
AND/OR Branch-and-Bound for Probabilistic Inference

Kustaa Kangas
Seminar: Heuristic Search

Autumn, 2013

Abstract

The Most Probable Explanation problem
asks for the most probable assignment on
random variables of a Bayesian network,
when the values of some variables are known.
We present the AND/OR search technique
for solving the problem, combined with
heuristic Branch-and-Bound pruning. We
also present the mini-bucket elimination tech-
nique for bounded inference and show how it
can be used to produce heuristic functions for
AND/OR search.

1 INTRODUCTION

Bayesian networks are probabilistic models that rep-
resent conditional dependencies between random vari-
ables with a directed acyclic graph. A network defines
the local distribution of each variable conditioned on
its parents in the network, and the joint distribution of
all variables factorizes into a product of the local distri-
butions. This factorization admits efficient inference
in the network, such as computing prior and poste-
rior probabilities. In this report we focus on the Most
Probable Explanation problem (MPE), which asks for
the most probable assignment of the variables, given
a set of evidence variables whose values are known.
Although the problem is NP-hard, algorithms can sig-
nificantly improve upon brute-force evaluation by ex-
ploiting the structure of the network. In this report,
we present the AND/OR search technique for solving
the MPE, formalized for graphical models in [3]. In
addition to making use of structural independencies in
the network, AND/OR search also admits a heuristic
Branch-and-Bound technique to further narrow down
the search space [5].

We begin by defining Bayesian networks and the MPE
problem formally in Section 2. We present the ba-
sic AND/OR search in Section 3 and the Branch-and-

Figure 1: A simple Bayesian network structure, rep-
resenting the joint distribution P (A,B,C,D,E) =
P (A) · P (B|A) · P (C|A) · P (D|B,C) · P (E|C).

Bound search in Section 4. In section 5 we discuss
heuristic functions for the MPE problem, based on ap-
proximations of alternative inference algorithms such
as variable elimination. We conclude the report in Sec-
tion 6. Throughout, we use boldface to denote sets of
random variables, e.g. X, and their instantiations, x.
We occasionally write P (x) short for P (X = x).

2 PRELIMINARIES

2.1 Bayesian networks

A Bayesian network is a pair (G,P) where G is
a directed acyclic graph on random variables X =
{X1, . . . , Xn} with finite domains D = {D1, . . . , Dn}
and P is the joint distribution of the variables. The
key property of P is that it factorizes according to the
network structure as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Pai) (1)

where Pai denotes the parents ofXi inG. For eachXi,
the probabilities P (Xi|Pai) are stored in a conditional
probability table (CPT). A CPT has a single value for
each joint assignment ofXi and Pai and thus has a size
exponential only in |Pai|, as opposed to encoding the
distribution in a single table. An example of Bayesian
network is illustrated in Fig. 1.

Figure 2: An OR search tree for binary variables A–E, each level corresponding to a variable instantiation. A
solution path corresponding to the assignment (A,B,C,D,E) = (1, 0, 0, 1, 1) is highlighted.

2.2 The MPE problem

Given a Bayesian network G on variables X and an
assignment e of a subset E of the variables, the MPE
problem asks for an assignment m of the remaining
variables M = X \ E, such that the joint probability
P (M = m|E = e) = P (M = m,E = e) is maxi-
mized. To simplify the presentation of algorithms, we
will assume for the remainder of the report that E is
empty, i.e. we simply want to find the most probable
assignment of X. In the end, we will briefly describe
a straightforward way to modify the algorithms to ac-
commodate evidence variables.

A brute-force algorithm solves the MPE problem by
evaluating P (X) for every possible assignment of X.
A single assignment is evaluated using Equation 1 and
the number of such assignments is equal to the product
of the cardinalities of the variables, i.e.

∏
i |Di|. The

brute-force search can be visualized as a search tree
where traversing an edge corresponds to instantiating
a single variable and a path from the root to a leaf
corresponds to an assignment of all variables (Fig. 2).

