although exponential, it is a significant
improvement over the factorial running time of the brute-force solution.

3. TSP in bounded degree graphs

Despite fifty years of research and progress on other NP-hard problems,
the general case exact TSP has seen no improvement since the discovery of
the dynamic algorithm. It remains an open question whether the problem
can be solved in time O∗((2− ε)n) for some ε > 0. So far such better bounds
have been proven for certain restricted graph classes such as graphs where the
maximum degree of each vertex, ∆, is bounded. A branching algorithm by
Eppstein solves the problem in time O∗(1.260n) for ∆ = 3, and in O∗(1.890n)
for ∆ = 4. The former bound was later improved by Iwama and Nakashima
to O∗(1.251n) and the latter by Gebauer to O∗(1.733n).

In this section we present a recent improvement by Björklund & al. over the
O∗(2n) running time for all ∆. The basic observation, common in dynamic
algorithms running over subsets, is that some special subsets can be safely
ignored. Specifically, the recurrence needs to be evaluated only for subsets S,
which induce a connected subgraph i.e. all vertices in S are connected by a
path within S. Whether a subset is connected can be checked in O(n) time.
Thus, by modifying the dynamic algorithm to omit non-connected sets, we
obtain the running time O∗(|C|) where C is the family of connected sets of
the graph.

We now show that for an n-vertex graph of maximum degree ∆, the size
of C is at most (2∆+1 − 1)n/(∆+1) + n = O((2− ε)n). The key result used in
the proof is a combinatorial consequence of Shearer’s inequality, stating the
following:

Lemma 1. (Shearer) Let V be a finite set with subsets A1, A2, · · · , Ak such
that every v ∈ V occurs in at least δ subsets. Let F be a family of subsets of
V . For each 1 ≤ i ≤ k define the projections Fi = {F ∩Ai : F ∈ F}. Then,

|F|δ ≤
k∏
i=1
|Fi|.

4 JUHO-KUSTAA KANGAS

For each v ∈ V we define the subset Av ⊂ V as the closed neighborhood
N [v] = {u ∈ V : (u, v) ∈ E} ∪ {v}. In an ideal case the graph is ∆-regular.
If not, we alter the definitions of Av a bit by adding each vertex u ∈ V with
d(u) < ∆ to ∆ − d(u) sets Av, chosen arbitrarily. This ensures that each
vertex is contained in exactly ∆ + 1 sets, and that

∑
v∈V
|Av| = n(∆ + 1).

Now consider the projections Cv = {C ∩Av : C ∈ C′} where C′ is the set
of connected sets excluding all singletons (subsets with only one vertex).
Observe that for each v ∈ V the set {v} is not contained in Cv. This is
because N [v] ⊂ Av and C ∩ N [v] 6= {v} unless C is {v} or not connected.
Thus |Cv| is at most 2|Av | − 1. Now, applying this with lemma 1 we get

|C′|∆+1 ≤
∏
v∈V
|Cv| ≤

∏
v∈V

(2|Av | − 1).

Define f(x) = log(2x − 1). Since f is convex, Jensen’s inequality gives us

1
n

∑
v∈V

f(|Av|) ≤ f(1
n

∑
v∈V
|Av|) = f(∆ + 1).

By taking exponentials and the nth power on both sides we have

∏
v∈V

(2|Av | − 1) ≤ (2∆+1 − 1)n.

Finally, adding in the n singletons excluded from C′ and combining the
results above, we have

|C| = |C′|+ n ≤ (2∆+1 − 1)n/(∆+1) + n

concluding the proof.
The idea of considering only connected sets is presented by Björklund &

al. as a basic motivation for analyzing TSP in bounded degree graphs. A
more thorough analysis by the authors is based on so called transient sets of
the graph. The basic idea is that, in addition to sets that are not connected,
we can also skip sets that would encircle a vertex so that it may never be
visited (or possibly visited but never exited). This analysis yields a tighter
bound, O∗((2∆+1 − 2∆− 2)n/(∆+1)), which, for ∆ ≥ 5, is the best known to
date.

SEMINAR ON EXACT EXPONENTIAL ALGORITHMS – DYNAMIC PROGRAMMING5

4. TSP in polynomial space

In practical applications the greatest restriction with dynamic algorithms
is often not the time but the exponential amount of space required. In the
case of TSP we need to store at least the previous level of subproblems,
which is O∗(2n) in size. If possible, we might prefer to solve the problem in
less space, even if doing so makes the algorithm somewhat slower. While the
brute-force search accomplishes exactly this, far better tradeoffs exist.

We shall briefly describe an algorithm for solving TSP in polynomial space
and O∗(4nnlogn) time. Assume for simplicity that n is a power of 2. The
key idea is to select the set of the first n

2 vertices in the tour, which can be
done in 2n ways. For all possible selections we solve the problem recursively.

For all nonempty U ⊂ V and s, e ∈ U , define OPT [U, s, e] as the length
of the shortest tour that starts in s, visits all vertices in U and ends in e.
Trivially, we set OPT [U, s, e] = d(s, e) for |U | = 2. Now consider a tour T
for |U | ≥ 3. Let U1 be the set of the first half of the vertices visited and
U2 = U \ U1. Let x be the last vertex visited in U1 and y the first vertex
visited in U2. If T is optimal, necessarily the subtours on U1 and U2 are
optimal as well. Thus, OPT [U, s, e] is the minimum of

OPT [U1, s, x] + d(x, y) +OPT [U \ U1, y, e]

over all U1 ⊂ U of size |U |/2 where s ∈ U1 and e 6∈ U2. Optimal subtours
are computed recursively. The length of the shortest tour in the graph is

min
s,e∈V ;s 6=e

OPT [V, s, e] + d(e, s).

