
Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 1

Concurrency

Lesson 1

Ch 1 [BenA 06]

Terminology
Concurrency in Systems

Problem ExamplesProblem Examples
Solution Considerations

129.10.2009 Copyright Teemu Kerola 2009

Concurrency Terminology
• Process, thread
• “Ordinary” program

– Sequential process, one thread of execution

tavallinen ohjelma

• Concurrent program
– Many sequential process, that may be executed in parallel

• multi-threaded Java-program, runs in one system
• Web-application, distributed on many systems

• Multiprocessor system, parallel program
– Many sequential or concurrent processes are executed in

parallel

rinnakkaisohjelma

rinnakkaisohjelma moniprosessorisovellus

prosessi,
säie

parallel
– Many architectures, no winner yet

• Distributed system, distributed program
– No shared memory
– Interconnected systems

229.10.2009 Copyright Teemu Kerola 2009

hajautettu ohjelma

rinnakkaisohjelma, moniprosessorisovellus

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 2

Concurrency at HW-level

• Processor
– Execute many instructions in parallel

E t th d i ll l– Execute many threads in parallel
– Execute many processes in parallel

• System
– Many processors/display processors
– Many I/O devices

• LAN or WAN

STI Cell

– Many systems (in clusters)

• Internet and other networks
– Many sub-systems

329.10.2009 Copyright Teemu Kerola 2009
http://ops.fhwa.dot.gov/publications/telecomm_handbook/images/fig2-14.gif

Problem
• Moore’s Law will not

give us (any more)
faster processors

– But it gives us now
more processors on
one chip

• Multicore CPU

• Chip-level
multiprocessor p
(CMP)

429.10.2009 Copyright Teemu Kerola 2009

Herb Sutter, “A Fundamental Turn
Toward Concurrency in SW”,
Dr. Dobb’s Journal, 2005.
http://www.ddj.com/web-development/184405990;jsessionid=BW05DMMAOT3ZGQSNDLPCKH0CJUNN2JVN?_requestid=1416784

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 3

(hyper-
th d)

529.10.2009 Copyright Teemu Kerola 2009

Borkar, Dubey, Kahn, et al. “Platform 2015.” Intel White Paper, 2005.

threads)

http://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf

The Multicore Challenge
• We have a heat-barrier dead-end to develop

simple to program single core chips
– So, we leap to multicore chips in pursuit for ever higher

processing power

• Parallel Challenge: how to use these multicore
computers efficiently to speed up computing?
– Concurrent programming

– We should have launched a parallel programming
“M h tt P j t” l ti“Manhattan Project” a long time ago

• Would need now 100’s of millions ($), not 10’s of
millions ($) per year for long term funding

629.10.2009 Copyright Teemu Kerola 2009

David Patterson, The Multicore Challenge, The CCC Blog, Aug 26, 2008,
http://www.cccblog.org/2008/08/26/the-multicore-challenge/

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 4

Concurrency at HW-level
• Machine language code

– Many instructions at execution
concurrently

– Logically “one at a time” (von Neumann arch.)

Comp.Org. I, II
(tito, tikra)

Logically one at a time (von Neumann arch.)
• At least one “instruction cluster” at a time

– Program execution may stop/pause after any instruction
• High level programming language code

– Process switch can occur at any time
– No “handle” on process switch times (in general)

• Operating system & external events decide

– Need to synchronize with other programs
– Need to communicate with other programs
– Need to get handle to process switch occurrences
– Other processes may be in execution at the same time

729.10.2009 Copyright Teemu Kerola 2009

Problem Free Concurrency?
• No problems at all?