A search of this kind is called OR search as each non-
leaf node makes a decision between several mutually
exclusive choices. OR search is not limited to algo-
rithms that evaluate the entire search tree as it is of-
ten possible to prune out suboptimal subtrees, based
on the best solution found so far. In many cases, how-
ever, it is more efficient to first reduce the search tree
itself by making use of structural independencies in the
Bayesian network. This leads to an extension of OR
search trees known as AND/OR search trees, which
we will present in the following section.

3 AND/OR SEARCH

In this section we present the AND/OR search method
that can be seen as an extension of OR search.
AND/OR search is applicable to any optimization
problem that can be formalized as a so called graphical
model [3]. We present the method in this general set-

ting, using the MPE problem as a concrete example.
We start with a formal definition of graphical models
and AND/OR trees and then describe a simple algo-
rithm for traversing them.

3.1 Graphical models

Definition 1 (Graphical model) A graphical
model is a 3-tuple (X, F,

⊗
) where

1. X = {X1, . . . , Xn} is a set of variables with finite
domains D = {D1, . . . , Dn}.

2. F = {f1, . . . , fm} is a collection of functions.
Each fi is defined on a subset Si of X and maps
each instantiation of Si to a real number.

3. The operator
⊗

is either sum
∑

or product
∏

.

A graphical model represents the following problem:
find an assignment x of the variables X such that
the cost function c(x) =

⊗
f∈F f(x) is maximized (or

minimized). In other words, we wish to maximize ei-
ther the sum or product of the functions F evaluated
at x. In the case of MPE, X is the set of random
variables of a Bayesian network, F is the set of func-
tions fi(Xi, Pai) = P (Xi|Pai) and

⊗
=

∏
. Thus,

c(x) =
∏n

i=1 P (Xi|Pai) = P (X = x), which is the
probability we want to maximize. For an abstract
model we shall call

⊗
the combination of functions.

Clearly, for any graphical model we could perform an
OR search and evaluate the cost function at each leaf
of the search tree. However, observe that we do not
need to instantiate all variables to evaluate a single
f ∈ F, only the variables in the scope Si of f . In
many cases this fact allows us to split the search into
subproblems that can be solved independently of each
other. This idea leads to a search space that we call
an AND/OR search tree.

Figure 4: The complete AND/OR search tree induced by the pseudo tree in Fig. 3. A solution tree corresponding
to the assignment (A,B,C,D,E) = (1, 0, 0, 1, 1) is highlighted.

Figure 3: A Bayesian network on variables A–E with
the respective CPTs (left), the primal graph of the net-
work (center), and a pseudo tree on the primal graph
(right). Dashed lines represent back-edges.

3.2 AND/OR search trees

In order to present AND/OR trees formally we first
define the concept of primal graphs and pseudo trees.

Definition 2 (Primal graph) The primal graph of
a graphical model on variables X and functions F is
an undirected graph (X, E) such that E contains an
edge between a pair of variables if the variables appear
together in the scope of some function in F.

The primal graph of a Bayesian network is also called
a moral graph. A pair of variables are joined if they
appear together in any CPT. Equivalently, a variable
is connected to each variable appearing in its Markov
blanket, that is, its parents, its children, and the par-
ents of its children in the Bayesian network. Any pri-
mal graph has at least one pseudo tree.

Definition 3 (Pseudo tree) Let G = (V,E) be a
primal graph and let T = (V,E′) be a rooted tree on the
vertices V . (The set E′ does not need to be a subset of
E but may contain edges between any pairs of vertices.)
We say that T is a pseudo tree of G if every edge in
E \E′ is a back-edge, i.e., one end point of the edge is
an ancestor of the other in T .

Fig. 3 illustrates the primal graph of a Bayesian net-
work and one possible pseudo tree for it. The pseudo
tree determines an order in which variables are instan-
tiated and which variables are instantiated indepen-
dently of others. For example, after assigning a value
to A and B, the two subtrees E and D → C become in-
dependent subproblems as there are no functions that
depend on variables in both subtrees. Note that this is
equivalent to saying that all edges appearing in the pri-
mal graph but not in the pseudo tree are back-edges,
as required by the definition. We may now define the
AND/OR search tree induced by a pseudo tree.

