Concurrent Programming
Autumn 2009

• Administration
 – Course area and learning goals
 – Learning methods
• Introduction to Concurrency
• Slides in English, lectures in Finnish
 – Non-Finnish speakers can read the slides even if they do not understand the lectures
Connections

- Applications
- Operating systems
- Programming languages
- Distributed systems
- Concurrent Programming (Rio)
 - synchronization
 - communication
 - co-operation
- Performance
- Computer Architecture

29.10.2009
Copyright Teemu Kerola 2009
Course Connections

Computer Organization I
Tietokoneen toiminta

Concurrent Programming
Rinnakkaisohjelmointi

Operating Systems
Käyttöjärjestelmät

Distributed Systems
Hajautetut järjestelmät

Software Design (Java)
Ohjelmointitekniikka (Java)

Network Programming
Verkkosovellusten toteuttaminen

Linux System Admin
Linux-ylläpito

Intro to Specification and Verif.
Spesifiöinnin ja verif. perusteet
Motivation

• To know and understand …
 – Why concurrency is important
 – What are the concurrency problems in your systems
 – How concurrency problems are usually solved
 – What are the usual tools for solving concurrency problems
 – How concurrency problems may be solved at different system levels
 • HW, OS, progr. language library, application
Learning Goals

• Concurrency and problems caused by concurrency
 – Basics, fundamental ideas, background

• Fundamental concepts and models in concurrency
 – Main emphasis is here!
 – E.g., “can explain special features of semaphores and monitors and use them properly in applications”, or “can explain how deadlocks can be prevented”.

• Concurrent programming in distributed systems
 – Get taste of it, more in later courses

• Concurrent programming in practice
 – Discussed in lectures, practice in project
What Good is Concurrent Programming for?

- All computer systems are inherently concurrent – one must understand concurrency to understand computer system operation
- Concurrency allows huge speedups for properly designed systems
- Concurrency causes complex problems that are not easy to solve without good understanding of concurrency

- Should I use threads in my Java application or not?
- Would it be better to use locks, semaphores, monitors or transactional memory to solve synchr. and communication problems in my application?
- Why doesn’t it do what I thought it would do?
- How can I show my boss that it really works?
What is **Not Covered**?

- How to write efficient code for multicore architectures?
- What types of applications are suitable for multicore architectures?
- What programming paradigms exist to write efficient code for multicore architectures?
- How to write multicore code so that it would run in many multicore architectures?
- How to best utilize multicore GPU in your application?
 - CUDA - Compute Unified Device Architecture
 - How to partition your solution to multicore CPU & GPU?
- Programming distributed applications
Learning Methods

- Lecture notes
 - Not perfect for self study – use with text book
- Summary lectures & discussions
- BACI – Ben-Ari Concurrency Interpreter
- Practice problems
- Homeworks
- Project
- Group meetings (practice sessions)
- Learning diary (elective)
- Course exam

Mordechai Ben-Ari
http://stwww.weizmann.ac.il/g-cs/benari/

William Stallings
http://www.acm.org/crossroads/xrds10-4/stallings.html

29.10.2009
Copyright Teemu Kerola 2009
Summary Lecture and Discussion

• Short summary lecture
 – Some of the slides for 2008 lectures
 – Assume: students have read the textbook in advance
 • Basic knowledge of today's topic

• Discussion (Socratic discussion)
 – Goal: deeper understanding of today's topic
 – Students discuss
 • Starting points: questions, claims
 – Students, moderator
 • Goal: answer the question, verify the truth of the claim
 – Moderator may intervene to keep discussion on track

Nina Aremo (Faculty of Science) will attend some lectures and may make a short interview study on how well this learning method works for this course.
BACI – Ben-Ari Concurrency Interpreter

• Write concurrent programs in C--
• Compile them to BACI PCode
• Execute them concurrently in BACI
• GUI, debugging environment
Java

• How to use Java for Concurrent Programming?
 – Threads
 – Messages
 – Semaphores
 – Monitors

• Lectures, projects
Study Circles

• Group work, team work
 – It is better to study in a team than alone
 – Peer student support
 – Study circles formed in the first group meeting

• Student centered learning
 – The student has responsibility on learning
 – Instructor facilitated learning
 – Instructors give good environment for learning

• Three types of team work
 – Solving homework problems independently and then discussing them in study circles and in group meetings
 – Projects
 – Any other co-operative work for this course
Creation of Study Circles

• Possibly the largest problem in study circle courses
 – ”Ville promised, but did not do and he was not accessible. And then Maija did most of it. This is not right! Boohoo! 😞”

• Study circles are formed in the 1st group meeting
 – Goals should be similar
 • Easy in real life: ”you will finish it or …”
 – Think about your goals before the 1st group meeting
 • Do I want to learn a lot, or just pass the course?
 • Will I help others, or just concentrate on my own work?
 – Discuss and agree on common goals before agreeing on forming a study circle
 • Finally, sign the ”Study Circle Contract”

• Keep up with your agreement
 – Inform the study circle immediately, if you will not continue
 – Get quickly rid of peer students who do not work as agreed on
Practice Problems

• Practice problems
 – Self evaluation
 • Do them only after you think you know the material
 • Do I understand it now?
 • They check only some part of the material, no guarantees!
 – Use does not directly affect your grade
 • No bookkeeping on material use
 • No credit toward course grade
 – More practice problems are made in the project
Homework Problems