– Concurrent threads in execution

– No shared data no I/O (or private I/O)– No shared data, no I/O (or private I/O)

– No communication, no synchonization

• No shared data, but data in shared memory
– Bus congestion may be problem

• Concurrency problem (bus use) solved in HW

• Slows down executionSlows down execution

• Communication/synchronization is needed
eventually
– Combine results from concurrent threads

829.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 5

Concurrency Problems
• Keep data consistent

– Update all fields of shared data
– Complete writing a buffer before reading starts

• Synchronize with someone
– Complete writing before reading starts
– Give money only after bank card is taken
– Compile new Java class before execution resumes
– Do not wait forever, if the other party is dead

C i t ith• Communicate with someone
– Send a short message to someone
– Send data to be processed to someone
– Send 2 GB data for remote processing, wait for result

929.10.2009 Copyright Teemu Kerola 2009

Concurrency Examples
• Playstation 3

– Use effectively 2 cells, 9 processors at each cell
• Use two different processor architecturesp

– Divide-and-conquer or filtering approach?

• Desktop PC
– Use effectively 4 processors and a graphics adapter to

generate graphics for fast moving game

– Divide processing for CPU’s and graphics adapter?

– Utilize all 4 processors

– Control shared access to game data base
• In memory? In disk?

• In a file server in Japan?

1029.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 6

Concurrency Examples
• Multithreaded Java program on a multiprocessor

system
A t h d

clickvera: javac Plusminus1.java
http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus1.java

– Access to shared
data structures

clickvera: javac Plusminus8.java
vera: time java Plusminus8 >& a &

vera has 8 processors visible to operating system
Why is result different with extra output?

j j
vera: time java Plusminus1

vera: ps -eo pcpu,pid,user,args | sort -k 1 -r | head -10

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus8.java

– Synchronization between threads

• Displaying these slides from file server
– Transfer slides to local buffer and display them

1129.10.2009 Copyright Teemu Kerola 2009

Why is result different with extra output?

Concurrency Examples

• Linux Beowulf 6 node cluster
– How to solve weather forecast Hirlam model as fast– How to solve weather forecast Hirlam model as fast

as possible?

– How to best distribute data?

– Solution scalable to 100 or 1000 nodes?

• Web server
– How to serve 1000 or 10000 concurrent requests with q

100 file servers
• Most reads, but some writes to same files?

• How to guarantee consistent reads with simultaneous writes?

1229.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 7

Concurrency Examples
• Operating system

– How to keep track of all concurrent processes, each
i h l i l h d ?with multiple threads?

– What type of concurrency control utilities should be
offered to user programs?

• Which utilities offered to OS services?

– How do we guarantee that the system does not
“freeze”

– How to write an 8-disk disk controller device driver?

– How do I guarantee, that nothing disturbs an ongoing
process switch?

1329.10.2009 Copyright Teemu Kerola 2009

Concurrency Problem Solution Level
• Processor level, i.e., below machine language level

– HW solutions, automatic, no errors
– Need to understand, this is where it really happens

• Machine language level
Specific (HW) machine instructions for concurrency solutions– Specific (HW) machine instructions for concurrency solutions

– Clever solutions without specific instructions
– Need to be used properly, this is where it really happens

• Program level, i.e., programming language level
– SW solutions, many possibilities for error
– Solve problem by programming the solution your self

• Very error prone
• Requires privileged execution mode (usually)q p g (y)

– Solve problem directly by invoking certain available library
services

• Error prone – may invoke wrong routines at wrong times
– Solve problem by letting available library service do it all for you

• Not suitable always – may not fit to your problem well

1429.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 8

Library Solutions for
Concurrency Problems

• Programming language run-time library
– E.g., Java thread management
– Usually within one process (in one system)y p (y)
– Any program can use
– May be implemented directly or with OS-libraries

• Operating systems services (libraries)
– Any process can use these, not so portable across OS’s
– Usually only choice between many processes

• Exception: programming language library that
implements its services with OS

– Only choice between many systems
– May need privileged execution mode

• Some services reserved only for OS programs or
utilities

1529.10.2009 Copyright Teemu Kerola 2009

Basic Concurrency Problem Types

• Mutex
– One or more critical code

Mutual exclusion,
poissulkemisongelma

Person.id = idX;
Person name = nameX;

segments, i.e., critical section
– At most one process executing

critical section (of code) at any time
– I.e., at most one process

holds this resource
(code) at any time

h i i

Person.name nameX;
Person.age = ageX;

Q
P1

P3

P2

• Synchronization

• Communication

1629.10.2009 Copyright Teemu Kerola 2009

P3 P4

P Q

P Qdata

continue

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 9

Basic Concurrency Problems
• Dining philosophers

– think-eat cycle

– need 2 forks to eat

Edsger Dijkstra, 1971 Aterioivat filosofit

– can take one fork at a time

– no discussion

– question: what protocol to
use to reserve forks?