Definition 4 (AND/OR search tree) Let T be a
pseudo tree of a graphical model on variables X. The
pseudo tree induces an AND/OR search tree, denoted
ST , which contains alternating levels of OR and AND
nodes. Each OR node is labeled by a variable Xi and
each AND node by an instantiation Xi = xi (or xi for
short) of a variable. The root of ST is an OR node
labeled by the root of T . Each OR node labeled Xi has
a child AND node labeled Xi = xi for each xi ∈ Di.
Each AND node labeled Xi = xi has a child OR node
labeled Xj for each child Xj of Xi in T .

The AND/OR search tree induced by the pseudo tree
in Fig. 3 is shown in Fig. 4. Semantically, OR nodes
represent the choice between alternative solutions to
the problem, i.e. alternative variable instantiations,
while AND nodes represent decomposition into inde-
pendent subproblems, conditioned on the assignments
made at their ancestor nodes.

Note that if the pseudo tree is a chain, the induced
search tree is equivalent to an OR tree. Conversely,
shallow pseudo trees have much decomposition and
induce smaller search spaces. Finding pseudo trees
of minimum depth is an NP-complete problem, which
we do not discuss further in this report. Some approx-
imations can be found in [5].

Figure 5: Part of the tree in Fig. 4, showing the weights of OR-to-AND edges.

Contrast to an OR tree where a solution is a path from
the root to a leaf, a solution in an AND/OR tree is a
subtree with exactly one assignment for every variable
(Fig. 4). Formally:

Definition 5 (Solution tree). A solution tree T of
an AND/OR tree ST is a subtree that contains 1) the
root of ST , 2) exactly one AND child of every OR node
in T , 3) all OR children of every AND node in T .

Before presenting a simple AND/OR search algorithm,
we show how to compute the cost c(x) of a solution
tree incrementally by evaluating functions in F as early
in the search as possible. To this end, for each Xi we
define a bucket B(Xi) ⊆ F as follows: B(Xi) contains
f ∈ F if Xi is in the scope of f and if the path from
the root of pseudo tree T to Xi contains all variables
in the scope of f . In other words, B(Xi) contains all
functions that can be evaluated as soon as a search has
instantiated Xi and no earlier. We define the weight
of an OR-to-AND edge to be the combination of the
functions evaluated by traversing it.

Definition 6 (OR-to-AND edge weight) Let n be
an OR node labeled Xi and m its child. Let x be the
(partial) assignment of variables corresponding to the
path from the root of ST to m. The weight of the edge
(n,m) is defined as

w(n,m) =
⊗

f∈B(Xi)

f(x).

For the pseudo tree illustrated in Fig. 3, the func-
tions are fA = P (A), fB = P (B|A), fC = P (C|A),
fD = P (D|B,C) and fE = P (E|A,B). The func-
tions fA, fB , fE are placed in the respective sets
B(A), B(B), B(E), while fC and fD are both placed

in B(C), since they can be evaluated only when the
search has instantiated all variables on the path from
the root to C. Fig. 5 shows a part of the induced
AND/OR search tree with the respective edge weights.
Note that since B(D) is empty, the weight of any edge
instantiating D is the empty product, i.e. 1. Respec-
tively, the empty sum will be 0 for problems involving
summation. This also applies to the following defini-
tions of solution tree costs.

Definition 7 (Cost of a solution tree) Let Tn be
the subtree of a solution tree rooted at node n. The cost
of Tn, denoted f(Tn), is defined recursively as follows.

1. If n is an OR node with a child m, then f(Tn) =
w(n,m)⊗ f(Tm).

2. If n is an AND node with a children m1, . . . ,mk,
then f(Tn) =

⊗k
i=1 f(Tmi

).

The cost of an optimal solution tree in an AND/OR
search tree can also be defined recursively as follows.

Definition 8 (Optimal solution cost) Let ST be
an AND/OR search tree. The cost of an optimal sub-
tree rooted at node n is denoted h∗(n) and defined re-
cursively as follows.