- Normal homework problems
- Learning happens when you solve the problems and discuss them
 - Study topic area first before trying out the problems
 - Work on the problems independently before discussing them
 - Reading a complete solution or giving one to a peer student is wasting a good problem!
- Homework problems are discussed at
 - Study circle own meetings before group meetings
 - Group meetings with peer students at the table
- Affects your grade
 - You get homework points (hwp, lhp) for completed problems
 - Only for those present in group meeting

Group Meetings

- Mark down the problems you have completed
- Assistant will organize you in tables
 - Each table should have a student solution for each problem
 - One or more tables may be in English in English speaking practice session
- Discuss all problems in your own table
 - You should have at least tried to solve all problems beforehand
 - You should understand all solutions at end
 - Other students in your table should understand all solutions at end
 - Correct solutions available, consult assistant if needed
 - No presentations in front of class
- Discuss additional topics given in solutions paper
 - Open ended discussions, no ”correct” answers given
- Common discussion of selected problems/solutions
- Advice students in other tables, if there is time for it
Project 1

• Project (A&B or A&C) with team work
 A. Come up with a new practice problems
 B. Do a small project in Java from text book
 C. Write a better guide on how concurrent programming is done with Java

• Goal is deeper understanding on some topics
 - Other course components may be needed as background knowledge

• Affects your grade
 - Instructor evaluates the report
 - You get project points (pp) in three parts
 - Basic points (3 pp) for just completing the project (for 8 pp project)
 - Grade (1-5 pp) depending on the quality of work
 - Participation points (max ±2 pp) based on you participation
 - Study circle determines this part!
Learning Diary (Extra Project 2)

- Evaluate and reflect
 - Cover all learning events (lecture, homework, practice meeting, study circle meeting, etc.)
 - What did you do, observe, learn, and feel

- Affects your grade
 - Same way as other projects
 - Points (pp) are completely extra, and you can get an excellent grade also without this project
 - With learning diary you probably get a better grade!
Studying for This Course

• Study weekly topics
 – Read the text book the same topics, with different approach
 • Use lecture slides if you find them useful
 – Attend summary lectures and actively participate discussions

• Check your learning with self evaluation
 – Do practice problems and homework

• Participate in study circle
 – Discuss homework
 – Weekly group meeting
 – Continue projects
 – Study circle meet face-to-face or in the web

• Finish project 1 in time

• Study for exam

• Take course exam
 – Do extra project
Evaluation

• **Self evaluation**
 - Do practice problems after each topic
 - Does not affect your grade
 - Do homeworks each week
 - Do I understand or not?
 - What is there still to learn and how do I do it??
 - Affects your grade

• **Course exam**
 - Gives a fixed deadline for learning
 - Covers all topics
 - Topics learned in independent study as well as in study circles using various learning methods
 - Evaluates learning
 - Most of the grade based on this
 - Must reach certain level (50%) to pass the course
Grading

- Good work is awarded
- Diligence and knowledge is awarded
- Course component maximum grade points

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks (min 1p)</td>
<td>6 p</td>
</tr>
<tr>
<td>Study circle project (min 1p)</td>
<td>10 p</td>
</tr>
<tr>
<td>(extra Project 2: study diary)</td>
<td>(+5 p)</td>
</tr>
<tr>
<td>Course exam (min 22 p)</td>
<td>44 p</td>
</tr>
<tr>
<td>Total (min 30)</td>
<td>60 p</td>
</tr>
<tr>
<td>(with project 2)</td>
<td>(65 p)</td>
</tr>
</tbody>
</table>
Course contents

- Lecture 1: Concurrency
- Lecture 2: Concurrency at Progr. Lang. Level
- Lecture 3: Critical Section Problem
- Lecture 4: Verifying Concurrent Programs
- Lecture 5: Deadlocks
- Lecture 6: OS Support for Conc: Semaphores
- Lecture 7: More on semaphores
- Lecture 8: Progr. Lang. Support for Conc: Monitors
- Lecture 9: Concurrency Control in Distr. Environment
- Lecture 10: Crit. Sections in Distributed Environment
- Lecture 11: Practical Examples on Concurrency Control
- Lecture 12: Current Research, Course Summary
- Project: Java programming
Motto

• “It is not good exercise, if you do not sweat”
• This is not a marathon!
• Study-week approach
 – Altogether some 12 h / week
 + exam preparation + exam
 – Total some 80 h / 2 sw course (2 work weeks)
• Top-down approach
 \[
 \frac{5 \text{ yrs}}{300 \text{ cu}} = \frac{1 \text{ yr}}{60 \text{ cu}} = \frac{1600 \text{ h}}{60 \text{ cu}} \\
 = \frac{26.67 \text{ h}}{1 \text{ cu}} = \frac{107 \text{ h}}{4 \text{ cu}}
 \]
 – Total some 107 h / 4 cu course
Nina Aremo study 2007

- Questionare study, weekly basis
 - 40/121 student participated (14 women, 27 CS majors)
- Course workload opinion: 50% ok, 50% too much
 - Aver weekly work hours: 7, 8, 10, 9, 10, 11 (compare to 12)
 - Total work hours: most 50-70, max 136 (compare to 80 or 107)
- Comments
 - “Need model solutions to homework problems”
 - “Lecturer did not take questions”
 - “Difficult to do well, if you do not attend lectures and practice sessions”
 - “Web pages are incoherent”
 - “Study circles would need more guidance”
 - “Got real busy at end because of so many other courses”
Summary

- Course administration
- Course components and learning methods
- BACI simulator
- Lecture format
- Projects