Connections

- Applications
- Operating systems
- Programming languages
- Concurrent Programming (Rio)
 - synchronization
 - communication
 - co-operation
- Distributed systems
- Performance
- Computer Architecture

Motivation

- To know and understand …
 - Why concurrency is important
 - What are the concurrency problems in your systems
 - How concurrency problems are usually solved
 - What are the usual tools for solving concurrency problems
 - How concurrency problems may be solved at different system levels
 - HW, OS, progr. language library, application

Learning Goals

- Concurrency and problems caused by concurrency
 - Basics, fundamental ideas, background
- Fundamental concepts and models in concurrency
 - Main emphasis is here!
 - E.g., “can explain special features of semaphores and monitors and use them properly in applications”, or “can explain how deadlocks can be prevented”.
- Concurrent programming in distributed systems
 - Get taste of it, more in later courses
- Concurrent programming in practice
 - Discussed in lectures, practice in project

Course Connections

- Computer Organization I
 - Tietokoneen toiminta
- Concurrent Programming
 - Rinnakkaisohjelmointi
- Operating Systems
 - Käyttöjärjestelmät
- Distributed Systems
 - Hajautetut järjestelmät
- Software Design (Java)
 - Ohjelmointitekniikka (Java)
- Network Programming
 - Verkkoosovellusten toteuttaminen
- Linux System Admin
 - Linux-ylläpito
- Intro to Specification and Verif.
 - Spesifioinnin ja verif. perusteet
- Huawei
 - Vensim
- Java
 - Java
- Funipraktikum
 - Funipraktikum
- Java
 - Java
What Good is Concurrent Programming for?

- All computer systems are inherently concurrent – one must understand concurrency to understand computer system operation
- Concurrency allows huge speedups for properly designed systems
- Concurrency causes complex problems that are not easy to solve without good understanding of concurrency
 - Should I use threads in my Java application or not?
 - Would it be better to use locks, semaphores, monitors or transactional memory to solve synchronization and communication problems in my application?
 - Why doesn’t it do what I thought it would do?
 - How can I show my boss that it really works?

What is Not Covered?

- How to write efficient code for multicore architectures?
- What types of applications are suitable for multicore architectures?
- What programming paradigms exist to write efficient code for multicore architectures?
- How to write multicores code so that it would run in many multicore architectures?
- How to best utilize multicore GPU in your application?
 - CUDA - Compute Unified Device Architecture
 - How to partition your solution to multicore CPU & GPU?
- Programming distributed applications

Learning Methods

- Lecture notes
 - Not perfect for self-study – use with text book
- Summary lectures & discussions
- BACI – Ben-Ari Concurrency Interpreter
- Practice problems
- Homeworks
- Project
- Group meetings (practice sessions)
- Learning diary (elective)
- Course exam

Summary Lecture and Discussion

- Short summary lecture
 - Some of the slides for 2008 lectures
 - Assume: students have read the text book in advance
 - Basic knowledge of today's topic
- Discussion (Socratic discussion)
 - Goal: deeper understanding of today’s topic
 - Students discuss
 - Starting points: questions, claims
 - Students, moderator
 - Goal: answer the question, verify the truth of the claim
 - Moderator may intervene to keep discussion on track

Java

- How to use Java for Concurrent Programming?
 - Threads
 - Messages
 - Semaphores
 - Monitors
- Lectures, projects
Study Circles

• Group work, team work
 – It is better to study in a team than alone
 – Peer student support
 – Study circles formed in the first group meeting

• Student centered learning
 – The student has responsibility on learning
 – Instructor facilitated learning
 – Instructors give good environment for learning

• Three types of team work
 – Solving homework problems independently and then discussing them in study circles and in group meetings
 – Projects
 – Any other co-operative work for this course

Creation of Study Circles

• Possibly the largest problem in study circle courses
 – “Ville promised, but did not do and he was not accessible. And then Maija did most of it. This is not right! Boohoo! 😞”

• Study circles are formed in the 1st group meeting
 – Goals should be similar
 – Think about your goals before the 1st group meeting
 – Discuss and agree on common goals before agreeing on forming a study circle
 – Finally, sign the “Study Circle Contract”

 • Keep up with your agreement
 – Inform the study circle immediately, if you will not continue
 – Get quickly rid of peer students who do not work as agreed on

Practice Problems

• Practice problems
 – Self evaluation
 • Do them only after you think you know the material
 • Do I understand it now?
 – Use does not directly affect your grade
 • No bookkeeping on material use
 • No credit toward course grade

 – More practice problems are made in the project

Homework Problems

• Normal homework problems
 – Learning happens when you solve the problems and discuss them
 – Study topic area first before trying out the problems
 – Reading a complete solution or giving one to peer student is wasting a good problem!