1. If n is an OR node with children succ(n), then
h∗(n) = maxm∈succ(n)(w(n,m)⊗ h∗(m))

2. If n is an AND node with children succ(n), then
h∗(n) =

⊗
m∈succ(n) h

∗(m).

Clearly, the cost of an optimal complete solution tree
is h∗(s) where s is the root of ST . We will now de-
scribe a simple AND/OR search algorithm that finds
an optimal solution tree by performing a straightfor-
ward depth-first evaluation of h∗.

Input: Graphical model (X,F,
⊗

), pseudo tree T
Output: Problem solution

1 OPEN ← { OR node labeled by the root of T }
2 while OPEN 6= ∅ do
3 n← top(OPEN), remove n from OPEN
4 succ(n)← ∅
5 if n is an OR node labeled Xi then
6 foreach xi ∈ domain(Xi) do
7 m← AND node labeled Xi = xi
8 Add m to succ(n)
9 x← assignment corresponding to πm

10 w(n,m)←
⊗

f∈B(Xi)
f(x)

11 if n is an AND node labeled Xi = xi then
12 foreach Xj ∈ childrenT (Xi) do
13 Add an OR node labeled Xj to succ(n)

14 Add succ(n) to the top of OPEN
15 while succ(n) = ∅ do
16 if n is an OR node labeled Xi then
17 h∗(n)← maxm∈succ(n) h

∗(m)
18 if Xi is the root of T then
19 return h∗(n)

20 if n is an AND node labeled Xi = xi then
21 h∗(n)←

⊗
m∈succ(n) h

∗(m)

22 p← parent(n)
23 Remove n from succ(p)
24 n← p

Algorithm 1: AND/OR search

3.3 Brute-force AND/OR search

Algorithm 1 presents a basic traversal of an AND/OR
search tree induced by pseudo tree T . We use
childrenT (X) to denote the children of X in T . For a
node n in ST , succ(n) denotes its children, parent(n)
its parent, and πn the path from the root of ST to n.

The algorithm maintains an OPEN list of nodes, ini-
tially containing the root s of ST (line 1), and itera-
tively expands the top node in the list. When a node n
is expanded, the algorithm removes it from the OPEN
list (3) and generates its children (4–13). If n is an
OR node, the weights of its children are computed by
evaluating the functions in the bucket of n, using the
assignment corresponding to the path from s to the
respective child (9-10). All children are then inserted
at the top of the OPEN list (14), which guarantees
that the search proceeds in depth-first order.

If the expanded node n has no children to generate,
it initiates a propagation phase (15-24), which is com-
pleted before expanding the next node. In this phase,
the algorithm first computes h∗(n) (trivially either 0
or 1, depending on

⊗
) and propagates the value to its

parent p. If n is the last child to propagate its h∗ value
to p, the parent node may now compute its own value,
h∗(p), by taking either max (17) or

⊗
(21) over the

h∗ values of its children, according to the recurrence
in Definition 8. It then propagates the value to its
own parent node, which may then possibly compute
its own value. The process is iterated (22–24) until it
reaches a parent node with unexpanded children (15).
In this case, one of those children is the next node
in the OPEN list and is expanded next. The search
is concluded when the final propagation phase ends,
computing h∗(s) (18-19).

As the algorithm computes the recurrence in Definition
8, it returns the cost of the optimal assignment of the
variables X. To obtain the actual assignment, one
can trivially modify the algorithm to store not only h∗

values of optimal subtrees but the subtrees themselves.
Maximization chooses the best subtree while the

⊗
combines multiple subtrees into a larger subtree.

4 AND/OR BRANCH-AND-BOUND

The brute-force traversal of an AND/OR search tree
finds an optimal solution by computing h∗ for every
node in the tree. In this section we augment the algo-
rithm with a Branch-and-Bound technique that avoids
the complete evaluation by pruning out subtrees that
are guaranteed to be suboptimal. For the remainder
of the section we omit the general treatment and fo-
cus solely on MPE. We trust the reader to general-
ize the following examples to other problems defined
on graphical models. In particular, for minimization
problems all references to upper bounds are replaced
by lower bounds instead.

