1. Consider the finite field $GF(2^8)$ which is defined with the help of the irreducible polynomial $X^8 + X^4 + X^3 + X + 1$. Calculate the product $(x^5 + x^3 + x + 1) \cdot (x^6 + x^4 + x^3 + x^2)$.

2. Explain the Anderson’s and Needham’s robust principles for public key protocols.

3. Consider the following key transport protocol using public key cryptography:

 1. $A \rightarrow B$: A, K_A
 2. $B \rightarrow A$: $E_A(K_{AB})$
 3. $A \rightarrow B$: $\{N_A\}_{K_{AB}}$
 4. $B \rightarrow A$: $\{B, K_B, Cert(B), Sig_B(N_A)\}_{K_{AB}}$

 In the first message, A sends his identity and his public key. B then returns a symmetric key, generated by him and encrypted with A’s public key. In the third message, A sends a nonce encrypted with the new session key. Finally, B acknowledges by sending his identity, public key, certificate and signature. All is encrypted with the new session key.

 There is an attack against this protocol. The adversary, C, is a legitimate user known to B. Further, C is able to set up simultaneous sessions with both A and B. In the attack, C is able to convince A that C is B. The attack starts as follows:

 1. $A \rightarrow C_B$: A, K_A
 2. $C_B \rightarrow A$: $E_A(K_{AB})$
 3. $A \rightarrow C_B$: $\{N_A\}_{K_{AB}}$
 4'. $C \rightarrow B$: C, K_C

 How does it continue? How is it possible, by modifying the protocol, to avoid the attack?

4. Explain the concept of the key tree. Show how a member can be joined to a key tree, what nodes need new keys and what members have to calculate new keys in the join operation. Draw a diagram to clarify your explanations.