– multi-process
synchronization

– Avoid deadlockAvoid deadlock

– Avoid starvation

– Prove correctness

1729.10.2009 Copyright Teemu Kerola 2009

http://en.wikipedia.org

photo ©2002 Hamilton Richards, http://www.cs.utexas.edu/users/EWD/EWDwww.jpg

Basic Concurrency Problems
• Sleeping barber

– One barber, one barber chair
– Waiting room with n chairs
– No customers?

Nukkuva parturi

Dijkstra
• Barber sleeps until arriving

customer wakes him up

– Customer arrives?
• Barber sleeps? Wake him up!
• Barber busy and empty chairs?

Reserve one and wait.
• o/w leave

– Question: what protocol forQuestion: what protocol for
barber & customers?

– Inter-process communication,
synchronization?

– Avoid deadlock and starvation

1829.10.2009 Copyright Teemu Kerola 2009
http://www.cs.uml.edu/~fredm/courses/91.308-fall05/assignment7.shtml

Fred G. Martin

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 10

Basic Concurrency Problems
• Bakery algorithm

– Baker, ticket machine
– Each arriving customer gets a

Leipurin vuorolappu

g g
ticket number

– Customers are served in
increasing ticket number order

– Question: how to implement the
ticket machine

• In distributed system?
• With/without shared

memory?
– Multi-threaded mutual

exclusion
– Critical section use order?

1929.10.2009 Copyright Teemu Kerola 2009

Leslie Lamport, 1974

http://research.microsoft.com/users/
lamport/leslie.gif

Basic Concurrency Problems
• Producer-Consumer

– Bounded shared buffer area

Producers insert data items

tuottaja-kuluttaja

– Producers insert data items

– Consumers take data items in arriving order

– Full buffer?
• Producer blocks

– Empty buffer?
• Consumer blocks

P1

P3

P2
C1

C2

data
data

data

– Question: protocol for producer/consumer

– Communication, synchronization
• Unix/linux “pipe”

– Avoid deadlock, starvation

2029.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 11

Basic Concurrency Problems
• Readers-writers

– Shared data-base
M d it

lukijat-kirjoittajat

– Many can read same item
concurrently

– Only one can write at a time
• Reading not allowed at that time

– Readers have priority over writers
Question: protocol for

read
read

– Question: protocol for
readers/writers?

– Mutual exclusion, synchronization
– Avoid deadlock, starvation

2129.10.2009 Copyright Teemu Kerola 2009

w
rite

System Considerations

• Different threads in same process?
– Who controls thread switching? Application or OS?W o co t o s t ead sw tc g? pp cat o o OS?

• Different processes in same system?
– Shared memory or not?
– Many threads in each process?

• Different threads/processes in processors grid?
– No shared memory

• Different threads/processes in distributed system?
– No shared memory
– Large communication delays

2229.10.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 29.10.2009

Lecture 1: Concurrency 12

Solution Considerations
• Solution at application level without HW support

– Do everything from scratch

• Solution at application level with HW supportpp pp
– Use special machine language level instructions or

structures

• Solution at operating system level
– Use utilities in operating system library

• Solution at programming language level
Use tilities in programming lang age librar– Use utilities in programming language library

• Solution at network level
– Use utilities in some network server

• Need to understand what really happens

2329.10.2009 Copyright Teemu Kerola 2009

Summary

• Terminology

C i• Concurrency in systems

• Concurrency problem examples
– Educational: philophers, barber, bakery

– Practical: consumer-producer, readers-writers

• Solution considerations• Solution considerations

2429.10.2009 Copyright Teemu Kerola 2009