Consider a partial solution tree T of ST , which dif-
fers from a complete solution tree in that any node
may have no children (Fig. 6). A partial solution tree
can be extended to a complete solution tree in several
ways. In particular, we are interested in finding an
extension with an optimal cost, which can be defined
as follows.

Definition 9 (Optimal evaluation of a partial
solution tree) Let Tn be a partial solution tree rooted
at node n. Then, f∗(Tn) is defined recursively as in
Definition 7 with the following change: If Tn has no
children, then f∗(Tn) = h∗(n).

In other words, f∗(T) is the cost of the solution tree
obtained by extending T with the optimal subtrees.
Assume now that we are given a heuristic function h,
called node heuristic, such that h(n) is an upper bound
for h∗(n) (deriving such functions is discussed in the
next section). Then, we can extend the definition of f
on partial solution trees as follows.

Figure 6: A pseudo tree (left) and an ongoing search in the induced AND/OR search tree (right). The current
partial solution tree is highlighted and the subtrees already evaluated are shown in dashed lines. Edge weights
are shown in black and the best subtree values found so far in blue. The heuristic function is shown in red.

Definition 10 (Heuristic evaluation of a partial
solution tree) Let Tn be a partial solution tree rooted
at node n. Then, f(Tn) is defined recursively as in
Definition 7 with the following change: If Tn has no
children, then f(Tn) = h(n).

Observe that the only difference between definitions 9
and 10 is that f∗ uses the exact subtree cost h∗ while
f uses the heuristic h. Since h∗(Tn) ≤ h(Tn), it clearly
follows that f∗(Tn) ≤ f(Tn). Therefore, f can be used
to estimate the cost of the best solution that we can
obtain by extending a partial solution tree and thus
to prune out suboptimal extensions. As an example,
consider Fig. 6 where the search has already evaluated
h∗ for the following subtrees:

h∗(A = 0) = 0.6
h∗(B = 0) = 0.5
h∗(C) = 0.75
h∗(D = 0) = 0.4.

Letting best(X) denote the best solution cost found so
far for the subtree rooted at OR node X, we have that

best(A) = w(A, 0) · h∗(A, 0) = 0.6 · 0.7 = 0.42
best(B) = w(B, 0) · h∗(B, 0) = 0.5 · 0.5 = 0.25
best(D) = w(D, 0) · h∗(D, 0) = 1 · 0.4 = 0.4.

The search is currently at the node (D = 0) and
the current partial solution tree contains the nodes A,
(A = 1), B, (B = 1), C, (C = 0), D, (D = 1) and F .
The node heuristic function h yields the upper bounds

h∗(D = 0) ≤ h(D = 1) = 0.8
h∗(F) ≤ h(F) = 0.5.

The heuristic evaluation function f can now be com-
puted for the partial solution tree according to Defini-
tion 10 as follows:

f(TC=0) = 1
f(TD=1) = h(D = 1) = 0.8
f(TF) = h(F) = 0.5
f(TC) = w(C, 0) · f(TC=0) = 0.75 · 1 = 0.75
f(TD) = w(D, 1) · f(TD=1) = 1 · 0.8 = 0.8
f(TB=1) = f(TC) · f(TD) · f(TF)

= 0.75 · 0.8 · 0.5 = 0.3
f(TB) = w(B, 1) · f(TB=1) = 0.8 · 0.3 = 0.24
f(TA=1) = f(TA) = 0.3
f(TA) = w(A, 1) · f(TA=1) = 0.5 · 0.24 = 0.12

Observe that f(TA) < best(A). Since f(TA) is an up-
per bound for f∗(Ta), expanding the current partial
solution tree clearly cannot improve upon the current
best solution. Therefore, we may safely prune away
the subtree rooted at (D = 0). However, note that
f(TB) < best(B) holds as well, which is also a suf-
ficient condition for pruning out (D = 0). Thus, in
this case it is not necessary to fully compute f . We
may stop the evaluation as soon as we discover a value
f(X) < best(X) for any OR node X.