• Homework problems are discussed at
 – Study circle own meetings before group meetings
 – Group meetings with peer students at the table

 • Affects your grade
 – You get homework points (hwp, lhp) for completed problems
 – Only for those present in group meeting

Group Meetings

• Mark down the problems you have completed
• Assistant will organize you in tables
 – Each table should have a student solution for each problem
 – One or more tables may be in English in English speaking practice session

• Discuss all problems in your own table
 – You should have at least tried to solve all problems beforehand
 – Correct solutions available, consult assistant if needed
 – No presentations in front of class

• Discuss additional topics given in solutions paper
 – Open ended discussions, no “correct” answers given

• Common discussion of selected problems/solutions
• Advice students in other tables, if there is time for it

Project 1

• Project (A&B or A&C) with team work
 A. Come up with a new practice problems
 B. Do a small project in Java from text book
 C. Write a better guide on how concurrent programming is done with Java

• Goal is deeper understanding on some topics
 – Other course components may be needed as background knowledge

• Affects your grade
 – Instructor evaluates the report
 – Grade (1-5 pp) depending on the quality of work

 • Participation points (max ±2 pp) based on your participation
 – Study circle determines this part!
Learning Diary (Extra Project 2)

• Evaluate and reflect
 – Cover all learning events (lecture, homework, practice meeting, study circle meeting, etc.)
 – What did you do, observe, learn, and feel

• Affects your grade
 – Same way as other projects
 – Points (pp) are completely extra, and
 you can get an excellent grade also without this project
 – With learning diary you probably get a better grade!

Studying for This Course

• Study weekly topics
 – Read the text book the same topics, with different approach
 – Use lecture slides if you find them useful
 – Attend summary lectures and actively participate discussions
• Check your learning with self evaluation
 – Do practice problems and homework
• Participate in study circle
 – Discuss homework
 – Weekly group meeting
 – Continue projects
 – Study circle meet face-to-face or in the web
• Finish project 1 in time
• Study for exam
 – Take course exam
 – Do extra project
 – Evaluate, think, do, reflect

Evaluation

• Self evaluation
 – Do practice problems after each topic
 – Does not affect your grade
 – Do homeworks each week
 – Do I understand or not?
 – What is there still to learn and how do I do it??
 – Affects your grade
• Course exam
 – Gives a fixed deadline for learning
 – Covers all topics
 – Topics learned in independent study as well as in study circles using various learning methods
 – Examines learning
 – Most of the grade based on this
 – Must reach certain level (50%) to pass the course

Grading

• Good work is awarded
• Diligence and knowledge is awarded
• Course component maximum grade points

<table>
<thead>
<tr>
<th>Component</th>
<th>Max Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks (min 1p)</td>
<td>6 p</td>
</tr>
<tr>
<td>Study circle project (min 1p)</td>
<td>10 p</td>
</tr>
<tr>
<td>Course exam (min 22 p)</td>
<td>44 p</td>
</tr>
<tr>
<td>Total (min 30)</td>
<td>60 p</td>
</tr>
</tbody>
</table>

Course contents

• Lecture 0: Admin
• Lecture 1: Concurrency
• Lecture 2: Concurrency at Prog. Lang. Level
• Lecture 3: Critical Section Problem
• Lecture 4: Verifying Concurrent Programs
• Lecture 5: Deadlocks
• Lecture 6: OS Support for Conc: Semaphores
• Lecture 7: More on semaphores
• Lecture 8: Progr. Lang. Support for Conc: Monitors
• Lecture 9: Concurrency Control in Distr. Environment
• Lecture 10: Crit. Sections in Distributed Environment
• Lecture 11: Practical Examples on Concurrency Control
• Lecture 12: Current Research, Course Summary
• Project: Java programming

Motto

• “It is not good exercise, if you do not sweat”
• This is not a marathon!
• Study-week approach
 – Altogether some 12 h / week
 + exam preparation + exam
 – Total some 80 h / 2 sw course (2 work weeks)
• Top-down approach
 5 yrs / 300 cu = 1 yr / 60 cu = 1600 h / 60 cu
 = 26.67 h / 1 cu = 107 h / 4 cu
 – Total some 107 h / 4 cu course
Nina Aremo study 2007

- Questionnaire study, weekly basis
 - 40/121 student participated (14 women, 27 CS majors)
- Course workload opinion: 50% ok, 50% too much
 - Average weekly work hours: 7, 8, 10, 9, 10, 11 (compared to 12)
 - Total work hours: most 50-70, max 136 (compared to 80 or 107)
- Comments
 - "Need model solutions to homework problems"
 - "Lecturer did not take questions"
 - "Difficult to do well, if you do not attend lectures and practice sessions"
 - "Web pages are incoherent"
 - "Study circles would need more guidance"
 - "Got real busy at end because of so many other courses"

Summary

- Course administration
- Course components and learning methods
- BACI simulator
- Lecture format
- Projects