We omit the analysis. A hybrid algorithm that switches from recursion
to dynamic programming for sufficiently small subproblems achieves a more
balanced tradeoff, running in O∗(2n(2−1/2i)ni) time and O∗(2n/2i) space for
any parameter i ∈ {0, 1, 2, · · · , dlog2 ne}.

5. Graph coloring

A k-coloring of an undirected graph G = (V,E) assigns one of k ∈ N
distinct colors to each vertex such that adjacent vertices have different colors.
For k ≥ 3 deciding whether G has a k-coloring is NP-complete. Finding
smallest such k, called the chromatic number of G and denoted by χ(G), is
NP-hard. A coloring using exactly χ(G) colors is called an optimal coloring.
Depending on formulation, the graph coloring problem asks for either χ(G)
or an optimal coloring of G.

6 JUHO-KUSTAA KANGAS

Graph coloring is an example of a partition problem: it asks for a partition
of vertices into color classes. For a n-vertex graph, the total number of
partitions is nn. A trivial brute-force solution enumerates all of them,
thus running in time O∗(nn). Again, we can reduce the running time to
exponential complexity by solving the problem with dynamic programming
over the induced subgraphs of G.

First recall some definitions. We say that a subset I ⊂ V of vertices is
an independent set if I contains no adjacent vertices. An independent set I
is maximal if no proper superset of I is independent. Denote by I[G] the
family of maximal independent sets of G. We observe that a k-coloring is
actually a partition of V into k independent sets. Also, any k-coloring can
be modified so that one of the independent sets is maximal. Thus, there is
always an optimal coloring with a maximal independent set.

For each U ⊂ V we compute OPT [U] = χ(G[U]), the chromatic number
of the subgraph induced by U . Again, we do the computation in the order
of increasing cardinality of U , setting first OPT [∅] = 0. For |U | > 0, we
consider all maximal independent sets I of G[U]. We know that for some
I an optimal coloring for G[U] consists of I and an optimal coloring for
G[U \ I]. Since the values OPT [U \ I] have already been computed, we can
minimize over all such colorings:

OPT [U] = 1 + min
I∈I[G[U]]

OPT [U \ I].

Finally, OPT [V] is the solution for the entire graph. The only non-trivial
part remaining is the enumeration of maximal independent sets. A brute-force
method enumerates all subsets one by one and checks which are maximally
independent. Although this is enough to achieve an exponential time, it
turns out the enumeration can be done within a polynomial factor of |I|,
which for a subgraph of i vertices is at most 3i/3. Thus, the total number of
steps is within a polynomial factor of

∑
U⊂V,U 6=∅

|I(G[U])| ≤
n∑
i=1

(
n

i

)
· 3i/3 ≤ (1 + 3√3)n < 2.4423n

leading to O∗(2.4423n) running time. By using a combination of dynamic
programming and another technique, inclusion-exclusion, the bound can be
further improved even to O∗(2n).

SEMINAR ON EXACT EXPONENTIAL ALGORITHMS – DYNAMIC PROGRAMMING7

6. Conclusion

Dynamic programming is a method for solving a problem by breaking
it down into subproblems. Each subproblem solution is stored in memory
and the problems are solved from simpler to more complex, composing more
complex solutions from the ones already computed. This is often much
faster than a naive solution if the subproblems are suitably overlapping and
only slightly smaller than the problem they compose. In exponential time
algorithms subproblems are often defined in terms of subsets of the original
problem, as seen in TSP and graph coloring.

For most of the material in this paper we refer to Fomin & Kratch [2]. For
the travelling salesman problem in bounded degree graphs and the account
of earlier results see [1].

Exercise 2. (F&K 3.2.) For an undirected graph G = (V,E), the cutwidth
of a permutation π : V → {1, · · · , n} is

max
v∈V
|{(u,w) ∈ E : π(u) ≤ π(v) ≤ π(x)}|.

The cutwidth of G is the minimum cutwidth taken over all permutations
on its vertices. Prove that the cutwidth of a graph on n vertices can be
computed in time O∗(2n).

Exercise 3. (F&K 3.9.) Given an undirected graph G = (V,E), a subset of
vertices D ⊂ V is called a dominating set of G if each v ∈ V either is in D
or has a neighbor in D. The domatic number of G is the largest k ∈ N such
that there is a partition of V into disjoint sets V1 ∪ V2 ∪ · · · ∪ Vk = V and
each Vi is a dominating set of G. Show how to compute the domatic number
of an n-vertex graph in time O∗(3n).

References

1. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto, The travelling
salesman problem in bounded degree graphs, Proceedings of the 35th international
colloquium on Automata, Languages and Programming, Part I (Berlin, Heidelberg),
Springer-Verlag, 2008, pp. 198–209.

2. F.V. Fomin and D. Kratsch, Exact exponential algorithms, Texts in Theoretical Computer
Science. an EATCS Series, Springer, 2010.

	1. Introduction
	2. Travelling salesman problem
	3. TSP in bounded degree graphs
	4. TSP in polynomial space
	5. Graph coloring
	6. Conclusion
	References