A straightforward modification to Algorithm 1 main-
tains best(X) for every OR node X. Before expanding
an AND node, the algorithm first computes f for every
OR node X along the current path. If f(X) < best(X)
for anyX, the evaluation is stopped and the AND node
is pruned out. If the inequality doesn’t hold for any
X, then the AND node is expanded normally.

Figure 7: A primal graph (left) and a pseudo tree for it (right).

5 MINI-BUCKET HEURISTIC

The efficiency of Branch-and-Bound depends on the
quality of the upper bounds provided by the node
heuristic function h. In this section we describe
a common method for deriving such bounds, based
on approximations of alternative inference techniques.
We first describe the exact bucket elimination algo-
rithm, then present an approximation called mini-
bucket elimination, and finally show how to derive a
heuristic from it. A more formal treatment of these
techniques can be found in [2], [4], [1] and [5].

5.1 Bucket elimination

Consider a Bayesian network on variables X and the
following definitions.

Definition 11 (Operations on functions) Let
f1, . . . , fk be functions defined on subsets S1, . . . , Sk of
X and let X ∈ X. We define the function (maxX f)
on X \ {X} and the function (

∏
fi) on the union

of Si as follows: (maxX f)(y) = maxx f(x,y) and
(
∏

i fi) (x) =
∏

i fi(x).

Using the definitions above, the MPE problem can be
formulated as a task of evaluating the function

max
X

∏
i

P (Xi|Pai).

Indeed, a direct evaluation would be equivalent to con-
structing the full joint probability table (

∏
) and pick-

ing the assignment with the highest probability (max).
For example, to solve the problem on the primal graph
in Figure 7 (left), we would compute

max
a,b,c,d,e

P (a)P (b|a)P (c|a)P (d|b, c)P (e|c).

Obviously we don’t want to evaluate this directly as
computing the full joint probability table is both time
and space exponential in the number of variables. Ob-
serving that maxX f1f2 = f1 maxX f2 if X does not
appear in the scope of f1, we can instead rewrite the

function as

max
a

P (a) max
b
P (b|a) max

c
P (c|a) max

d
P (d|b, c) max

e
P (e|c).

This can be evaluated from right to left as follows

= max
a

P (a) max
b
P (b|a) max

c
P (c|a)λE(c) max

d
P (d|b, c)

= max
a

P (a) max
b
P (b|a) max

c
P (c|a)λE(c)λD(b, c)

= max
a

P (a) max
b
P (b|a)λC(a, b)

= max
a

P (a)λB(a)

= λA.

Each λX denotes the function obtained by maximizing
out variable X. For instance, maximizing C out of
P (c|a)λE(c)λD(b, c) produces λC(a, b). If λX does not
depend on the next variable(s) to be maximized out,
it is taken outside. For example, maxd P (d|b, c)λE(c)
is rewritten λE(c) maxd P (d|b, c). The evaluation ends
at the constant function λA, which yields the desired
maximum probability.

An evaluation like this is called bucket elimination:
Each maximization eliminates a single variable and
incorporates its ”effect” in the resulting function. We
think of each variable as having a bucket, which con-
tains the functions that are multiplied before elimina-
tion. For example, the bucket of C contains the func-
tions P (c|a), λE(c) and λD(b, c). Observe that the
largest functions evaluated in the example are λB,C

and λA,B . As these only depend on two variables, they
are quite efficient to compute. In general, the order in
which variables are eliminated significantly affects the
size of the functions that must be computed. Thus,
the efficiency of bucket elimination depends greatly on
finding good orders, much like AND/OR search de-
pends on finding good pseudo trees. In fact, variable
elimination can be equivalently formalized as a specific
traversal of an AND/OR search space [6].

5.2 Mini-bucket elimination

In some cases no order produces sufficiently small func-
tions, which necessitates the use of approximations.

Assume, for example, that we are to compute

max
e
f1(b, e)f2(a, c, e)f3(d, e)f4(c, e),

which would result in a function λ(a, b, c, d). Noting
that maxx f(x) ·g(x) ≤ maxx f(x) ·maxx g(x) for non-
negative functions f , g, we can bound λ by partition-
ing the functions into groups and maximizing over each
group separately. For example,

max
e
f2(a, c, e)f4(c, e) = λ1(a, c)

max
e
f1(b, e)f3(d, e) = λ2(b, d)

gives the bound

λ(a, b, c, d) ≤ λ1(a, c) · λ2(b, d).

