Semaphores in Java

authors: Tuire Huhtamiki, Miikka Merikanto, Kai Nevalainen
course: Concurrent Programming

date: 14.12.2006

Main objective and application area for the method

Semaphores are an abstract data type which are used to restrict the usage of common shared
resources in concurrent programming. Semaphores are implemented mainly in restricting the
number of threads that can access some resource.

The basic idea of selected method

Java Semaphore keeps count of permits to access mutual resources. Threads ask permits from
semaphore and release them when they are ready. The order priority for permits is defined in the
constructor with the boolean fairness.

Similarities and differences of this method as compared to the similar
basic method given in lectures

The similarities to the basic method:

- use the operations P (S) for wait and V (S) for signal to control

concurrency. In Java Semaphores the operations are called acquire() and release().

- the semaphore operations are atomic - they cannot be interrupted. In Java this is implemented with
encapsulation.

- create the semaphore as a non-negative integer and initialise it to some

value. Java Semaphore is initialized with an integer to set the number of permits, negative integers
are not allowed.

The variants that can be found

Binary semaphores can only compute one process at a time, thus no
multiprocessing. The integer value can only be either O or 1, and it is
initialised to be 1. It is somewhat similar to mutual exclusion algorithms.
It decreases the value to O with the P(S) operation when the resource is in
use, and then releases it with the V(S) operation by increasing it back to 1
when the resource is freed.

General semaphores differ as their integer value range goes from 0 higher
than 1, ie 0,1,2,3,4.... and the value specifies how many advance
permissions are available. They use schedulers to specify which process is
executed when. The schedulers themselves can also differ in the way they
prioritise - strong semaphores that strictly orderise threads or weak

semaphores that have no order.

A blocking semaphore is initialised to zero rather than one, working in a
manner that any thread that does a P(S) operation will block until released
by V(S) first. It can be used to control the order in which threads are
executed when they need to be managed.

A busy-wait semaphore uses a busy-wait loop instead of placing the process
in suspend. In Java thread scheduling controls when a thread is enabled or disabled, the thread lies
dormant in the disabled state until the semaphore is released or the thread is interrupted.

Java Semaphores can be implemented as binary, general or blocking semaphore depending on how
they are used. Fairness controls the priority in scheduling.

There are some variants that use negative integers for polling the number of awaiting processes but
Java doesn't support this natively.

How to use Java semaphores

Semaphore can be initialized with constructors Semaphore(int permits) or Semaphore(int
permits, boolean fair). Semaphore(int permits) creates a semaphore with

given number of permits and unfair fairness setting and the other

constructor creates a semaphore with given fairness setting. When fairness

is set to true, the semaphore gives permits to access mutual resources in the

order the threads have asked for it (FIFO) and when fairness is set false,

semaphore can give permit to a thread asking for it before it gives permit

to the already waiting thread in the queue. To avoid starving the fairness should be set true.
Semaphore class is defined in java.util.concurrent package.

Threads can ask permits with the method acquire(), the thread is blocked
until the permit is granted. The acquire() operation can throw exception
InterruptedException and it must be caught or thrown. The permit is returned
to the semaphore with the method release(). There are also variations of the
methods described above. For example it is possible to acquire and release
multiple permits simultaneously and acquire the permit bypassing the queue
in the semaphore even when fairness is true.

Java program example:

import java.util.concurrent.Semaphore ;
class Example extends Thread {
int id;
static Semaphore semaphore = new Semaphore (1); /“must be static so multiple threads have
only one semaphore to control CS! The
created semaphore here allows only one
thread at a time execute the critical
section™/

public Example(int id){
this.id= id;

public void run(){ /*subclasses of Thread must override the method run()/
try {
semaphore.acquire(); /*thread stops here until it gets permit to go on*/
}catch (InterruptedException €) {} /*exception must be caught or thrown?/

//CRITICAL SECTION

semaphore.release();

public static void main(String[] args){

Example esim1= new Example(1);

Example esim2= new Example(2);

esim1.start(); /*start() is a method derived from class Thread, that calls the run()
method with the Java Virtual Machine. Thread esim1 is now
executed parallel with main() method?/

esim2.start(); /*here another thread is started, therefore now being executed are main(),
esim1 and esim2 parallel”/