Mini-bucket elimination with a given i-parameter op-
erates as bucket elimination, but replaces all functions
with scopes larger than i with upper bounds as above.
These are more efficient to compute and yield an upper
bound on the exact solution to MPE.

5.3 Mini-bucket heuristic for AND/OR
search

Consider an AND/OR search on the example in Figure
7 (left), using the pseudo tree T (right). We say that
T is compatible with an ordering X1, . . . , Xn of the
variables if the fact that Xi is an ancestor of Xj in T
implies i < j. For example, the alphabetical order is
clearly compatible with T .

Assume for a while that we were given the λ functions
produced by performing bucket elimination on the al-
phabetical order (as presented in Section 5.1). We note
that they represent the probabilities

λE(c) = max
e
P (e|c)

λD(b, c) = max
d

P (d|b, c)
λC(a, b) = max

c,d,e
P (c|a)P (e|c)P (d|b, c)

λB(a) = max
b,c,d,e

P (b|a)P (c|a)P (e|c)P (d|b, c).

Consider now an AND node n corresponding to the
instantiation (A = a,B = b). By the definition of
h∗(n), we see that h∗(n) = λC(a, b). Letting n denote
(A = a,B = b, C = c) instead, we see again by the def-
inition of h∗(n) that h∗(n) = maxd,e P (d|b, c)P (e|c) =
λE(c)λD(b, c). More generally, let h(n) be the product
of intermediate functions λ such that the scope of λ is
instantiated by n but not by any ancestor of n. Then,
assuming the order of bucket elimination is compatible
with T , it is fairly easy to see that h(n) = h∗(n).

Although an h like this would be an ideal heuristic
function, it’s not practical since we would require the

λ functions to compute it. On other hand, if we did
have the λ functions, it would be faster to simply do
bucket elimination instead. However, the above defini-
tion of h still works if we compute the λ functions using
mini-bucket elimination instead. This is feasible if a
suitably small i-parameter is used. As argued earlier,
this produces an upper bound for the actual proba-
bility, which is exactly what we require of a heuris-
tic function. Experiments regarding the mini-bucket
heuristic and a suitable i-parameter can be found in
[5]. A variant of the heuristic that employs dynamic
variable orderings is also discussed.

6 CONCLUSION

We have presented the AND/OR search technique
for graphical models and described a specific appli-
cation to solving the MPE problem in Bayesian net-
works. We have described both a brute-force traversal
of the search space and a heuristic approach employing
Branch-and-Bound with suitable upper bounds. Fi-
nally, we have derived such bounds for MPE, based on
approximate variable elimination.

In our treatment, MPE asks for the most probable as-
signment for all variables. To accommodate evidence
variables whose values are known, conflicting values
are removed from all relevant CPTs and the remain-
ing probabilities are normalized. This simplifies the
problem and may result in more shallow pseudo trees.

References

[1] Rina Dechter. Mini-buckets: A general scheme
for generating approximations in automated rea-
soning. In IJCAI, pages 1297–1303, 1997.

[2] Rina Dechter. Bucket elimination: A unifying
framework for reasoning. Artif. Intell., 113(1-
2):41–85, 1999.

[3] Rina Dechter and Robert Mateescu. AND/OR
search spaces for graphical models. Artif. Intell.,
171(2-3):73–106, 2007.

[4] Rina Dechter and Irina Rish. Mini-buckets: A
general scheme for bounded inference. J. ACM,
50(2):107–153, 2003.

[5] Radu Marinescu and Rina Dechter. AND/OR
Branch-and-Bound search for combinatorial opti-
mization in graphical models. Artif. Intell., 173(16-
17):1457–1491, 2009.

[6] Robert Mateescu and Rina Dechter. The relation-
ship between and/or search and variable elimina-
tion. In UAI, pages 380–387, 2005.

